Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Quinoline-based Compounds with Potential Activity against Drugresistant Cancers

Author(s): Huan-Ting Li and Xiaoyong Zhu*

Volume 21, Issue 5, 2021

Published on: 18 June, 2020

Page: [426 - 437] Pages: 12

DOI: 10.2174/1568026620666200618113957

Price: $65

Abstract

Drug resistance is the major cause of the failure of cancer chemotherapy, so one of the most important features in developing effective cancer therapeutic strategies is to overcome drug resistance. Quinoline moiety has become one of the most privileged structural motifs in anticancer agent discovery since its derivatives possess potent activity against various cancers including drug-resistant cancers. Several quinoline-based compounds which are represented by Anlotinib, Bosutinib, Lenvatinib, and Neratinib have already been applied in clinical practice to fight against cancers, so quinoline-based compounds are potential anticancer agents. The present short review article provides an overview of the recent advances of quinoline-based compounds with potential activity against drug-resistant cancers. The structure-activity relationship and mechanisms of action are also discussed.

Keywords: Quinoline, Anticancer, Drug resistance, Structure-activity relationship, Mechanisms of action, Cancers.

« Previous
Graphical Abstract

[1]
Waghray, D.; Zhang, Q. Inhibit or evade multidrug resistance P-glycoprotein in cancer treatment. J. Med. Chem., 2018, 61(12), 5108-5121.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01457] [PMID: 29251920]
[2]
Mu, L.M.; Ju, R.J.; Liu, R.; Bu, Y.Z.; Zhang, J.Y.; Li, X.Q.; Zeng, F.; Lu, W.L. Dual-functional drug liposomes in treatment of resistant cancers. Adv. Drug Deliv. Rev., 2017, 115, 46-56.
[http://dx.doi.org//10.1016/j.addr.2017.04.006] [PMID: 28433739]
[3]
Efferth, T.; Saeed, M.E.M.; Kadioglu, O.; Seo, E.J.; Shirooie, S.; Mbaveng, A.T.; Nabavi, S.M.; Kuete, V. Collateral sensitivity of natural products in drug-resistant cancer cells. Biotechnol. Adv., 2020, 38107342
[http://dx.doi.org/10.1016/j.biotechadv.2019.01.009] [PMID: 30708024]
[4]
Dallavalle, S.; Dobričić, V.; Lazzarato, L.; Gazzano, E.; Machuqueiro, M.; Pajeva, I.; Tsakovska, I.; Zidar, N.; Fruttero, R. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist. Updat., 2020, 50100682
[http://dx.doi.org/10.1016/j.drup.2020.100682] [PMID: 32087558]
[5]
Singh, N.; Krishnakumar, S.; Kanwar, R.K.; Cheung, C.H.; Kanwar, J.R. Clinical aspects for survivin: a crucial molecule for targeting drug-resistant cancers. Drug Discov. Today, 2015, 20(5), 578-587.
[http://dx.doi.org/10.1016/j.drudis.2014.11.013] [PMID: 25433305]
[6]
Onzalez-Fierro, A.; Dueñas-González, A. Drug repurposing for cancer therapy, easier said than done. Semin. Cancer Biol., 2020.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.012]
[7]
Wainwright, M.; Kristiansen, J.E. Quinoline and cyanine dyes--putative anti-MRSA drugs. Int. J. Antimicrob. Agents, 2003, 22(5), 479-486.
[http://dx.doi.org/10.1016/S0924-8579(03)00264-4] [PMID: 14602365]
[8]
Gao, C.; Fan, Y.L.; Zhao, F.; Ren, Q.C.; Wu, X.; Chang, L.; Gao, F. Quinolone derivatives and their activities against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Med. Chem., 2018, 157, 1081-1095.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.061] [PMID: 30179746]
[9]
Feng, L.S.; Xu, Z.; Chang, L.; Li, C.; Yan, X.F.; Gao, C.; Ding, C.; Zhao, F.; Shi, F.; Wu, X. Hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant Plasmodium falciparum. Med. Res. Rev., 2020, 40(3), 931-971.
[http://dx.doi.org/10.1002/med.21643] [PMID: 31692025]
[10]
Hu, Y.Q.; Gao, C.; Zhang, S.; Xu, L.; Xu, Z.; Feng, L.S.; Wu, X.; Zhao, F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2017, 139, 22-47.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.061] [PMID: 28800458]
[11]
Cretton, S.; Dorsaz, S.; Azzollini, A.; Favre-Godal, Q.; Marcourt, L.; Ebrahimi, S.N.; Voinesco, F.; Michellod, E.; Sanglard, D.; Gindro, K.; Wolfender, J.L.; Cuendet, M.; Christen, P. Antifungal Quinoline Alkaloids from Waltheria indica. J. Nat. Prod., 2016, 79(2), 300-307.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00896] [PMID: 26848627]
[12]
Musiol, R.; Serda, M.; Hensel-Bielowka, S.; Polanski, J. Quinoline-based antifungals. Curr. Med. Chem., 2010, 17(18), 1960-1973.
[http://dx.doi.org/10.2174/092986710791163966] [PMID: 20377510]
[13]
Chokkar, N.; Kalra, S.; Chauhan, M.; Kumar, R. A review on quinoline derived scaffolds as anti-HIV agents. Mini Rev. Med. Chem., 2019, 19(6), 510-526.
[http://dx.doi.org/10.2174/1389557518666181018163448] [PMID: 30338737]
[14]
Musiol, R. Quinoline-based HIV integrase inhibitors. Curr. Pharm. Des., 2013, 19(10), 1835-1849.
[http://dx.doi.org/10.2174/1381612811319100008] [PMID: 23092281]
[15]
Keri, R.S.; Patil, S.A. Quinoline: a promising antitubercular target. Biomed. Pharmacother., 2014, 68(8), 1161-1175.
[http://dx.doi.org/10.1016/j.biopha.2014.10.007] [PMID: 25458785]
[16]
Das, S.; Garg, T.; Srinivas, N.; Dasgupta, A.; Chopra, S. Targeting DNA Gyrase to combat Mycobacterium tuberculosis: An update. Curr. Top. Med. Chem., 2019, 19(8), 579-593.
[http://dx.doi.org/10.2174/1568026619666190304130218] [PMID: 30834837]
[17]
Gopaul, K.; Shintre, S.A.; Koorbanally, N.A. A review on the synthesis and anti-cancer activity of 2-substituted quinolines. Anticancer. Agents Med. Chem., 2015, 15(5), 631-646.
[http://dx.doi.org/10.2174/1871520615666141216125446] [PMID: 25511516]
[18]
Aly, R.M.; Serya, R.A.T.; El-Motwally, A.M.; Al-Ansary, G.H.; Ella, D.A.A.E. Quinoline-based small molecules as effective protein kinases inhibitors. J. Am. Sci., 2016, 12(5), 10-32.
[19]
Jain, S.; Chandra, V.; Jain, P.K.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem., 2019, 12(8), 4920-4946.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.009]
[20]
Solomon, V.R.; Lee, H. Quinoline as a privileged scaffold in cancer drug discovery. Curr. Med. Chem., 2011, 18(10), 1488-1508.
[http://dx.doi.org/10.2174/092986711795328382] [PMID: 21428893]
[21]
Han, B.; Li, K.; Wang, Q.; Zhang, L.; Shi, J.; Wang, Z.; Cheng, Y.; He, J.; Shi, Y.; Zhao, Y.; Yu, H.; Zhao, Y.; Chen, W.; Luo, Y.; Wu, L.; Wang, X.; Pirker, R.; Nan, K.; Jin, F.; Dong, J.; Li, B.; Sun, Y. Li, B.; Sun, Y. Effect of Anlotinib as a third-line or further treatment on overall survival of patients with advanced non-small cell lung cancer. The ALTER 0303 phase 3 randomized clinical trial. JAMA Oncol., 2018, 4(11), 1569-1575.
[http://dx.doi.org/10.1001/jamaoncol.2018.3039] [PMID: 30098152]
[22]
Ochrem, B.; Sacha, T. Efficacy and safety of bosutinib in the second and third line of treatment in chronic myeloid leukemia. Acta Haematol. Pol., 2017, 48(4), 274-281.
[http://dx.doi.org/10.1016/j.achaem.2017.03.002]
[23]
Cabanillas, M.E.; Habra, M.A. Lenvatinib: Role in thyroid cancer and other solid tumors. Cancer Treat. Rev., 2016, 42, 47-55.
[http://dx.doi.org/10.1016/j.ctrv.2015.11.003] [PMID: 26678514]
[24]
Tiwari, S.R.; Mishra, P.; Abraham, J. Neratinib. A novel HER2-targeted tyrosine kinase inhibitor. Clin. Breast Cancer, 2016, 16(5), 344-348.
[http://dx.doi.org/10.1016/j.clbc.2016.05.016] [PMID: 27405796]
[25]
Shaveta; Mishra, S.; Singh, P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem., 2016, 124, 500-536.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.039] [PMID: 27598238]
[26]
Ibrar, A.; Shehzadi, S.A.; Saeed, F.; Khan, I. Developing hybrid molecule therapeutics for diverse enzyme inhibitory action: Active role of coumarin-based structural leads in drug discovery. Bioorg. Med. Chem., 2018, 26(13), 3731-3762.
[http://dx.doi.org/10.1016/j.bmc.2018.05.042] [PMID: 30017112]
[27]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[28]
Gao, F.; Zhang, X.; Wang, T.; Xiao, J. Quinolone hybrids and their anti-cancer activities: An overview. Eur. J. Med. Chem., 2019, 165, 59-79.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.017] [PMID: 30660827]
[29]
Hawtin, R.E.; Stockett, D.E.; Byl, J.A.W.; McDowell, R.S.; Nguyen, T.; Arkin, M.R.; Conroy, A.; Yang, W.; Osheroff, N.; Fox, J.A. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II. PLoS One, 2010, 5(4)e10186
[http://dx.doi.org/10.1371/journal.pone.0010186] [PMID: 20419121]
[30]
Pundir, S.; Vu, H.Y.; Solomon, V.R.; McClure, R.; Lee, H. VR23: A quinoline-sulfonyl hybrid proteasome inhibitor that selectively kills cancer via cyclin E-mediated centrosome amplification. Cancer Res., 2015, 75(19), 4164-4175.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3370] [PMID: 26238784]
[31]
Yang, S.M.; Martinez, N.J.; Yasgar, A.; Danchik, C.; Johansson, C.; Wang, Y.; Baljinnyam, B.; Wang, A.Q.; Xu, X.; Shah, P.; Cheff, D.; Wang, X.S.; Roth, J.; Lal-Nag, M.; Dunford, J.E.; Oppermann, U.; Vasiliou, V.; Simeonov, A.; Jadhav, A.; Maloney, D.J.; Maloney, D.J. Discovery of orally bioavailable, quinoline-based aldehyde dehydrogenase 1A1 (ALDH1A1) inhibitors with potent cellular activity. J. Med. Chem., 2018, 61(11), 4883-4903.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00270] [PMID: 29767973]
[32]
Chao, M.W.; Huang, H.L. HuangFu, W.C.; Hsu, K.C.; Liu, Y.M.; Wu, Y.W.; Lin, C.F.; Chen, Y.L.; Lai, M.J.; Lee, H.Y.; Liou, J.P.; Teng, C.M.; Yang, C.R. An oral quinoline derivative, MPT0B392, causes leukemic cells mitotic arrest and overcomes drug resistant cancer cells. Oncotarget, 2017, 8(17), 27772-27785.
[http://dx.doi.org/10.18632/oncotarget.15115] [PMID: 28186963]
[33]
Naret, T.; Khelifi, I.; Provot, O.; Bignon, J.; Levaique, H.; Dubois, J.; Souce, M.; Kasselouri, A.; Deroussent, A.; Paci, A.; Varela, P.F.; Gigant, B.; Alami, M.; Hamze, A. 1,1-Diheterocyclic ethylenes derived from quinaldine and carbazole as new tubulin polymerization inhibitors: Synthesis, metabolism, and biological evaluation. J. Med. Chem., 2019, 62(4), 1902-1916.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01386] [PMID: 30525602]
[34]
Ashizawa, T.; Miyata, H.; Ishii, H.; Oshita, C.; Matsuno, K.; Masuda, Y.; Furuya, T.; Okawara, T.; Otsuka, M.; Ogo, N.; Asai, A.; Akiyama, Y. Antitumor activity of a novel small molecule STAT3 inhibitor against a human lymphoma cell line with high STAT3 activation. Int. J. Oncol., 2011, 38(5), 1245-1252.
[PMID: 21369699]
[35]
Ashizawa, T.; Miyata, H.; Iizuka, A.; Komiyama, M.; Oshita, C.; Kume, A.; Nogami, M.; Yagoto, M.; Ito, I.; Oishi, T.; Watanabe, R.; Mitsuya, K.; Matsuno, K.; Furuya, T.; Okawara, T.; Otsuka, M.; Ogo, N.; Asai, A.; Nakasu, Y.; Yamaguchi, K.; Akiyama, Y. Effect of the STAT3 inhibitor STX-0119 on the proliferation of cancer stem-like cells derived from recurrent glioblastoma. Int. J. Oncol., 2013, 43(1), 219-227.
[http://dx.doi.org/10.3892/ijo.2013.1916] [PMID: 23612755]
[36]
Ashizawa, T.; Akiyama, Y.; Miyata, H.; Iizuka, A.; Komiyama, M.; Kume, A.; Omiya, M.; Sugino, T.; Asai, A.; Hayashi, N.; Mitsuya, K.; Nakasu, Y.; Yamaguchi, K. Effect of the STAT3 inhibitor STX-0119 on the proliferation of a temozolomide-resistant glioblastoma cell line. Int. J. Oncol., 2014, 45(1), 411-418.
[http://dx.doi.org/10.3892/ijo.2014.2439] [PMID: 24820265]
[37]
Mah, S.; Park, J.H.; Jung, H.Y.; Ahn, K.; Choi, S.; Tae, H.S.; Jung, K.H.; Rho, J.K.; Lee, J.C.; Hong, S.S.; Hong, S. Identification of 4-phenoxyquinoline based inhibitors for L1196M mutant of anaplastic lymphoma kinase by structure-based design. J. Med. Chem., 2017, 60(22), 9205-9221.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01039] [PMID: 29091425]
[38]
Li, J.; Yakushi, T.; Parlati, F.; Mackinnon, A.L.; Perez, C.; Ma, Y.; Carter, K.P.; Colayco, S.; Magnuson, G.; Brown, B.; Nguyen, K.; Vasile, S.; Suyama, E.; Smith, L.H.; Sergienko, E.; Pinkerton, A.B.; Chung, T.D.Y.; Palmer, A.E.; Pass, I.; Hess, S.; Cohen, S.M.; Deshaies, R.J. Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. Nat. Chem. Biol., 2017, 13(5), 486-493.
[http://dx.doi.org/10.1038/nchembio.2326] [PMID: 28244987]
[39]
Arai, M.A.; Masuda, A.; Suganami, A.; Tamura, Y.; Ishibashi, M. Synthesis and evaluation of fuligocandin B derivatives with activity for overcoming TRAIL resistance. Chem. Pharm. Bull. (Tokyo), 2018, 66(8), 810-817.
[http://dx.doi.org/10.1248/cpb.c18-00308] [PMID: 30068801]
[40]
Chen, T.L.; Lin, Y.W.; Chen, Y.B.; Lin, J.J.; Su, T.L.; Shen, C.N.; Lee, T.C. A low-toxicity DNA-alkylating N-mustard-quinoline conjugate with preferential sequence specificity exerts potent antitumor activity against colorectal cancer. Neoplasia, 2018, 20(2), 119-130.
[http://dx.doi.org/10.1016/j.neo.2017.11.006] [PMID: 29247884]
[41]
Chen, M.; Chen, H.; Ma, J.; Liu, X.; Zhang, S. Synthesis and anticancer activity of novel quinoline-docetaxel analogues. Bioorg. Med. Chem. Lett., 2014, 24(13), 2867-2870.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.091] [PMID: 24835987]
[42]
Park, H.S.; Hong, S.K.; Oh, M.M.; Yoon, C.Y.; Jeong, S.J.; Byun, S.S.; Cheon, J.; Lee, S.E.; Moon, G. Synergistic antitumor effect of NVP-BEZ235 and sunitinib on docetaxel-resistant human castration-resistant prostate cancer cells. Anticancer Res., 2014, 34(7), 3457-3468.
[PMID: 24982354]
[43]
Xu, C.X.; Li, Y.; Yue, P.; Owonikoko, T.K.; Ramalingam, S.S.; Khuri, F.R.; Sun, S.Y. The combination of RAD001 and NVP-BEZ235 exerts synergistic anticancer activity against non-small cell lung cancer in vitro and in vivo. PLoS One, 2011, 6(6)e20899
[http://dx.doi.org/10.1371/journal.pone.0020899] [PMID: 21695126]
[44]
Yasumizu, Y.; Miyajima, A.; Kosaka, T.; Miyazaki, Y.; Kikuchi, E.; Oya, M. Dual PI3K/mTOR inhibitor NVP-BEZ235 sensitizes docetaxel in castration resistant prostate cancer. J. Urol., 2014, 191(1), 227-234.
[http://dx.doi.org/10.1016/j.juro.2013.07.101] [PMID: 23954373]
[45]
Chiarini, F.; Grimaldi, C.; Ricci, F.; Tazzari, P.L.; Evangelisti, C.; Ognibene, A.; Battistelli, M.; Falcieri, E.; Melchionda, F.; Pession, A.; Pagliaro, P.; McCubrey, J.A.; Martelli, A.M. Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against T-cell acute lymphoblastic leukemia. Cancer Res., 2010, 70(20), 8097-8107.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1814] [PMID: 20876803]
[46]
Shoji, K.; Oda, K.; Kashiyama, T.; Ikeda, Y.; Nakagawa, S.; Sone, K.; Miyamoto, Y.; Hiraike, H.; Tanikawa, M.; Miyasaka, A.; Koso, T.; Matsumoto, Y.; Wada-Hiraike, O.; Kawana, K.; Kuramoto, H.; McCormick, F.; Aburatani, H.; Yano, T.; Kozuma, S.; Taketani, Y. Genotype-dependent efficacy of a dual PI3K/mTOR inhibitor, NVP-BEZ235, and an mTOR inhibitor, RAD001, in endometrial carcinomas. PLoS One, 2012, 7(5)e37431
[http://dx.doi.org/10.1371/journal.pone.0037431] [PMID: 22662154]
[47]
Moon, G.; Lee, S.E.; Oh, M.M.; Lee, S.C.; Jeong, S.J.; Hong, S.K.; Yoon, C.Y.; Byun, S.S.; Park, H.S.; Cheon, J. NVP-BEZ235, a dual PI3K/mTOR inhibitor synergistically potentiates the antitumor effects of cisplatin in bladder cancer cells. Int. J. Oncol., 2014, 45(3), 1027-1035.
[http://dx.doi.org/10.3892/ijo.2014.2505] [PMID: 24969552]
[48]
Karthikeyan, C.; Lee, C.; Moore, J.; Mittal, R.; Suswam, E.A.; Abbott, K.L.; Pondugula, S.R.; Manne, U.; Narayanan, N.K.; Trivedi, P.; Towari, A.K. IND-2, a pyrimido[1”,2”:1,5] pyrazolo[3,4-b]quinoline derivative, circumvents multi-drug resistance and causes apoptosis in colon cancer cells. Bioorg. Med. Chem., 2015, 23(3), 602-611.
[http://dx.doi.org/10.1016/j.bmc.2014.11.043] [PMID: 25537531]
[49]
Karthikeyan, C.; Malla, R.; Ashby, C.R., Jr; Amawi, H.; Abbott, K.L.; Moore, J.; Chen, J.; Balch, C.; Lee, C.; Flannery, P.C.; Trivedi, P.; Faridi, J.S.; Pondugula, S.R.; Tiwari, A.K. Pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinolines: Novel compounds that reverse ABCG2-mediated resistance in cancer cells. Cancer Lett., 2016, 376(1), 118-126.
[http://dx.doi.org/10.1016/j.canlet.2016.03.030] [PMID: 27012188]
[50]
Siddiqui-Jain, A.; Drygin, D.; Streiner, N.; Chua, P.; Pierre, F.; O’Brien, S.E.; Bliesath, J.; Omori, M.; Huser, N.; Ho, C.; Proffitt, C.; Schwaebe, M.K.; Ryckman, D.M.; Rice, W.G.; Anderes, K. CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res., 2010, 70(24), 10288-10298.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1893] [PMID: 21159648]
[51]
Pierre, F.; Chua, P.C.; O’Brien, S.E.; Siddiqui-Jain, A.; Bourbon, P.; Haddach, M.; Michaux, J.; Nagasawa, J.; Schwaebe, M.K.; Stefan, E.; Vialettes, A.; Whitten, J.P.; Chen, T.K.; Darjania, L.; Stansfield, R.; Anderes, K.; Bliesath, J.; Drygin, D.; Ho, C.; Omori, M.; Proffitt, C.; Streiner, N.; Trent, K.; Rice, W.G.; Ryckman, D.M. Discovery and SAR of 5-(3-chlorophenylamino)benzo[c] [2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer. J. Med. Chem., 2011, 54(2), 635-654.
[http://dx.doi.org/10.1021/jm101251q] [PMID: 21174434]
[52]
Siddiqui-Jain, A.; Bliesath, J.; Macalino, D.; Omori, M.; Huser, N.; Streiner, N.; Ho, C.B.; Anderes, K.; Proffitt, C.; O’Brien, S.E.; Lim, J.K.; Von Hoff, D.D.; Ryckman, D.M.; Rice, W.G.; Drygin, D. CK2 inhibitor CX-4945 suppresses DNA repair response triggered by DNA-targeted anticancer drugs and augments efficacy: mechanistic rationale for drug combination therapy. Mol. Cancer Ther., 2012, 11(4), 994-1005.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0613] [PMID: 22267551]
[53]
Bliesath, J.; Huser, N.; Omori, M.; Bunag, D.; Proffitt, C.; Streiner, N.; Ho, C.; Siddiqui-Jain, A.; O’Brien, S.E.; Lim, J.K.; Ryckman, D.M.; Anderes, K.; Rice, W.G.; Drygin, D. Combined inhibition of EGFR and CK2 augments the attenuation of PI3K-Akt-mTOR signaling and the killing of cancer cells. Cancer Lett., 2012, 322(1), 113-118.
[http://dx.doi.org/10.1016/j.canlet.2012.02.032] [PMID: 22387988]
[54]
Zanin, S.; Borgo, C.; Girardi, C.; O’Brien, S.E.; Miyata, Y.; Pinna, L.A.; Donella-Deana, A.; Ruzzene, M. Effects of the CK2 inhibitors CX-4945 and CX-5011 on drug-resistant cells. PLoS One, 2012, 7(11)e49193
[http://dx.doi.org/10.1371/journal.pone.0049193] [PMID: 23145120]
[55]
Shimizu, K.; Takada, M.; Asai, T.; Kuromi, K.; Baba, K.; Oku, N. Cancer chemotherapy by liposomal 6-[12-(dimethylamino)ethyl]aminol-3-hydroxy-7H-indeno[2,1-clquinolin-7-one dihydrochloride (TAS-103), a novel anti-cancer agent. Biol. Pharm. Bull., 2002, 25(10), 1385-1387.
[http://dx.doi.org/10.1248/bpb.25.1385] [PMID: 12392102]
[56]
Parajuli, P.; Yano, S.; Nishioka, Y.; Nokihara, H.; Hanibuchi, M.; Nishimura, N.; Utsugi, T.; Sone, S. Therapeutic efficacy of a new topoisomerase I and II inhibitor TAS-103, against both P-glycoprotein-expressing and -nonexpressing drug-resistant human small-cell lung cancer. Oncol. Res., 1999, 11(5), 219-224.
[PMID: 10608616]
[57]
Ryckebusch, A.; Garcin, D.; Lansiaux, A.; Goossens, J.F.; Baldeyrou, B.; Houssin, R.; Bailly, C.; Hénichart, J.P. Synthesis, cytotoxicity, DNA interaction, and topoisomerase II inhibition properties of novel indeno[2,1-c]quinolin-7-one and indeno[1,2-c]isoquinolin-5,11-dione derivatives. J. Med. Chem., 2008, 51(12), 3617-3629.
[http://dx.doi.org/10.1021/jm800017u] [PMID: 18507368]
[58]
Ferlin, M.G.; Chiarelotto, G.; Gasparotto, V.; Dalla Via, L.; Pezzi, V.; Barzon, L.; Palù, G.; Castagliuolo, I. Synthesis and in vitro and in vivo antitumor activity of 2-phenylpyrroloquinolin-4-ones. J. Med. Chem., 2005, 48(9), 3417-3427.
[http://dx.doi.org/10.1021/jm049387x] [PMID: 15857148]
[59]
Gasparotto, V.; Castagliuolo, I.; Chiarelotto, G.; Pezzi, V.; Montanaro, D.; Brun, P.; Palù, G.; Viola, G.; Ferlin, M.G. Synthesis and biological activity of 7-phenyl-6,9-dihydro-3H-pyrrolo[3,2-f]quinolin-9-ones: a new class of antimitotic agents devoid of aromatase activity. J. Med. Chem., 2006, 49(6), 1910-1915.
[http://dx.doi.org/10.1021/jm0510676] [PMID: 16539377]
[60]
Gasparotto, V.; Castagliuolo, I.; Ferlin, M.G. 3-substituted 7-phenyl-pyrroloquinolinones show potent cytotoxic activity in human cancer cell lines. J. Med. Chem., 2007, 50(22), 5509-5513.
[http://dx.doi.org/10.1021/jm070534b] [PMID: 17915851]
[61]
Nganou, B.K.; Mbaveng, A.T.; Fobofou, S.A.T.; Fankam, A.G.; Bitchagno, G.T.M.; Simo Mpetga, J.D.; Wessjohann, L.A.; Kuete, V.; Efferth, T.; Tane, P. Furoquinolines and dihydrooxazole alkaloids with cytotoxic activity from the stem bark of Araliopsis soyauxii. Fitoterapia, 2019, 133, 193-199.
[http://dx.doi.org/10.1016/j.fitote.2019.01.003] [PMID: 30654126]
[62]
Badowska-Rosłonek, K.; Ciesielska, A.; Switalska, M.; Piskozub, M.; Peczyńska-Czoch, W.; Wietrzyk, J.; Kaczmarek, Ł. Synthesis and cytotoxic activity of new 5H-indol[2,3-b]quinoline O-aminoglycosides. Acta Pol. Pharm.-. Acta Pol. Pharm., 2016, 73(3), 683-692.
[PMID: 27476287]
[63]
Oyewumi, M.O.; Alazizi, A.; Liva, S.; Lin, L.; Geldenhuys, W.J. Screening and identification of novel compounds with potential anti-proliferative effects on gallium-resistant lung cancer through an AXL kinase pathway. Bioorg. Med. Chem. Lett., 2014, 24(18), 4553-4556.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.072] [PMID: 25131538]
[64]
Li, X.Q.; Wang, L.; Lei, Y.; Hu, T.; Zhang, F.L.; Cho, C.H.; To, K.K.W. Reversal of P-gp and BCRP-mediated MDR by tariquidar derivatives. Eur. J. Med. Chem., 2015, 101, 560-572.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.049] [PMID: 26197160]
[65]
Ranjbar, S.; Khonkarn, R.; Moreno, A.; Baubichon-Cortay, H.; Miri, R.; Khoshneviszadeh, M.; Saso, L.; Edraki, N.; Falson, P.; Firuzi, O. 5-Oxo-hexahydroquinoline derivatives as modulators of P-gp, MRP1 and BCRP transporters to overcome multidrug resistance in cancer cells. Toxicol. Appl. Pharmacol., 2019, 362, 136-149.
[http://dx.doi.org/10.1016/j.taap.2018.10.025] [PMID: 30391378]
[66]
Ong, Y.C.; Gasser, G. Organometallic compounds in drug discovery: Past, present and future. Drug Discov. Today. Technol., 2020.
[http://dx.doi.org//10.1016/j.ddtec.2019.06.001]
[67]
Martins, P.; Marques, M.; Coito, L.; Pombeiro, A.J.L.; Baptista, P.V.; Fernandes, A.R. Organometallic compounds in cancer therapy: Past lessons and future directions. Anticancer. Agents Med. Chem., 2014, 14(9), 1199-1212.
[http://dx.doi.org/10.2174/1871520614666140829124925] [PMID: 25173559]
[68]
Wang, R.; Chen, H.; Yan, W.; Zheng, M.; Zhang, T.; Zhang, Y. Ferrocene-containing hybrids as potential anticancer agents: Current developments, mechanisms of action and structure-activity relationships. Eur. J. Med. Chem., 2020, 190112109
[http://dx.doi.org/10.1016/j.ejmech.2020.112109] [PMID: 32032851]
[69]
Muhammad, N.; Guo, Z. Metal-based anticancer chemotherapeutic agents. Curr. Opin. Chem. Biol., 2014, 19, 144-153.
[http://dx.doi.org/10.1016/j.cbpa.2014.02.003] [PMID: 24608084]
[70]
Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem., 2019, 88102925
[http://dx.doi.org/10.1016/j.bioorg.2019.102925] [PMID: 31003078]
[71]
Li, S.; Zhao, J.; Yuan, B.; Wang, X.; Zhang, J.; Yue, L.; Hou, H.; Hu, J.; Chen, S. Crystal structure, DNA interaction and in vitro anticancer activity of Cu(II) and Pt(II) compounds based on benzimidazole-quinoline derivative. Polyhedron, 2020, 179e114369
[http://dx.doi.org/10.1016/j.poly.2020.114369]
[72]
Othman, D.I.A.; Selim, K.B.; El-Sayed, M.A.A.; Tantawy, A.S.; Amen, Y.; Shimizu, K.; Okauchi, T.; Kitamura, M. Design, synthesis and anticancer evaluation of new substituted thiophene-quinoline derivatives. Bioorg. Med. Chem., 2019, 27(19)115026
[http://dx.doi.org/10.1016/j.bmc.2019.07.042] [PMID: 31416740]
[73]
Thirunavukkarasu, T.; Spark, H.A.; Natarajan, K. Quinoline based Pd(II) complexes: Synthesis, characterization and evaluation of DNA/protein binding, molecular docking and in vitro anticancer activity. Inorg. Chim. Acta, 2018, 482, 229-239.
[http://dx.doi.org/10.1016/j.ica.2018.06.003]
[74]
Cao, W.; Qi, J.; Qian, K.; Tian, L.; Cheng, Z.; Wang, Y. Structure-activity relationships of 2 quinolinecarboxaldehyde thiosemicarbazone gallium(III) complexes with potent and selective anticancer activity. J. Inorg. Biochem., 2019, 191, 174-182.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.11.017] [PMID: 30530178]
[75]
Ruiz, M.C.; Resasco, A.; Di Virgilio, A.L.; Ayala, M.; Cavaco, I.; Cabrera, S.; Aleman, J.; León, I.E. In vitro and in vivo anticancer effects of two quinoline-platinum(II) complexes on human osteosarcoma models. Cancer Chemother. Pharmacol., 2019, 83(4), 681-692.
[http://dx.doi.org/10.1007/s00280-019-03773-x] [PMID: 30661096]
[76]
Qin, Q.P.; Wang, Z.F.; Huang, X.L.; Tan, M.X.; Zou, B.Q.; Liang, H. Strong in vitro and vivo cytotoxicity of novel organoplatinum(II) complexes with quinoline-coumarin derivatives. Eur. J. Med. Chem., 2019, 184111751
[http://dx.doi.org/10.1016/j.ejmech.2019.111751] [PMID: 31593828]
[77]
Wang, F.Y.; Tang, X.M.; Wang, X.; Huang, K.B.; Feng, H.W.; Chen, Z.F.; Liu, Y.N.; Liang, H. Mitochondria-targeted platinum(II) complexes induce apoptosis-dependent autophagic cell death mediated by ER-stress in A549 cancer cells. Eur. J. Med. Chem., 2018, 155, 639-650.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.018] [PMID: 29935437]
[78]
Arzuman, L.; Beale, P.; Yu, J.Q.; Huq, F. Synthesis of tris(quinoline)monochloroplatinum(II) chloride and its activity alone and in combination with capsaicin and curcumin in human ovarian cancer cell lines. Anticancer Res., 2016, 36(6), 2809-2818.
[PMID: 27272792]
[79]
Casado-Sánchez, A.; Martín-Santos, C.; Padrón, J.M.; Mas-Ballesté, R.; Navarro-Ranninger, C.; Alemán, J.; Cabrera, S. Effect of electronic and steric properties of 8-substituted quinolines in gold(III) complexes: Synthesis, electrochemistry, stability, interactions and antiproliferative studies. J. Inorg. Biochem., 2017, 174, 111-118.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.06.004] [PMID: 28662405]
[80]
Novohradsky, V.; Liu, Z.; Vojtiskova, M.; Sadler, P.J.; Brabec, V.; Kasparkova, J. Mechanism of cellular accumulation of an iridium(III) pentamethylcyclopentadienyl anticancer complex containing a C,N-chelating ligand. Metallomics, 2014, 6(3), 682-690.
[http://dx.doi.org/10.1039/C3MT00341H] [PMID: 24448555]
[81]
Tsai, A.C.; Pai, H.C.; Wang, C.Y.; Liou, J.P.; Teng, C.M.; Wang, J.C.; Pan, S.L. In vitro and in vivo anti-tumour effects of MPT0B014, a novel derivative aroylquinoline, and in combination with erlotinib in human non-small-cell lung cancer cells. Br. J. Pharmacol., 2014, 171(1), 122-133.
[http://dx.doi.org/10.1111/bph.12427] [PMID: 24116948]
[82]
Ganguly, A.; Banerjee, K.; Chakraborty, P.; Das, S.; Sarkar, A.; Hazra, A.; Banerjee, M.; Maity, A.; Chatterjee, M.; Mondal, N.B.; Choudhuri, S.K. Overcoming multidrug resistance (MDR) in cancer in vitro and in vivo by a quinoline derivative. Biomed. Pharmacother., 2011, 65(6), 387-394.
[http://dx.doi.org/10.1016/j.biopha.2011.04.024] [PMID: 21715129]
[83]
Romero, A.H.; Lopez, S.E.; Arvelo, F.; Sojo, F.; Calderon, C. Morales. Identification of dehydroxy isoquine and isotebuquine as promising anticancer agents targeting K+ channel. Arch. Pharm., 2019, 352(3)e1800281
[http://dx.doi.org/10.1002/ardp.201800281] [PMID: 30994941]
[84]
Caceres, G.; Robey, R.W.; Sokol, L.; McGraw, K.L.; Clark, J.; Lawrence, N.J.; Sebti, S.M.; Wiese, M.; List, A.F. HG-829 is a potent noncompetitive inhibitor of the ATP-binding cassette multidrug resistance transporter ABCB1. Cancer Res., 2012, 72(16), 4204-4213.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0743] [PMID: 22761337]
[85]
Shobeiri, N.; Rashedi, M.; Mosaffa, F.; Zarghi, A.; Ghandadi, M.; Ghasemi, A.; Ghodsi, R. Synthesis and biological evaluation of quinoline analogues of flavones as potential anticancer agents and tubulin polymerization inhibitors. Eur. J. Med. Chem., 2016, 114, 14-23.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.069] [PMID: 26974371]
[86]
Aboutorabzadeh, S.M.; Mosaffa, F.; Hadizadeh, F.; Ghodsi, R. Design, synthesis, and biological evaluation of 6-methoxy-2-arylquinolines as potential P-glycoprotein inhibitors. Iran. J. Basic Med. Sci., 2018, 21(1), 9-18.
[PMID: 29372031]
[87]
Nien, C.Y.; Chen, Y.C.; Kuo, C.C.; Hsieh, H.P.; Chang, C.Y.; Wu, J.S.; Wu, S.Y.; Liou, J.P.; Chang, J.Y. 5-Amino-2-aroylquinolines as highly potent tubulin polymerization inhibitors. J. Med. Chem., 2010, 53(5), 2309-2313.
[http://dx.doi.org/10.1021/jm900685y] [PMID: 20148562]
[88]
Hsieh, C.C.; Lee, H.Y.; Nien, C.Y.; Kuo, C.C.; Chang, C.Y.; Chang, J.Y.; Liou, J.P. Synthesis and biological evaluation of 4-aroyl-6,7,8-trimethoxyquinolines as a novel class of anticancer agents. Molecules, 2011, 16(3), 2274-2284.
[http://dx.doi.org/10.3390/molecules16032274] [PMID: 21383664]
[89]
Zhou, Y.; Chung, P.Y.; Ma, J.Y.W.; Lam, A.K.Y.; Law, S.; Chan, K.W.; Chan, A.S.C.; Li, X.; Lam, K.H.; Chui, C.H.; Tang, J.C. Development of a novel quinoline derivative as a P-glycoprotein inhibitor to reverse multidrug resistance in cancer cells. Biology (Basel), 2019, 8(4)e75
[http://dx.doi.org/10.3390/biology8040075] [PMID: 31581572]
[90]
Ling, Y.; Yang, Q.X.; Teng, Y.N.; Chen, S.; Gao, W.J.; Guo, J.; Hsu, P.L.; Liu, Y.; Morris-Natschke, S.L.; Hung, C.C.; Lee, K.H. Development of novel amino-quinoline-5,8-dione derivatives as NAD(P)H:quinone oxidoreductase 1 (NQO1) inhibitors with potent antiproliferative activities. Eur. J. Med. Chem., 2018, 154, 199-209.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.025] [PMID: 29803003]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy