Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

ESRP1新出现的多种癌症调节作用:控制EMT的替代剪接的编排

卷 20, 期 9, 2020

页: [654 - 665] 页: 12

弟呕挨: 10.2174/1568009620666200621153831

价格: $65

摘要

RNA结合蛋白(RBP)与新生和成熟的RNA结合以执行生物学功能,例如选择性剪接和RNA稳定性。具有独特的RNA识别结合基序,RBP以基于序列和结构的方式与RNA形成复合物。已经在肿瘤发生和癌症进展中鉴定了几种RBP的异常表达。这些不受控制的RBP影响几种机制,包括细胞增殖,肿瘤生长,侵袭,转移和化学耐药性。上皮剪接调节蛋白1(ESRP1)是hnRNP蛋白家族的成员,在调节众多细胞过程中起着至关重要的作用,包括在器官发生过程中多种基因的选择性剪接和翻译。 ESRP1的异常表达会改变细胞形态,并在癌症进展期间导致细胞增殖和肿瘤生长。 ESRP1介导的靶基因(包括CD44,FGFR,PTBP1,LYN,ENAH,SPAG1和ZMYND8)的选择性剪接导致癌症进展。此外,ESRP1还调节环状RNA(例如circUHRF1,circNOL10和circANKS1B)的环化和生物发生,其表达已被确定为各种癌症的关键因素。该多功能蛋白质还涉及施加靶mRNA(例如细胞周期蛋白A2)的稳定性,从而参与细胞周期调控。这篇综述的范围是研究最新的科学数据,蛋白上调和下调的结果以及ESRP1在各种癌症中的作用。我们通过总结ESRP1失调及其对各种人类癌症中靶基因的影响来得出结论。总的来说,ESRP1介导的剪接在癌细胞中的后果表明,ESRP1在细胞增殖和化学抗性中通过凋亡和自噬调节发挥作用,因此可能成为癌症治疗的潜在靶标。

关键词: ESRP1,替代剪接,EMT,癌症进展,化学耐药性,RNA结合蛋白(RBP)。

图形摘要

[1]
Singh, B.; Eyras, E. The role of alternative splicing in cancer. Transcription, 2017, 8(2), 91-98.
[http://dx.doi.org/10.1080/21541264.2016.1268245] [PMID: 28005460]
[2]
Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses; Neoplasia: United States, 2017.
[3]
Ishii, H.; Saitoh, M.; Sakamoto, K.; Kondo, T.; Katoh, R.; Tanaka, S.; Motizuki, M.; Masuyama, K.; Miyazawa, K. Epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) suppress cancer cell motility via different mechanisms. J. Biol. Chem., 2014, 289(40), 27386-27399.
[http://dx.doi.org/10.1074/jbc.M114.589432] [PMID: 25143390]
[4]
Shapiro, I.M.; Cheng, A.W.; Flytzanis, N.C.; Balsamo, M.; Condeelis, J.S.; Oktay, M.H.; Burge, C.B.; Gertler, F.B. An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet., 2011, 7(8) e1002218
[http://dx.doi.org/10.1371/journal.pgen.1002218] [PMID: 21876675]
[5]
Yao, D.; Dai, C.; Peng, S. Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Mol. Cancer Res., 2011, 9(12), 1608-1620.
[http://dx.doi.org/10.1158/1541-7786.MCR-10-0568] [PMID: 21840933]
[6]
Singh, A.; Settleman, J. EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene, 2010, 29(34), 4741-4751.
[http://dx.doi.org/10.1038/onc.2010.215] [PMID: 20531305]]
[7]
Jolly, M.K.; Preca, B-T.; Tripathi, S.C.; Jia, D.; George, J.T.; Hanash, S.M.; Brabletz, T.; Stemmler, M.P.; Maurer, J.; Levine, H. Interconnected feedback loops among ESRP1, HAS2, and CD44 regulate epithelial-mesenchymal plasticity in cancer; APL Bioeng, 2018.
[http://dx.doi.org/10.1063/1.5024874]
[8]
Gökmen-Polar, Y.; Neelamraju, Y.; Goswami, C.P.; Gu, Y.; Gu, X.; Nallamothu, G.; Vieth, E.; Janga, S.C.; Ryan, M.; Badve, S.S. Splicing factor ESRP1 controls ER-positive breast cancer by altering metabolic pathways. EMBO Rep., 2019, 20(2) e46078
[http://dx.doi.org/10.15252/embr.201846078] [PMID: 30665944]]
[9]
Liu, Y.; Lu, X.; Huang, L.; Wang, W.; Jiang, G.; Dean, K.C.; Clem, B.; Telang, S.; Jenson, A.B.; Cuatrecasas, M. Erratum: Different thresholds of ZEB1 are required for ras-mediated tumour initiation and metastasis. Nature communications, 5(1), 1-10.
[http://dx.doi.org/10.1038/Ncomms6660]
[10]
Meidhof, S.; Brabletz, S.; Lehmann, W.; Preca, B.T.; Mock, K.; Ruh, M.; Schüler, J.; Berthold, M.; Weber, A.; Burk, U.; Lübbert, M.; Puhr, M.; Culig, Z.; Wellner, U.; Keck, T.; Bronsert, P.; Küsters, S.; Hopt, U.T.; Stemmler, M.P.; Brabletz, T. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol. Med., 2015, 7(6), 831-847.
[http://dx.doi.org/10.15252/emmm.201404396] [PMID: 25872941]
[11]
Xu, Y.; Gao, X.D.; Lee, J.H.; Huang, H.; Tan, H.; Ahn, J.; Reinke, L.M.; Peter, M.E.; Feng, Y.; Gius, D.; Siziopikou, K.P.; Peng, J.; Xiao, X.; Cheng, C. Cell type-restricted activity of hnRNPM promotes breast cancer metastasis via regulating alternative splicing. Genes Dev., 2014, 28(11), 1191-1203.
[http://dx.doi.org/10.1101/gad.241968.114] [PMID: 24840202]
[12]
Harvey, S.E.; Xu, Y.; Lin, X.; Gao, X.D.; Qiu, Y.; Ahn, J.; Xiao, X.; Cheng, C. Coregulation of alternative splicing by hnRNPM and ESRP1 during EMT. RNA, 2018, 24(10), 1326-1338.
[http://dx.doi.org/10.1261/rna.066712.118] [PMID: 30042172]
[13]
Zeng, K.; He, B.; Yang, B.B.; Xu, T.; Chen, X.; Xu, M.; Liu, X.; Sun, H.; Pan, Y.; Wang, S. The pro-metastasis effect of circANKS1B in breast cancer. Mol. Cancer, 2018, 17(1), 160.
[http://dx.doi.org/10.1186/s12943-018-0914-x] [PMID: 30454010]
[14]
Zhang, H.; Brown, R.L.; Wei, Y.; Zhao, P.; Liu, S.; Liu, X.; Deng, Y.; Hu, X.; Zhang, J.; Gao, X.D.; Kang, Y.; Mercurio, A.M.; Goel, H.L.; Cheng, C. CD44 splice isoform switching determines breast cancer stem cell state. Genes Dev., 2019, 33(3-4), 166-179.
[http://dx.doi.org/10.1101/gad.319889.118] [PMID: 30692202]
[15]
Somarelli, J.A.; Shetler, S.; Jolly, M.K.; Wang, X.; Bartholf Dewitt, S.; Hish, A.J.; Gilja, S.; Eward, W.C.; Ware, K.E.; Levine, H.; Armstrong, A.J.; Garcia-Blanco, M.A. Mesenchymal-epithelial transition in sarcomas is controlled by the combinatorial expression of MicroRNA 200s and GRHL2. Mol. Cell. Biol., 2016, 36(19), 2503-2513.
[http://dx.doi.org/10.1128/MCB.00373-16] [PMID: 27402864]
[16]
Sundararajan, V.; Gengenbacher, N.; Stemmler, M.P.; Kleemann, J.A.; Brabletz, T.; Brabletz, S. The ZEB1/miR-200c feedback loop regulates invasion via actin interacting proteins MYLK and TKS5. Oncotarget, 2015, 6(29), 27083-27096.
[http://dx.doi.org/10.18632/oncotarget.4807] [PMID: 26334100]
[17]
Li, L.; Qi, L.; Qu, T.; Liu, C.; Cao, L.; Huang, Q.; Song, W.; Yang, L.; Qi, H.; Wang, Y.; Gao, B.; Guo, Y.; Sun, B.; Meng, B.; Zhang, B.; Cao, W. Epithelial splicing regulatory protein 1 inhibits the invasion and metastasis of lung adenocarcinoma. Am. J. Pathol., 2018, 188(8), 1882-1894.
[http://dx.doi.org/10.1016/j.ajpath.2018.04.012] [PMID: 29803834]
[18]
Lehmann, W.; Mossmann, D.; Kleemann, J.; Mock, K.; Meisinger, C.; Brummer, T.; Herr, R.; Brabletz, S.; Stemmler, M.P.; Brabletz, T. ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat. Commun., 2016, 7, 10498.
[http://dx.doi.org/10.1038/ncomms10498] [PMID: 26876920]
[19]
Tornillo, G.; Knowlson, C.; Kendrick, H.; Cooke, J.; Mirza, H.; Aurrekoetxea-Rodríguez, I.; Vivanco, M.D.M.; Buckley, N.E.; Grigoriadis, A.; Smalley, M.J. Dual mechanisms of LYN kinase dysregulation drive aggressive behavior in breast cancer cells. Cell Rep., 2018, 25(13), 3674-3692.e10.
[http://dx.doi.org/10.1016/j.celrep.2018.11.103] [PMID: 30590041]
[20]
Tiong, K.H.; Mah, L.Y.; Leong, C.O. Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers. Apoptosis, 2013, 18(12), 1447-1468.
[http://dx.doi.org/10.1007/s10495-013-0886-7] [PMID: 23900974]
[21]
Xu, X.; Yang, J.; Zhou, W.; Wang, L.; Lu, Q.; Wang, X.; Hang, D.; Liu, X. Genetic variations within alternative splicing associated genes are associated with breast cancer susceptibility in Chinese women. Gene, 2019, 706, 140-145.
[http://dx.doi.org/10.1016/j.gene.2019.05.022] [PMID: 31078657]
[22]
Shirakihara, T.; Horiguchi, K.; Miyazawa, K.; Ehata, S.; Shibata, T.; Morita, I.; Miyazono, K.; Saitoh, M. TGF-β regulates isoform switching of FGF receptors and epithelial-mesenchymal transition. EMBO J., 2011, 30(4), 783-795.
[http://dx.doi.org/10.1038/emboj.2010.351] [PMID: 21224849]
[23]
Nan, A.; Chen, L.; Zhang, N.; Jia, Y.; Li, X.; Zhou, H.; Ling, Y.; Wang, Z.; Yang, C.; Liu, S. Circular RNA CircNOL10 inhibits lung cancer development by promoting SCLM1-mediated transcriptional Regulation of the humanin polypeptide family. Adv. Sci., 2019, 6(2) 1800654
[http://dx.doi.org/10.1002/advs.201800654] [PMID: 30693177]
[24]
Zhao, W.; Cui, Y.; Liu, L.; Qi, X.; Liu, J.; Ma, S.; Hu, X.; Zhang, Z.; Wang, Y.; Li, H. Splicing factor derived circular RNA CircUHRF1 accelerates oral squamous cell carcinoma tumorigenesis via feedback loop. Cell Death Differ., 2019.
[http://dx.doi.org/10.1038/s41418-019-0477-4] [PMID: 31570856]
[25]
Jeong, H.M.; Han, J.; Lee, S.H.; Park, H-J.; Lee, H.J.; Choi, J-S.; Lee, Y.M.; Choi, Y-L.; Shin, Y.K.; Kwon, M.J. ESRP1 Is Overexpressed in Ovarian Cancer and Promotes Switching from Mesenchymal to Epithelial Phenotype in Ovarian Cancer Cells. Oncogenesis, 2017.
[http://dx.doi.org/10.1038/oncsis.2017.87]
[26]
Pich, A.; Chiusa, L.; Navone, R. Prognostic relevance of cell proliferation in head and neck tumors. Ann. Oncol., 2004, 15(9), 1319-1329.
[http://dx.doi.org/10.1093/annonc/mdh299] [PMID: 15319236]
[27]
Ahmed, W.A.; Suzuki, K.; Imaeda, Y.; Horibe, Y. Ki-67, p53 and epidermal growth factor receptor expression in early glottic cancer involving the anterior commissure treated with radiotherapy. Auris Nasus Larynx, 2008, 35(2), 213-219.
[http://dx.doi.org/10.1016/j.anl.2007.08.011] [PMID: 17996416]
[28]
Chen, Z.H.; Jing, Y.J.; Yu, J.B.; Jin, Z.S.; Li, Z.; He, T.T.; Su, X.Z. ESRP1 induces cervical cancer cell G1-phase arrest via regulating cyclin A2 mRNA Stability. Int. J. Mol. Sci., 2019, 20(15), 1-14.
[http://dx.doi.org/10.3390/ijms20153705] [PMID: 31362365]
[29]
Fagoonee, S.; Picco, G.; Orso, F.; Arrigoni, A.; Longo, D.L.; Forni, M.; Scarfò, I.; Cassenti, A.; Piva, R.; Cassoni, P.; Silengo, L.; Tolosano, E.; Aime, S.; Taverna, D.; Pandolfi, P.P.; Brancaccio, M.; Medico, E.; Altruda, F. The RNA-binding protein ESRP1 promotes human colorectal cancer progression. Oncotarget, 2017, 8(6), 10007-10024.
[http://dx.doi.org/10.18632/oncotarget.14318] [PMID: 28052020]
[30]
El-Athman, R.; Fuhr, L.; Relógio, A. a systems-level analysis reveals circadian regulation of splicing in colorectal cancer. EBioMedicine, 2018, 33, 68-81.
[http://dx.doi.org/10.1016/j.ebiom.2018.06.012] [PMID: 29936137]
[31]
Méreau, A.; Anquetil, V.; Lerivray, H.; Viet, J.; Schirmer, C.; Audic, Y.; Legagneux, V.; Hardy, S.; Paillard, L. A posttranscriptional mechanism that controls Ptbp1 abundance in the Xenopus epidermis. Mol. Cell. Biol., 2015, 35(4), 758-768.
[http://dx.doi.org/10.1128/MCB.01040-14] [PMID: 25512611]
[32]
Yu, M.; Hong, W.; Ruan, S.; Guan, R.; Tu, L.; Huang, B.; Hou, B.; Jian, Z.; Ma, L.; Jin, H. Genome-wide profiling of prognostic alternative splicing pattern in pancreatic cancer. Front. Oncol., 2019, 9, 773.
[http://dx.doi.org/10.3389/fonc.2019.00773] [PMID: 31552163]
[33]
Zhou, Y.J.; Zhu, G.Q.; Zhang, Q.W.; Zheng, K.I.; Chen, J.N.; Zhang, X.T.; Wang, Q.W.; Li, X.B. Survival-associated alternative messenger RNA splicing signatures in pancreatic ductal adenocarcinoma: A study based on RNA-sequencing data. DNA Cell Biol., 2019, 38(11), 1207-1222.
[http://dx.doi.org/10.1089/dna.2019.4862] [PMID: 31483163]
[34]
Ueda, J.; Matsuda, Y.; Yamahatsu, K.; Uchida, E.; Naito, Z.; Korc, M.; Ishiwata, T. Epithelial splicing regulatory protein 1 is a favorable prognostic factor in pancreatic cancer that attenuates pancreatic metastases. Oncogene, 2014, 33(36), 4485-4495.
[http://dx.doi.org/10.1038/onc.2013.392] [PMID: 24077287]
[35]
Gerhauser, C.; Favero, F.; Risch, T.; Simon, R.; Feuerbach, L.; Assenov, Y.; Heckmann, D.; Sidiropoulos, N.; Waszak, S.M.; Hübschmann, D.; Urbanucci, A.; Girma, E.G.; Kuryshev, V.; Klimczak, L.J.; Saini, N.; Stütz, A.M.; Weichenhan, D.; Böttcher, L.M.; Toth, R.; Hendriksen, J.D.; Koop, C.; Lutsik, P.; Matzk, S.; Warnatz, H.J.; Amstislavskiy, V.; Feuerstein, C.; Raeder, B.; Bogatyrova, O.; Schmitz, E.M.; Hube-Magg, C.; Kluth, M.; Huland, H.; Graefen, M.; Lawerenz, C.; Henry, G.H.; Yamaguchi, T.N.; Malewska, A.; Meiners, J.; Schilling, D.; Reisinger, E.; Eils, R.; Schlesner, M.; Strand, D.W.; Bristow, R.G.; Boutros, P.C.; von Kalle, C.; Gordenin, D.; Sültmann, H.; Brors, B.; Sauter, G.; Plass, C.; Yaspo, M.L.; Korbel, J.O.; Schlomm, T.; Weischenfeldt, J. Molecular evolution of early-onset prostate cancer identifies molecular risk markers and clinical trajectories. Cancer Cell, 2018, 34(6), 996-1011.
[http://dx.doi.org/10.1016/j.ccell.2018.10.016] [PMID: 30537516]
[36]
Ambs, S.; Prueitt, R.L.; Yi, M.; Hudson, R.S.; Howe, T.M.; Petrocca, F.; Wallace, T.A.; Liu, C.G.; Volinia, S.; Calin, G.A.; Yfantis, H.G.; Stephens, R.M.; Croce, C.M. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res., 2008, 68(15), 6162-6170.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0144] [PMID: 18676839]
[37]
Werth, M.; Walentin, K.; Aue, A.; Schönheit, J.; Wuebken, A.; Pode-Shakked, N.; Vilianovitch, L.; Erdmann, B.; Dekel, B.; Bader, M.; Barasch, J.; Rosenbauer, F.; Luft, F.C.; Schmidt-Ott, K.M. The transcription factor grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex. Development, 2010, 137(22), 3835-3845.
[http://dx.doi.org/10.1242/dev.055483] [PMID: 20978075]
[38]
Chung, V.Y.; Tan, T.Z.; Tan, M.; Wong, M.K.; Kuay, K.T.; Yang, Z.; Ye, J.; Muller, J.; Koh, C.M.; Guccione, E.; Thiery, J.P.; Huang, R.Y. GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci. Rep., 2016, 6, 19943.
[http://dx.doi.org/10.1038/srep19943] [PMID: 26887977]
[39]
Arredouani, M.S.; Lu, B.; Bhasin, M.; Eljanne, M.; Yue, W.; Mosquera, J.M.; Bubley, G.J.; Li, V.; Rubin, M.A.; Libermann, T.A.; Sanda, M.G. Identification of the transcription factor single-minded homologue 2 as a potential biomarker and immunotherapy target in prostate cancer. Clin. Cancer Res., 2009, 15(18), 5794-5802.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0911] [PMID: 19737960]
[40]
Abeshouse, A.; Ahn, J.; Akbani, R.; Ally, A.; Amin, S.; Andry, C.D.; Annala, M.; Aprikian, A.; Armenia, J.; Arora, A. Cancer genome atlas research network. the molecular taxonomy of primary prostate cancer. Cell, 2015, 163(4), 1011-1025.
[http://dx.doi.org/10.1016/j.cell.2015.10.025] [PMID: 26544944]
[41]
Fraser, M.; Sabelnykova, V.Y.; Yamaguchi, T.N.; Heisler, L.E.; Livingstone, J.; Huang, V.; Shiah, Y.J.; Yousif, F.; Lin, X.; Masella, A.P.; Fox, N.S.; Xie, M.; Prokopec, S.D.; Berlin, A.; Lalonde, E.; Ahmed, M.; Trudel, D.; Luo, X.; Beck, T.A.; Meng, A.; Zhang, J.; D’Costa, A.; Denroche, R.E.; Kong, H.; Espiritu, S.M.; Chua, M.L.; Wong, A.; Chong, T.; Sam, M.; Johns, J.; Timms, L.; Buchner, N.B.; Orain, M.; Picard, V.; Hovington, H.; Murison, A.; Kron, K.; Harding, N.J.; P’ng, C.; Houlahan, K.E.; Chu, K.C.; Lo, B.; Nguyen, F.; Li, C.H.; Sun, R.X.; de Borja, R.; Cooper, C.I.; Hopkins, J.F.; Govind, S.K.; Fung, C.; Waggott, D.; Green, J.; Haider, S.; Chan-Seng-Yue, M.A.; Jung, E.; Wang, Z.; Bergeron, A.; Dal Pra, A.; Lacombe, L.; Collins, C.C.; Sahinalp, C.; Lupien, M.; Fleshner, N.E.; He, H.H.; Fradet, Y.; Tetu, B.; van der Kwast, T.; McPherson, J.D.; Bristow, R.G.; Boutros, P.C. Genomic hallmarks of localized, non-indolent prostate cancer. Nature, 2017, 541(7637), 359-364.
[http://dx.doi.org/10.1038/nature20788] [PMID: 28068672]
[42]
Grasso, C.S.; Wu, Y.M.; Robinson, D.R.; Cao, X.; Dhanasekaran, S.M.; Khan, A.P.; Quist, M.J.; Jing, X.; Lonigro, R.J.; Brenner, J.C.; Asangani, I.A.; Ateeq, B.; Chun, S.Y.; Siddiqui, J.; Sam, L.; Anstett, M.; Mehra, R.; Prensner, J.R.; Palanisamy, N.; Ryslik, G.A.; Vandin, F.; Raphael, B.J.; Kunju, L.P.; Rhodes, D.R.; Pienta, K.J.; Chinnaiyan, A.M.; Tomlins, S.A. The mutational landscape of lethal castration-resistant prostate cancer. Nature, 2012, 487(7406), 239-243.
[http://dx.doi.org/10.1038/nature11125] [PMID: 22722839]
[43]
Lapointe, J.; Li, C.; Higgins, J.P.; van de Rijn, M.; Bair, E.; Montgomery, K.; Ferrari, M.; Egevad, L.; Rayford, W.; Bergerheim, U.; Ekman, P.; DeMarzo, A.M.; Tibshirani, R.; Botstein, D.; Brown, P.O.; Brooks, J.D.; Pollack, J.R. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc. Natl. Acad. Sci. USA, 2004, 101(3), 811-816.
[http://dx.doi.org/10.1073/pnas.0304146101] [PMID: 14711987]
[44]
Liu, P.; Ramachandran, S.; Ali Seyed, M.; Scharer, C.D.; Laycock, N.; Dalton, W.B.; Williams, H.; Karanam, S.; Datta, M.W.; Jaye, D.L.; Moreno, C.S. Sex-determining region Y box 4 is a transforming oncogene in human prostate cancer cells. Cancer Res., 2006, 66(8), 4011-4019.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3055] [PMID: 16618720]
[45]
Luo, J.H.; Yu, Y.P.; Cieply, K.; Lin, F.; Deflavia, P.; Dhir, R.; Finkelstein, S.; Michalopoulos, G.; Becich, M. Gene expression analysis of prostate cancers. Mol. Carcinog., 2002, 33(1), 25-35.
[http://dx.doi.org/10.1002/mc.10018] [PMID: 11807955]
[46]
Taylor, B.S.; Schultz, N.; Hieronymus, H.; Gopalan, A.; Xiao, Y.; Carver, B.S.; Arora, V.K.; Kaushik, P.; Cerami, E.; Reva, B.; Antipin, Y.; Mitsiades, N.; Landers, T.; Dolgalev, I.; Major, J.E.; Wilson, M.; Socci, N.D.; Lash, A.E.; Heguy, A.; Eastham, J.A.; Scher, H.I.; Reuter, V.E.; Scardino, P.T.; Sander, C.; Sawyers, C.L.; Gerald, W.L. Integrative genomic profiling of human prostate cancer. Cancer Cell, 2010, 18(1), 11-22.
[http://dx.doi.org/10.1016/j.ccr.2010.05.026] [PMID: 20579941]
[47]
Vanaja, D.K.; Cheville, J.C.; Iturria, S.J.; Young, C.Y.F. Transcriptional silencing of zinc finger protein 185 identified by expression profiling is associated with prostate cancer progression. Cancer Res., 2003, 63(14), 3877-3882.
[PMID: 12873976]
[48]
Wallace, T.A.; Prueitt, R.L.; Yi, M.; Howe, T.M.; Gillespie, J.W.; Yfantis, H.G.; Stephens, R.M.; Caporaso, N.E.; Loffredo, C.A.; Ambs, S. Tumor immunobiological differences in prostate cancer between African-American and European-American men. Cancer Res., 2008, 68(3), 927-936.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2608] [PMID: 18245496]
[49]
Munkley, J.; Li, L.; Krishnan, S.R.G.; Hysenaj, G.; Scott, E.; Dalgliesh, C.; Oo, H.Z.; Maia, T.M.; Cheung, K.; Ehrmann, I.; Livermore, K.E.; Zielinska, H.; Thompson, O.; Knight, B.; McCullagh, P.; McGrath, J.; Crundwell, M.; Harries, L.W.; Daugaard, M.; Cockell, S.; Barbosa-Morais, N.L.; Oltean, S.; Elliott, D.J. Androgen-regulated transcription of ESRP2 drives alternative splicing patterns in prostate cancer eLife, 2019. 8e47678
[http://dx.doi.org/10.7554/eLife.47678] [PMID: 31478829]
[50]
Sivasubramaniyan, K.; Harichandan, A.; Schilbach, K.; Mack, A.F.; Bedke, J.; Stenzl, A.; Kanz, L.; Niederfellner, G.; Bühring, H.J. Expression of stage-specific embryonic antigen-4 (SSEA-4) defines spontaneous loss of epithelial phenotype in human solid tumor cells. Glycobiology, 2015, 25(8), 902-917.
[http://dx.doi.org/10.1093/glycob/cwv032] [PMID: 25978997]
[51]
Mizutani, A.; Koinuma, D.; Seimiya, H.; Miyazono, K. The Arkadia-ESRP2 axis suppresses tumor progression: analyses in clear-cell renal cell carcinoma. Oncogene, 2016, 35(27), 3514-3523.
[http://dx.doi.org/10.1038/onc.2015.412] [PMID: 26522722]
[52]
Zhao, Q.; Caballero, O.L.; Davis, I.D.; Jonasch, E.; Tamboli, P.; Yung, W.K.A.; Weinstein, J.N.; Strausberg, R.L.; Yao, J.; Yao, J. Kenna Shaw for TCGA research network. Tumor-specific isoform switch of the fibroblast growth factor receptor 2 underlies the mesenchymal and malignant phenotypes of clear cell renal cell carcinomas. Clin. Cancer Res., 2013, 19(9), 2460-2472.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3708] [PMID: 23444225]
[53]
Minuesa, G.; Albanese, S.K.; Xie, W.; Kazansky, Y.; Worroll, D.; Chow, A.; Schurer, A.; Park, S.M.; Rotsides, C.Z.; Taggart, J.; Rizzi, A.; Naden, L.N.; Chou, T.; Gourkanti, S.; Cappel, D.; Passarelli, M.C.; Fairchild, L.; Adura, C.; Glickman, J.F.; Schulman, J.; Famulare, C.; Patel, M.; Eibl, J.K.; Ross, G.M.; Bhattacharya, S.; Tan, D.S.; Leslie, C.S.; Beuming, T.; Patel, D.J.; Goldgur, Y.; Chodera, J.D.; Kharas, M.G. Small-molecule targeting of MUSASHI RNA-binding activity in acute myeloid leukemia. Nat. Commun., 2019, 10(1), 2691.
[http://dx.doi.org/10.1038/s41467-019-10523-3] [PMID: 31217428]
[54]
Graff, J.R.; Konicek, B.W.; Vincent, T.M.; Lynch, R.L.; Monteith, D.; Weir, S.N.; Schwier, P.; Capen, A.; Goode, R.L.; Dowless, M.S.; Chen, Y.; Zhang, H.; Sissons, S.; Cox, K.; McNulty, A.M.; Parsons, S.H.; Wang, T.; Sams, L.; Geeganage, S.; Douglass, L.E.; Neubauer, B.L.; Dean, N.M.; Blanchard, K.; Shou, J.; Stancato, L.F.; Carter, J.H.; Marcusson, E.G. Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. J. Clin. Invest., 2007, 117(9), 2638-2648.
[http://dx.doi.org/10.1172/JCI32044] [PMID: 17786246]
[55]
Muralidharan, R.; Mehta, M.; Ahmed, R.; Roy, S.; Xu, L.; Aubé, J.; Chen, A.; Zhao, Y.D.; Herman, T.; Ramesh, R.; Munshi, A. HuR-targeted small molecule inhibitor exhibits cytotoxicity towards human lung cancer cells. Sci. Rep., 2017, 7(1), 9694.
[http://dx.doi.org/10.1038/s41598-017-07787-4] [PMID: 28855578]
[56]
Senbanjo, L.T.; Chellaiah, M.A. CD44: A Multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front. Cell Dev. Biol., 2017, 5, 18.
[http://dx.doi.org/10.3389/fcell.2017.00018] [PMID: 28326306]
[57]
Grishin, A.V.; Azhipa, O.; Semenov, I.; Corey, S.J. Interaction between growth arrest-DNA damage protein 34 and Src kinase Lyn negatively regulates genotoxic apoptosis. Proc. Natl. Acad. Sci. USA, 2001, 98(18), 10172-10177.
[http://dx.doi.org/10.1073/pnas.191130798] [PMID: 11517336]
[58]
Bates, R.C.; Edwards, N.S.; Burns, G.F.; Fisher, D.E.A.A. CD44 survival pathway triggers chemoresistance via lyn kinase and phosphoinositide 3-kinase/Akt in colon carcinoma cells. Cancer Res., 2001, 61(13), 5275-5283.
[PMID: 11431370]
[59]
Zhang, Q.; Meng, X.; Qin, G.; Xue, X.; Dang, N. Lyn kinase promotes the proliferation of malignant melanoma cells through inhibition of apoptosis and autophagy via the PI3K/Akt signaling pathway. J. Cancer, 2019, 10(5), 1197-1208.
[http://dx.doi.org/10.7150/jca.28908] [PMID: 30854129]
[60]
Ren, B.; Wei, X.; Zou, G.; He, J.; Xu, G.; Xu, F.; Huang, Y.; Zhu, H.; Li, Y.; Ma, G.; Yu, P. Cancer testis antigen SPAG9 is a promising marker for the diagnosis and treatment of lung cancer. Oncol. Rep., 2016, 35(5), 2599-2605.
[http://dx.doi.org/10.3892/or.2016.4645] [PMID: 26934841]
[61]
Jagadish, N.; Fatima, R.; Sharma, A.; Devi, S.; Suri, V.; Kumar, V.; Suri, A. Sperm associated antigen 9 (SPAG9) a promising therapeutic target of ovarian carcinoma. Tumour Biol., 2018, 40(5) 1010428318773652
[http://dx.doi.org/10.1177/1010428318773652] [PMID: 29745297]
[62]
Chen, Y.; Wang, Y.; Luo, W. ZMYND8 is a primary HIF coactivator that mediates breast cancer progression. Mol. Cell. Oncol., 2018, 5(4) e1479619
[http://dx.doi.org/10.1080/23723556.2018.1479619] [PMID: 30250924]
[63]
Chen, Y.; Zhang, B.; Bao, L.; Jin, L.; Yang, M.; Peng, Y.; Kumar, A.; Wang, J.E.; Wang, C.; Zou, X.; Xing, C.; Wang, Y.; Luo, W. ZMYND8 acetylation mediates HIF-dependent breast cancer progression and metastasis. J. Clin. Invest., 2018, 128(5), 1937-1955.
[http://dx.doi.org/10.1172/JCI95089] [PMID: 29629903]
[64]
Turner, N.; Grose, R. Fibroblast growth factor signalling: From development to cancer. Nat. Rev. Cancer, 2010, 10(2), 116-129.
[http://dx.doi.org/10.1038/nrc2780] [PMID: 20094046]
[65]
Touat, M.; Ileana, E.; Postel-Vinay, S.; André, F.; Soria, J.C. Targeting FGFR signaling in cancer. Clin. Cancer Res., 2015, 21(12), 2684-2694.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2329] [PMID: 26078430]
[66]
Chen, D.; Xu, L.; Li, X.; Chu, Y.; Jiang, M.; Xu, B.; Zhao, M.; Wang, W.; Wang, H.; Kang, H.; Wang, K.; Wu, K.; Liang, J.; Ren, G. Enah overexpression is correlated with poor survival and aggressive phenotype in gastric cancer. Cell Death Dis., 2018, 9(10), 998.
[http://dx.doi.org/10.1038/s41419-018-1031-x] [PMID: 30250066]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy