Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Computational Analysis of Dipyrone Metabolite 4-Aminoantipyrine As A Cannabinoid Receptor 1 Agonist

Author(s): Silvana Russo and Walter Filgueira de Azevedo*

Volume 27, Issue 28, 2020

Page: [4741 - 4749] Pages: 9

DOI: 10.2174/0929867326666190906155339

Price: $65

Abstract

Background: Cannabinoid receptor 1 has its crystallographic structure available in complex with agonists and inverse agonists, which paved the way to establish an understanding of the structural basis of interactions with ligands. Dipyrone is a prodrug with analgesic capabilities and is widely used in some countries. Recently some evidence of a dipyrone metabolite acting over the Cannabinoid Receptor 1has been shown.

Objective: Our goal here is to explore the dipyrone metabolite 4-aminoantipyrine as a Cannabinoid Receptor 1 agonist, reviewing dipyrone characteristics, and investigating the structural basis for its interaction with the Cannabinoid Receptor 1.

Method: We reviewed here recent functional studies related to the dipyrone metabolite focusing on its action as a Cannabinoid Receptor 1 agonist. We also analyzed protein-ligand interactions for this complex obtained through docking simulations against the crystallographic structure of the Cannabinoid Receptor 1.

Results: Analysis of the crystallographic structure and docking simulations revealed that most of the interactions present in the docked pose were also present in the crystallographic structure of Cannabinoid Receptor 1 and agonist.

Conclusion: Analysis of the complex of 4-aminoantipyrine and Cannabinoid Receptor 1 revealed the pivotal role played by residues Phe 170, Phe 174, Phe 177, Phe 189, Leu 193, Val 196, and Phe 379, besides the conserved hydrogen bond at Ser 383. The mechanistic analysis and the present computational study suggest that the dipyrone metabolite 4-aminoantipyrine interacts with the Cannabinoid Receptor 1.

Keywords: 4-aminoantipyrine, cannabinoid receptor 1, dipyrone, docking, metamizole, molecular interactions.

[1]
Nikolova, I.; Tencheva, J.; Voinikov, J.; Petkova, V.; Benbasat, N.; Danchev, N. Metamizole: A Review Profile of a Well-Known “Forgotten” Drug. Part I: Pharmaceutical and Nonclinical Profile. Biotechnol. Biotechnol. Equip., 2012, 26(6), 3329-3337.
[http://dx.doi.org/10.5504/BBEQ.2012.0089]
[2]
Nikolova, I.; Petkova, V.; Tencheva, J.; Benbasat, N.; Voinikov, J.; Danchev, N. Metamizole: A Review Profile of a Well-Known “Forgotten” Drug. Part II: Clinical Profile. Biotechnol. Biotechnol. Equip., 2013, 27(2), 3605-3619.
[http://dx.doi.org/10.5504/BBEQ.2012.0135]
[3]
Rogosch, T.; Sinning, C.; Podlewski, A.; Watzer, B.; Schlosburg, J.; Lichtman, A.H.; Cascio, M.G.; Bisogno, T.; Di Marzo, V.; Nüsing, R.; Imming, P. Novel bioactive metabolites of dipyrone (metamizol). Bioorg. Med. Chem., 2012, 20(1), 101-107.
[http://dx.doi.org/10.1016/j.bmc.2011.11.028] [PMID: 22172309]
[4]
Vanegas, H.; Tortorici, V. Opioidergic effects of nonopioid analgesics on the central nervous system. Cell. Mol. Neurobiol., 2002, 22(5-6), 655-661.
[http://dx.doi.org/10.1023/A:1021896622089] [PMID: 12585685]
[5]
dos Santos, G.G.; Dias, E.V.; Teixeira, J.M.; Athie, M.C.P.; Bonet, I.J.M.; Tambeli, C.H.; Parada, C.A. The analgesic effect of dipyrone in peripheral tissue involves two different mechanisms: neuronal K(ATP) channel opening and CB(1) receptor activation. Eur. J. Pharmacol., 2014, 741, 124-131.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.019] [PMID: 25058903]
[6]
Hua, T.; Vemuri, K.; Pu, M.; Qu, L.; Han, G.W.; Wu, Y.; Zhao, S.; Shui, W.; Li, S.; Korde, A.; Laprairie, R.B.; Stahl, E.L.; Ho, J.H.; Zvonok, N.; Zhou, H.; Kufareva, I.; Wu, B.; Zhao, Q.; Hanson, M.A.; Bohn, L.M.; Makriyannis, A.; Stevens, R.C.; Liu, Z.J. Crystal Structure of the Human Cannabinoid Receptor CB1. Cell, 2016, 167(3), 750-762.e14.
[http://dx.doi.org/10.1016/j.cell.2016.10.004] [PMID: 27768894]
[7]
Shao, Z.; Yin, J.; Chapman, K.; Grzemska, M.; Clark, L.; Wang, J.; Rosenbaum, D.M. High-resolution crystal structure of the human CB1 cannabinoid receptor. Nature, 2016, 540(7634), 602-606.
[http://dx.doi.org/10.1038/nature20613] [PMID: 27851727]
[8]
Hua, T.; Vemuri, K.; Nikas, S.P.; Laprairie, R.B.; Wu, Y.; Qu, L.; Pu, M.; Korde, A.; Jiang, S.; Ho, J.H.; Han, G.W.; Ding, K.; Li, X.; Liu, H.; Hanson, M.A.; Zhao, S.; Bohn, L.M.; Makriyannis, A.; Stevens, R.C.; Liu, Z.J. Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature, 2017, 547(7664), 468-471.
[http://dx.doi.org/10.1038/nature23272] [PMID: 28678776]
[9]
Schlosburg, J.E.; Radanova, L.; Di Marzo, V.; Imming, P.; Lichtman, A.H. Evaluation of the endogenous cannabinoid system in mediating the behavioral effects of dipyrone (metamizol) in mice. Behav. Pharmacol., 2012, 23(7), 722-726.
[http://dx.doi.org/10.1097/FBP.0b013e3283584794] [PMID: 22954646]
[10]
Cohen, O.; Zylber-Katz, E.; Caraco, Y.; Granit, L.; Levy, M. Cerebrospinal fluid and plasma concentrations of dipyrone metabolites after a single oral dose of dipyrone. Eur. J. Clin. Pharmacol., 1998, 54(7), 549-553.
[http://dx.doi.org/10.1007/s002280050511] [PMID: 9832297]
[11]
Tortorici, V.; Aponte, Y.; Acevedo, H.; Nogueira, L.; Vanegas, H. Tolerance to non-opioid analgesics in PAG involves unresponsiveness of medullary pain-modulating neurons in male rats. Eur. J. Neurosci., 2009, 29(6), 1188-1196.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06678.x] [PMID: 19302154]
[12]
Maione, S.; Radanova, L.; De Gregorio, D.; Luongo, L.; De Petrocellis, L.; Di Marzo, V.; Imming, P. Effects of metabolites of the analgesic agent dipyrone (metamizol) on rostral ventromedial medulla cell activity in mice. Eur. J. Pharmacol., 2015, 748, 115-122.
[http://dx.doi.org/10.1016/j.ejphar.2014.12.022] [PMID: 25557763]
[13]
Crunfli, F.; Vilela, F.C.; Giusti-Paiva, A. Cannabinoid CB1 receptors mediate the effects of dipyrone. Clin. Exp. Pharmacol. Physiol., 2015, 42(3), 246-255.
[http://dx.doi.org/10.1111/1440-1681.12347] [PMID: 25430877]
[14]
Escobar, W.; Ramirez, K.; Avila, C.; Limongi, R.; Vanegas, H.; Vazquez, E. Metamizol, a non-opioid analgesic, acts via endocannabinoids in the PAG-RVM axis during inflammation in rats. Eur. J. Pain, 2012, 16(5), 676-689.
[http://dx.doi.org/10.1002/j.1532-2149.2011.00057.x] [PMID: 22337336]
[15]
Vučković, S.; Srebro, D.; Vujović, K.S.; Vučetić, Č.; Prostran, M. Cannabinoids and Pain: New Insights From Old Molecules. Front. Pharmacol., 2018, 9, 1259.
[http://dx.doi.org/10.3389/fphar.2018.01259] [PMID: 30542280]
[16]
Gyires, K.; Zádori, Z.S. Role of Cannabinoids in Gastrointestinal Mucosal Defense and Inflammation. Curr. Neuropharmacol., 2016, 14(8), 935-951.
[http://dx.doi.org/10.2174/1570159X14666160303110150] [PMID: 26935536]
[17]
Cravatt, B.F.; Saghatelian, A.; Hawkins, E.G.; Clement, A.B.; Bracey, M.H.; Lichtman, A.H. Functional disassociation of the central and peripheral fatty acid amide signaling systems. Proc. Natl. Acad. Sci. USA, 2004, 101(29), 10821-10826.
[http://dx.doi.org/10.1073/pnas.0401292101] [PMID: 15247426]
[18]
Long, J.Z.; Nomura, D.K.; Vann, R.E.; Walentiny, D.M.; Booker, L.; Jin, X.; Burston, J.J.; Sim-Selley, L.J.; Lichtman, A.H.; Wiley, J.L.; Cravatt, B.F. Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo. Proc. Natl. Acad. Sci. USA, 2009, 106(48), 20270-20275.
[http://dx.doi.org/10.1073/pnas.0909411106] [PMID: 19918051]
[19]
Faria, J.V.; Vegi, P.F.; Miguita, A.G.C.; Dos Santos, M.S.; Boechat, N.; Bernardino, A.M.R. Recently reported biological activities of pyrazole compounds. Bioorg. Med. Chem., 2017, 25(21), 5891-5903.
[http://dx.doi.org/10.1016/j.bmc.2017.09.035] [PMID: 28988624]
[20]
Naim, M.J.; Alam, O.; Nawaz, F.; Alam, M.J.; Alam, P. Current status of pyrazole and its biological activities. J. Pharm. Bioallied Sci., 2016, 8(1), 2-17.
[http://dx.doi.org/10.4103/0975-7406.171694] [PMID: 26957862]
[21]
Prado, J.; Daza, R.; Chumbes, O.; Loayza, I.; Huicho, L. Antipyretic efficacy and tolerability of oral ibuprofen, oral dipyrone and intramuscular dipyrone in children: a randomized controlled trial. Sao Paulo Med. J., 2006, 124(3), 135-140.
[http://dx.doi.org/10.1590/S1516-31802006000300005] [PMID: 17119689]
[22]
Kötter, T.; da Costa, B.R.; Fässler, M.; Blozik, E.; Linde, K.; Jüni, P.; Reichenbach, S.; Scherer, M. Metamizole-associated adverse events: a systematic review and meta-analysis. PLoS One, 2015, 10(4) e0122918
[http://dx.doi.org/10.1371/journal.pone.0122918] [PMID: 25875821]
[23]
Pertwee, R.G. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2012, 367(1607), 3353-3363.
[http://dx.doi.org/10.1098/rstb.2011.0381] [PMID: 23108552]
[24]
Xu, J.Y.; Chen, C. Endocannabinoids in synaptic plasticity and neuroprotection. Neuroscientist, 2015, 21(2), 152-168.
[http://dx.doi.org/10.1177/1073858414524632] [PMID: 24571856]
[25]
Reis, G.M.; Doretto, M.C.; Duarte, I.D.; Tatsuo, M.A. Do endogenous opioids and nitric oxide participate in the anticonvulsant action of dipyrone? Braz. J. Med. Biol. Res., 2003, 36(9), 1263-1268.
[http://dx.doi.org/10.1590/S0100-879X2003000900018] [PMID: 12937795]
[26]
Doretto, M.C.; Garcia-Cairasco, N.; Pimenta, N.J.; Souza, D.A.; Tatsuo, M.A. Dipyrone a novel anticonvulsant agent? Insights from three experimental epilepsy models. Neuroreport, 1998, 13, 9(10), 2415-2421.
[http://dx.doi.org/10.1097/00001756-199807130-00048]
[27]
Zhang, Y.; Wang, X.; Baranov, S.V.; Zhu, S.; Huang, Z.; Fellows-Mayle, W.; Jiang, J.; Day, A.L.; Kristal, B.S.; Friedlander, R.M. Dipyrone inhibits neuronal cell death and diminishes hypoxic/ischemic brain injury. Neurosurgery, 2011, 69(4), 942-956.
[http://dx.doi.org/10.1227/NEU.0b013e318222afb2] [PMID: 21552169]
[28]
Wang, X.; Zhu, S.; Pei, Z.; Drozda, M.; Stavrovskaya, I.G.; Del Signore, S.J.; Cormier, K.; Shimony, E.M.; Wang, H.; Ferrante, R.J.; Kristal, B.S.; Friedlander, R.M. Inhibitors of cytochrome c release with therapeutic potential for Huntington’s disease. J. Neurosci., 2008, 28(38), 9473-9485.
[http://dx.doi.org/10.1523/JNEUROSCI.1867-08.2008] [PMID: 18799679]
[29]
Conti, S.; Costa, B.; Colleoni, M.; Parolaro, D.; Giagnoni, G. Antiinflammatory action of endocannabinoid palmitoylethanolamide and the synthetic cannabinoid nabilone in a model of acute inflammation in the rat. Br. J. Pharmacol., 2002, 135(1), 181-187.
[http://dx.doi.org/10.1038/sj.bjp.0704466] [PMID: 11786493]
[30]
Fride, E.; Perchuk, A.; Hall, F.S.; Uhl, G.R.; Onaivi, E.S. Behavioral methods in cannabinoid research. Methods Mol. Med., 2006, 123, 269-290.
[PMID: 16506414]
[31]
Busquets-Garcia, A.; Desprez, T.; Metna-Laurent, M.; Bellocchio, L.; Marsicano, G.; Soria-Gomez, E. Dissecting the cannabinergic control of behavior: The where matters. BioEssays, 2015, 37(11), 1215-1225.
[http://dx.doi.org/10.1002/bies.201500046] [PMID: 26260530]
[32]
Bénard, G.; Massa, F.; Puente, N.; Lourenço, J.; Bellocchio, L.; Soria-Gómez, E.; Matias, I.; Delamarre, A.; Metna-Laurent, M.; Cannich, A.; Hebert-Chatelain, E.; Mulle, C.; Ortega-Gutiérrez, S.; Martín-Fontecha, M.; Klugmann, M.; Guggenhuber, S.; Lutz, B.; Gertsch, J.; Chaouloff, F.; López-Rodríguez, M.L.; Grandes, P.; Rossignol, R.; Marsicano, G. Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nat. Neurosci., 2012, 15(4), 558-564.
[http://dx.doi.org/10.1038/nn.3053] [PMID: 22388959]
[33]
Hebert-Chatelain, E.; Desprez, T.; Serrat, R.; Bellocchio, L.; Soria-Gomez, E.; Busquets-Garcia, A.; Pagano Zottola, A.C.; Delamarre, A.; Cannich, A.; Vincent, P.; Varilh, M.; Robin, L.M.; Terral, G.; García-Fernández, M.D.; Colavita, M.; Mazier, W.; Drago, F.; Puente, N.; Reguero, L.; Elezgarai, I.; Dupuy, J.W.; Cota, D.; Lopez-Rodriguez, M.L.; Barreda-Gómez, G.; Massa, F.; Grandes, P.; Bénard, G.; Marsicano, G. A cannabinoid link between mitochondria and memory. Nature, 2016, 24, 539(7630), 555-559.
[http://dx.doi.org/10.1038/nature20127] [PMID: 27828947]
[34]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[35]
Thomsen, R.; Christensen, M.H. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[36]
Xavier, M.M.; Heck, G.S.; Avila, M.B.; Levin, N.M.B.; Pintro, V.O.; Carvalho, N.L.; Azevedo, W.F. SAnDReS a Computational Tool for Statistical Analysis of Docking Results and Development of Scoring Functions. Comb. Chem. High Throughput Screen., 2016, 19(10), 801-812.
[http://dx.doi.org/10.2174/1386207319666160927111347] [PMID: 27686428]
[37]
Heberlé, G.; de Azevedo, W.F., Jr Bio-inspired algorithms applied to molecular docking simulations. Curr. Med. Chem., 2011, 18(9), 1339-1352.
[http://dx.doi.org/10.2174/092986711795029573] [PMID: 21366530]
[38]
Irwin, J.J.; Shoichet, B.K. ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182.
[http://dx.doi.org/10.1021/ci049714+] [PMID: 15667143]
[39]
Laskowski, R.A.; Swindells, M.B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[40]
Salentin, S.; Haupt, V.J.; Daminelli, S.; Schroeder, M. Polypharmacology rescored: protein-ligand interaction profiles for remote binding site similarity assessment. Prog. Biophys. Mol. Biol., 2014, 116(2-3), 174-186.
[http://dx.doi.org/10.1016/j.pbiomolbio.2014.05.006] [PMID: 24923864]
[41]
Russo, S.; De Azevedo, W.F. Advances in the Understanding of the Cannabinoid Receptor 1 - Focusing on the Inverse Agonists Interactions. Curr. Med. Chem., 2019, 26(10), 1908-1919.
[http://dx.doi.org/10.2174/0929867325666180417165247] [PMID: 29667549]
[42]
Nikas, S.P.; Alapafuja, S.O.; Papanastasiou, I.; Paronis, C.A.; Shukla, V.G.; Papahatjis, D.P.; Bowman, A.L.; Halikhedkar, A.; Han, X.; Makriyannis, A. Novel 1′,1′-chain substituted hexahydrocannabinols: 9β-hydroxy-3-(1-hexyl-cyclobut-1-yl)-hexahydrocannabinol (AM2389) a highly potent cannabinoid receptor 1 (CB1) agonist. J. Med. Chem., 2010, 53(19), 6996-7010.
[http://dx.doi.org/10.1021/jm100641g] [PMID: 20925434]
[43]
Xie, X.Q.; Melvin, L.S.; Makriyannis, A. The conformational properties of the highly selective cannabinoid receptor ligand CP-55,940. J. Biol. Chem., 1996, 271(18), 10640-10647.
[http://dx.doi.org/10.1074/jbc.271.18.10640] [PMID: 8631869]
[44]
Vallée, M.; Vitiello, S.; Bellocchio, L.; Hébert-Chatelain, E.; Monlezun, S.; Martin-Garcia, E.; Kasanetz, F.; Baillie, G.L.; Panin, F.; Cathala, A.; Roullot-Lacarrière, V.; Fabre, S.; Hurst, D.P.; Lynch, D.L.; Shore, D.M.; Deroche-Gamonet, V.; Spampinato, U.; Revest, J.M.; Maldonado, R.; Reggio, P.H.; Ross, R.A.; Marsicano, G.; Piazza, P.V. Pregnenolone can protect the brain from cannabis intoxication. Science, 2014, 343(6166), 94-98.
[http://dx.doi.org/10.1126/science.1243985] [PMID: 24385629]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy