[1]
Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N. WHO pathogens priority list working group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3] [PMID: 29276051]
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3] [PMID: 29276051]
[2]
Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: a common cause of persistent infections. Science, 1999, 284(5418), 1318-1322.
[http://dx.doi.org/10.1126/science.284.5418.1318] [PMID: 10334980]
[http://dx.doi.org/10.1126/science.284.5418.1318] [PMID: 10334980]
[3]
Townsley, L.; Shank, E.A. Natural-product antibiotics: cues for modulating bacterial biofilm formation. Trends Microbiol., 2017, 25(12), 1016-1026.
[http://dx.doi.org/10.1016/j.tim.2017.06.003] [PMID: 28688575]
[http://dx.doi.org/10.1016/j.tim.2017.06.003] [PMID: 28688575]
[4]
Malone, M.; Bjarnsholt, T.; McBain, A.J.; James, G.A.; Stoodley, P.; Leaper, D.; Tachi, M.; Schultz, G.; Swanson, T.; Wolcott, R.D. The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data. J. Wound Care, 2017, 26(1), 20-25.
[http://dx.doi.org/10.12968/jowc.2017.26.1.20] [PMID: 28103163]
[http://dx.doi.org/10.12968/jowc.2017.26.1.20] [PMID: 28103163]
[5]
Arciola, C.R.; Campoccia, D.; Montanaro, L. Implant infections: adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol., 2018, 16(7), 397-409.
[http://dx.doi.org/10.1038/s41579-018-0019-y] [PMID: 29720707]
[http://dx.doi.org/10.1038/s41579-018-0019-y] [PMID: 29720707]
[6]
Martens, E.; Demain, A.L. The antibiotic resistance crisis, with a focus on the United States. J. Antibiot. (Tokyo), 2017, 70(5), 520-526.
[http://dx.doi.org/10.1038/ja.2017.30] [PMID: 28246379]
[http://dx.doi.org/10.1038/ja.2017.30] [PMID: 28246379]
[7]
Abraham, W-R. Controlling biofilms of gram-positive pathogenic bacteria. Curr. Med. Chem., 2006, 13(13), 1509-1524.
[http://dx.doi.org/10.2174/092986706777442039] [PMID: 16787201]
[http://dx.doi.org/10.2174/092986706777442039] [PMID: 16787201]
[8]
Wright, G.D. Opportunities for natural products in 21st century antibiotic discovery. Nat. Prod. Rep., 2017, 34(7), 694-701.
[http://dx.doi.org/10.1039/C7NP00019G] [PMID: 28569300]
[http://dx.doi.org/10.1039/C7NP00019G] [PMID: 28569300]
[9]
Voukeng, I.K.; Beng, V.P.; Kuete, V. Antibacterial activity of six medicinal Cameroonian plants against Gram-positive and Gram-negative multidrug resistant phenotypes. BMC Complement. Altern. Med., 2016, 16(1), 388.
[http://dx.doi.org/10.1186/s12906-016-1371-y] [PMID: 27724917]
[http://dx.doi.org/10.1186/s12906-016-1371-y] [PMID: 27724917]
[10]
Yuyama, K.T.; Chepkirui, C.; Wendt, L.; Fortkamp, D.; Stadler, M.; Abraham, W-R. Bioactive compounds produced by Hypoxylon fragiforme against Staphylococcus aureus biofilm. Microorganisms, 2017, 5(4), 80.
[http://dx.doi.org/10.3390/microorganisms5040080] [PMID: 29231891]
[http://dx.doi.org/10.3390/microorganisms5040080] [PMID: 29231891]
[11]
Jansen, R.; Irschik, H.; Huch, V.; Schummer, D.; Steinmetz, H.; Bock, M.; Schmidt, T.; Kirschning, A.; Müller, R. Carolacton–A macrolide ketocarbonic acid that reduces biofilm formation by the caries‐and endocarditis‐associated bacterium Streptococcus mutans. Eur. J. Org. Chem., 2010, 2010, 1284-1289.
[http://dx.doi.org/10.1002/ejoc.200901126]
[http://dx.doi.org/10.1002/ejoc.200901126]
[12]
Chandra, H.; Bishnoi, P.; Yadav, A.; Patni, B.; Mishra, A.P.; Nautiyal, A.R. Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials – a review. Plants (Basel), 2017, 6(2), 16.
[http://dx.doi.org/10.3390/plants6020016] [PMID: 28394295]
[http://dx.doi.org/10.3390/plants6020016] [PMID: 28394295]
[13]
Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Encinar, J.A.; Rodríguez-Díaz, J.C.; Micol, V. Antimicrobial capacity of plant polyphenols against Gram-positive bacteria: a comprehensive review. Curr. Med. Chem., 2018.
[http://dx.doi.org/10.2174/0929867325666181008115650] [PMID: 30295182]
[http://dx.doi.org/10.2174/0929867325666181008115650] [PMID: 30295182]
[14]
Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature, 2016, 529(7586), 336-343.
[http://dx.doi.org/10.1038/nature17042] [PMID: 26791724]
[http://dx.doi.org/10.1038/nature17042] [PMID: 26791724]
[15]
Slobodníková, L.; Fialová, S.; Rendeková, K.; Kováč, J.; Mučaji, P. Antibiofilm activity of plant polyphenols. Molecules, 2016, 21(12), 1717.
[http://dx.doi.org/10.3390/molecules21121717] [PMID: 27983597]
[http://dx.doi.org/10.3390/molecules21121717] [PMID: 27983597]
[16]
Abraham, W-R. Going beyond the control of quorumsensing to combat biofilm infections. Antibiotics (Basel), 2016, 5(1), 3.
[http://dx.doi.org/10.3390/antibiotics5010003] [PMID: 27025518]
[http://dx.doi.org/10.3390/antibiotics5010003] [PMID: 27025518]
[17]
Larsen, T.; Fiehn, N.E. Dental biofilm infections - an update. APMIS, 2017, 125(4), 376-384.
[http://dx.doi.org/10.1111/apm.12688] [PMID: 28407420]
[http://dx.doi.org/10.1111/apm.12688] [PMID: 28407420]
[18]
Ferrazzano, G.F.; Amato, I.; Ingenito, A.; Zarrelli, A.; Pinto, G.; Pollio, A. Plant polyphenols and their anti-cariogenic properties: a review. Molecules, 2011, 16(2), 1486-1507.
[http://dx.doi.org/10.3390/molecules16021486] [PMID: 21317840]
[http://dx.doi.org/10.3390/molecules16021486] [PMID: 21317840]
[19]
Esteban-Fernández, A.; Zorraquín-Peña, I.; de Llano, D.G.; Bartolomé, B.; Moreno-Arribas, M.V. The role of wine and food polyphenols in oral health. Trends Food Sci. Technol., 2017, 69A, 118-130.
[http://dx.doi.org/10.1016/j.tifs.2017.09.008]
[http://dx.doi.org/10.1016/j.tifs.2017.09.008]
[20]
Kawarai, T.; Narisawa, N.; Yoneda, S.; Tsutsumi, Y.; Ishikawa, J.; Hoshino, Y.; Senpuku, H. Inhibition of Streptococcus mutans biofilm formation using extracts from Assam tea compared to green tea. Arch. Oral Biol., 2016, 68, 73-82.
[http://dx.doi.org/10.1016/j.archoralbio.2016.04.002] [PMID: 27107380]
[http://dx.doi.org/10.1016/j.archoralbio.2016.04.002] [PMID: 27107380]
[21]
Karygianni, L.; Al-Ahmad, A.; Argyropoulou, A.; Hellwig, E.; Anderson, A.C.; Skaltsounis, A.L. Natural antimicrobials and oral microorganisms: a systematic review on herbal interventions for the eradication of multispecies oral biofilms. Front. Microbiol., 2016, 6, 1529.
[http://dx.doi.org/10.3389/fmicb.2015.01529] [PMID: 26834707]
[http://dx.doi.org/10.3389/fmicb.2015.01529] [PMID: 26834707]
[22]
Van der Weijden, F.A.; Van der Sluijs, E.; Ciancio, S.G.; Slot, D.E. Can chemical mouthwash agents achieve plaque/gingivitis control? Dent. Clin. North Am., 2015, 59(4), 799-829.
[http://dx.doi.org/10.1016/j.cden.2015.06.002] [PMID: 26427569]
[http://dx.doi.org/10.1016/j.cden.2015.06.002] [PMID: 26427569]
[23]
Andrade-Ochoa, S.; Nevárez-Moorillón, G.V.; Sánchez-Torres, L.E.; Villanueva-García, M.; Sánchez-Ramírez, B.E.; Rodríguez-Valdez, L.M.; Rivera-Chavira, B.E. Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis. BMC Complement. Altern. Med., 2015, 15(1), 332.
[http://dx.doi.org/10.1186/s12906-015-0858-2] [PMID: 26400221]
[http://dx.doi.org/10.1186/s12906-015-0858-2] [PMID: 26400221]
[24]
Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr. Med. Chem., 2015, 22(1), 132-149.
[http://dx.doi.org/10.2174/0929867321666140916113443] [PMID: 25245513]
[http://dx.doi.org/10.2174/0929867321666140916113443] [PMID: 25245513]
[25]
Manner, S.; Skogman, M.; Goeres, D.; Vuorela, P.; Fallarero, A. Systematic exploration of natural and synthetic flavonoids for the inhibition of Staphylococcus aureus biofilms. Int. J. Mol. Sci., 2013, 14(10), 19434-19451.
[http://dx.doi.org/10.3390/ijms141019434] [PMID: 24071942]
[http://dx.doi.org/10.3390/ijms141019434] [PMID: 24071942]
[26]
Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[27]
Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem., 2016, 8(6), 531-541.
[http://dx.doi.org/10.1038/nchem.2479] [PMID: 27219696]
[http://dx.doi.org/10.1038/nchem.2479] [PMID: 27219696]
[28]
Estrela, A.B.; Abraham, W.R. Combining biofilmcontrolling compounds and antibiotics as a promising new way to control biofilm infections. Pharmaceuticals (Basel), 2010, 3(5), 1374-1393.
[http://dx.doi.org/10.3390/ph3051374] [PMID: 27713308]
[http://dx.doi.org/10.3390/ph3051374] [PMID: 27713308]
[29]
Baptista, A.; Gonçalves, R.V.; Bressan, J.; Pelúzio, M.D.C.G. Antioxidant and antimicrobial activities of crude extracts and fractions of cashew (Anacardium occidentale L.), Cajui (Anacardium microcarpum), and pequi (Caryocar brasiliense C.): a systematic review Oxidat Med Cell Longevity, 2018.
[http://dx.doi.org/10.1155/2018/3753562] [PMID: 29849888]
[http://dx.doi.org/10.1155/2018/3753562] [PMID: 29849888]
[30]
Ghasemzadeh, A.; Jaafar, H.Z.; Rahmat, A. Variation of the phytochemical constituents and antioxidant activities of Zingiber officinale var. rubrum Theilade associated with different drying methods and polyphenol oxidase activity. Molecules, 2016, 21(6), 780.
[http://dx.doi.org/10.3390/molecules21060780] [PMID: 27322227]
[http://dx.doi.org/10.3390/molecules21060780] [PMID: 27322227]
[31]
Kunle, O.F.; Egharevba, H.O.; Ahmadu, P.O. Standardization of herbal medicines - A review. Int. J. Biodivers. Conserv., 2012, 4, 101-112.
[http://dx.doi.org/10.5897/IJBC11.163]
[http://dx.doi.org/10.5897/IJBC11.163]