Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Review and Prospect of Tissue-agnostic Targeted Strategies in Anticancer Therapies

Author(s): Yu Peng, Hongxun Tao, Yuanqing Gao, Yuanyuan Yang and Zhiyong Chen*

Volume 21, Issue 5, 2021

Published on: 16 June, 2020

Page: [404 - 425] Pages: 22

DOI: 10.2174/1568026620666200616143247

Price: $65

Abstract

Due to the increasing prevalence of cancer year by year, and the complexity and refractory nature of the disease itself, it is required to constantly innovate the development of new cancer treatment schemes. At the same time, the understanding of cancers has deepened, from the use of chemotherapy regimens with high toxicity and side effects, to the popularity of targeted drugs with specific targets, to precise treatments based on tumor characteristics rather than traditional anatomical location classification. In precision medicine, in the view of the specific cancer diseases and their biological characteristics, there is a great potential to develop tissue-agnostic targeted therapy with broad-spectrum anticancer significance. The present review has discussed tissue-agnostic targeted therapy based on the biological and genetic characteristics of cancers, expounded its theoretical basis and strategies for drug development. In addition, the feasible drug targets, FDA-approved drugs, as well as drug candidates in clinical trials have also been summarized. In conclusion, the “tissue-agnostic targeted therapy” is a breakthrough in anticancer therapies.

Keywords: Tissue-agnostic targeted therapy, Anticancer therapy, Precision medicine, Broad-spectrum anticancer targeted drugs, Cancers, Chemotherapy.

Graphical Abstract

[1]
Garber, K. In a major shift, cancer drugs go ‘tissue-agnostic’. Science, 2017, 356(6343), 1111-1112.
[http://dx.doi.org/10.1126/science.356.6343.1111] [PMID: 28619894]
[2]
Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr; Kinzler, K.W. Cancer genome landscapes. Science, 2013, 339(6127), 1546-1558.
[http://dx.doi.org/10.1126/science.1235122] [PMID: 23539594]
[3]
Wang, Z.; Cheng, Y.; An, T.; Gao, H.; Wang, K.; Zhou, Q.; Hu, Y.; Song, Y.; Ding, C.; Peng, F.; Liang, L.; Hu, Y.; Huang, C.; Zhou, C.; Shi, Y.; Zhang, L.; Ye, X.; Zhang, M.; Chuai, S.; Zhu, G.; Hu, J.; Wu, Y.L.; Wang, J. Detection of EGFR mutations in plasma circulating tumour DNA as a selection criterion for first-line gefitinib treatment in patients with advanced lung adenocarcinoma (BENEFIT): a phase 2, single-arm, multicentre clinical trial. Lancet Respir. Med., 2018, 6(9), 681-690.
[http://dx.doi.org/10.1016/S2213-2600(18)30264-9] [PMID: 30017884]
[4]
Price, T.J.; Peeters, M.; Kim, T.W.; Li, J.; Cascinu, S.; Ruff, P.; Suresh, A.S.; Thomas, A.; Tjulandin, S.; Zhang, K.; Murugappan, S.; Sidhu, R. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol., 2014, 15(6), 569-579.
[http://dx.doi.org/10.1016/S1470-2045(14)70118-4] [PMID: 24739896]
[5]
Flaherty, K.T.; Le, D.T.; Lemery, S. Tissue-agnostic drug development. Am. Soc. Clin. Oncol. Educ. Book, 2017, 37, 222-230.
[http://dx.doi.org/10.14694/EDBK_173855] [PMID: 28561648]
[6]
FDA FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication.
[7]
Yan, L.; Zhang, W. Precision medicine becomes reality-tumor type-agnostic therapy. Cancer Commun. (Lond), 2018, 38(1), 6.
[http://dx.doi.org/10.1186/s40880-018-0274-3] [PMID: 29764494]
[8]
Floor, S.L.; Dumont, J.E.; Maenhaut, C.; Raspe, E. Hallmarks of cancer: of all cancer cells, all the time? Trends Mol. Med., 2012, 18(9), 509-515.
[http://dx.doi.org/10.1016/j.molmed.2012.06.005] [PMID: 22795735]
[9]
Tarte, K.; Gaillard, J.; Lataillade, J.J.; Fouillard, L.; Becker, M.; Mossafa, H.; Tchirkov, A.; Rouard, H.; Henry, C.; Splingard, M.; Dulong, J.; Monnier, D.; Gourmelon, P.; Gorin, N.C.; Sensebé, L. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood, 2010, 115(8), 1549-1553.
[http://dx.doi.org/10.1182/blood-2009-05-219907] [PMID: 20032501]
[10]
Luoh, S.W.; Flaherty, K.T. When tissue is no longer the issue: tissue-agnostic cancer therapy comes of age. Ann. Intern. Med., 2018, 169(4), 233-239.
[http://dx.doi.org/10.7326/M17-2832] [PMID: 30073297]
[11]
Hoadley, K.A.; Yau, C.; Hinoue, T.; Wolf, D.M.; Lazar, A.J.; Drill, E.; Shen, R.; Taylor, A.M.; Cherniack, A.D.; Thorsson, V.; Akbani, R.; Bowlby, R.; Wong, C.K.; Wiznerowicz, M.; Sanchez-Vega, F.; Robertson, A.G.; Schneider, B.G.; Lawrence, M.S.; Noushmehr, H.; Malta, T.M.; Cancer Genome Atlas, N.; Stuart, J.M.; Benz, C.C.; Laird, P.W. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell, 2018, 173(2), 291-304.e6.
[12]
Cline, M.S.; Craft, B.; Swatloski, T.; Goldman, M.; Ma, S.; Haussler, D.; Zhu, J. Exploring TCGA pan-cancer data at the UCSC cancer genomics browser. Sci. Rep., 2013, 3, 2652.
[http://dx.doi.org/10.1038/srep02652] [PMID: 24084870]
[13]
Su, A.I.; Welsh, J.B.; Sapinoso, L.M.; Kern, S.G.; Dimitrov, P.; Lapp, H.; Schultz, P.G.; Powell, S.M.; Moskaluk, C.A.; Frierson, H.F., Jr; Hampton, G.M. Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res., 2001, 61(20), 7388-7393.
[PMID: 11606367]
[14]
Zhang, K.; Wang, H. Cancer Genome Atlas Pan-cancer Analysis Project Zhongguo Fei Ai Za Zhi, 2015, 18(4), 219-223.
[PMID: 25936886]
[15]
Sanchez-Vega, F.; Mina, M.; Armenia, J.; Chatila, W.K.; Luna, A.; La, K.C.; Dimitriadoy, S.; Liu, D.L.; Kantheti, H.S.; Saghafinia, S.; Chakravarty, D.; Daian, F.; Gao, Q.; Bailey, M.H.; Liang, W.W.; Foltz, S.M.; Shmulevich, I.; Ding, L.; Heins, Z.; Ochoa, A.; Gross, B.; Gao, J.; Zhang, H.; Kundra, R.; Kandoth, C.; Bahceci, I.; Dervishi, L.; Dogrusoz, U.; Zhou, W.; Shen, H.; Laird, P.W.; Way, G.P.; Greene, C.S.; Liang, H.; Xiao, Y.; Wang, C.; Iavarone, A.; Berger, A.H.; Bivona, T.G.; Lazar, A.J.; Hammer, G.D.; Giordano, T.; Kwong, L.N.; McArthur, G.; Huang, C.; Tward, A.D.; Frederick, M.J.; McCormick, F.; Meyerson, M. Oncogenic signaling pathways in the cancer genome atlas. Cell, 2018, 173(2), 321-337.e10.
[16]
Mai, P.L.; Chatterjee, N.; Hartge, P.; Tucker, M.; Brody, L.; Struewing, J.P.; Wacholder, S. Potential excess mortality in BRCA1/2 mutation carriers beyond breast, ovarian, prostate, and pancreatic cancers, and melanoma. PLoS One, 2009, 4(3)e4812
[http://dx.doi.org/10.1371/journal.pone.0004812] [PMID: 19277124]
[17]
Ladelfa, M.F.; Toledo, M.F.; Laiseca, J.E.; Monte, M. Interaction of p53 with tumor suppressive and oncogenic signaling pathways to control cellular reactive oxygen species production. Antioxid. Redox Signal., 2011, 15(6), 1749-1761.
[http://dx.doi.org/10.1089/ars.2010.3652] [PMID: 20919943]
[18]
Futreal, P.A.; Coin, L.; Marshall, M.; Down, T.; Hubbard, T.; Wooster, R.; Rahman, N.; Stratton, M.R. A census of human cancer genes. Nat. Rev. Cancer, 2004, 4(3), 177-183.
[http://dx.doi.org/10.1038/nrc1299] [PMID: 14993899]
[19]
Ciriello, G.; Cerami, E.; Sander, C.; Schultz, N. Mutual exclusivity analysis identifies oncogenic network modules. Genome Res., 2012, 22(2), 398-406.
[http://dx.doi.org/10.1101/gr.125567.111] [PMID: 21908773]
[20]
Møller, M.B.; Ino, Y.; Gerdes, A.M.; Skjødt, K.; Louis, D.N.; Pedersen, N.T. Aberrations of the p53 pathway components p53, MDM2 and CDKN2A appear independent in diffuse large B cell lymphoma. Leukemia, 1999, 13(3), 453-459.
[http://dx.doi.org/10.1038/sj.leu.2401315] [PMID: 10086736]
[21]
Ashworth, A.; Lord, C.J.; Reis-Filho, J.S. Genetic interactions in cancer progression and treatment. Cell, 2011, 145(1), 30-38.
[http://dx.doi.org/10.1016/j.cell.2011.03.020] [PMID: 21458666]
[22]
Van Cutsem, E.; Cuyle, P-J.; Huijberts, S.; Yaeger, R.; Schellens, J.H.M.; Elez, E.; Tabernero, J.; Fakih, M.; Montagut, C.; Peeters, M.; Desai, J.; Yoshino, T.; Ciardiello, F.; Wasan, H.S.; Kopetz, S.; Maharry, K.; Christy-Bittel, J.; Gollerkeri, A.; Grothey, A. BEACON CRC study safety lead-in (SLI) in patients with BRAFV600E metastatic colorectal cancer (mCRC): Efficacy and tumor markers. J. Clin. Oncol., 2018, 36(4), 627-627.
[23]
Franco, O.E.; Shaw, A.K.; Strand, D.W.; Hayward, S.W. Cancer associated fibroblasts in cancer pathogenesis. Semin. Cell Dev. Biol., 2010, 21(1), 33-39.
[http://dx.doi.org/10.1016/j.semcdb.2009.10.010] [PMID: 19896548]
[24]
Shiga, K.; Hara, M.; Nagasaki, T.; Sato, T.; Takahashi, H.; Takeyama, H. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers (Basel), 2015, 7(4), 2443-2458.
[http://dx.doi.org/10.3390/cancers7040902] [PMID: 26690480]
[25]
Toor, S.M.; Sasidharan Nair, V.; Decock, J.; Elkord, E. Immune checkpoints in the tumor microenvironment. Semin. Cancer Biol., 2020, 65, 1-12.
[PMID: 31265893]
[26]
Sharpe, A.H. Introduction to checkpoint inhibitors and cancer immunotherapy. Immunol. Rev., 2017, 276(1), 5-8.
[http://dx.doi.org/10.1111/imr.12531] [PMID: 28258698]
[27]
Saleh, R.; Elkord, E. Treg-mediated acquired resistance to immune checkpoint inhibitors. Cancer Lett., 2019, 457, 168-179.
[http://dx.doi.org/10.1016/j.canlet.2019.05.003] [PMID: 31078738]
[28]
Anderson, A.C.; Joller, N.; Kuchroo, V.K. Lag-3, tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity, 2016, 44(5), 989-1004.
[http://dx.doi.org/10.1016/j.immuni.2016.05.001] [PMID: 27192565]
[29]
Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 2017, 168(4), 707-723.
[http://dx.doi.org/10.1016/j.cell.2017.01.017] [PMID: 28187290]
[30]
Butte, M.J.; Keir, M.E.; Phamduy, T.B.; Sharpe, A.H.; Freeman, G.J. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity, 2007, 27(1), 111-122.
[http://dx.doi.org/10.1016/j.immuni.2007.05.016] [PMID: 17629517]
[31]
Bour-Jordan, H.; Esensten, J.H.; Martinez-Llordella, M.; Penaranda, C.; Stumpf, M.; Bluestone, J.A. Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/ B7 family. Immunol. Rev., 2011, 241(1), 180-205.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01011.x] [PMID: 21488898]
[32]
Pentcheva-Hoang, T.; Corse, E.; Allison, J.P. Negative regulators of T-cell activation: potential targets for therapeutic intervention in cancer, autoimmune disease, and persistent infections. Immunol. Rev., 2009, 229(1), 67-87.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00763.x] [PMID: 19426215]
[33]
Kirchhoff, S.; Müller, W.W.; Li-Weber, M.; Krammer, P.H. Up-regulation of c-FLIPshort and reduction of activation-induced cell death in CD28-costimulated human T cells. Eur. J. Immunol., 2000, 30(10), 2765-2774.
[http://dx.doi.org/10.1002/1521-4141(200010)30:10<2765:AID-IMMU2765>3.0.CO;2-W] [PMID: 11069056]
[34]
Boonen, G.J.; van Dijk, A.M.; Verdonck, L.F.; van Lier, R.A.; Rijksen, G.; Medema, R.H. CD28 induces cell cycle progression by IL-2-independent down-regulation of p27kip1 expression in human peripheral T lymphocytes. Eur. J. Immunol., 1999, 29(3), 789-798.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199903)29:03<789:AID-IMMU789>3.0.CO;2-5] [PMID: 10092081]
[35]
Salomon, B.; Lenschow, D.J.; Rhee, L.; Ashourian, N.; Singh, B.; Sharpe, A.; Bluestone, J.A. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity, 2000, 12(4), 431-440.
[http://dx.doi.org/10.1016/S1074-7613(00)80195-8] [PMID: 10795741]
[36]
Zaravinos, A. An updated overview of HPV-associated head and neck carcinomas. Oncotarget, 2014, 5(12), 3956-3969.
[http://dx.doi.org/10.18632/oncotarget.1934] [PMID: 24970795]
[37]
Walunas, T.L.; Bakker, C.Y.; Bluestone, J.A. CTLA-4 ligation blocks CD28-dependent T cell activation. J. Exp. Med., 1996, 183(6), 2541-2550.
[http://dx.doi.org/10.1084/jem.183.6.2541] [PMID: 8676075]
[38]
Hodi, F.S.; Mihm, M.C.; Soiffer, R.J.; Haluska, F.G.; Butler, M.; Seiden, M.V.; Davis, T.; Henry-Spires, R.; MacRae, S.; Willman, A.; Padera, R.; Jaklitsch, M.T.; Shankar, S.; Chen, T.C.; Korman, A.; Allison, J.P.; Dranoff, G. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Natl. Acad. Sci. USA, 2003, 100(8), 4712-4717.
[http://dx.doi.org/10.1073/pnas.0830997100] [PMID: 12682289]
[39]
Weber, J.; Thompson, J.A.; Hamid, O.; Minor, D.; Amin, A.; Ron, I.; Ridolfi, R.; Assi, H.; Maraveyas, A.; Berman, D.; Siegel, J.; O’Day, S.J. A randomized, double-blind, placebo-controlled, phase II study comparing the tolerability and efficacy of ipilimumab administered with or without prophylactic budesonide in patients with unresectable stage III or IV melanoma. Clin. Cancer Res., 2009, 15(17), 5591-5598.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1024] [PMID: 19671877]
[40]
NIH.Dose-escalation Study of Combination BMS-936558 (MDX- 1106) and Ipilimumab in Subjects With Unresectable Stage III or Stage IV Malignant Melanoma. NCT01024231, 2011.
[41]
Hascitha, J.; Priya, R.; Jayavelu, S.; Dhandapani, H.; Selvaluxmy, G.; Sunder Singh, S.; Rajkumar, T. Analysis of Kynurenine/Tryptophan ratio and expression of IDO1 and 2 mRNA in tumour tissue of cervical cancer patients. Clin. Biochem., 2016, 49(12), 919-924.
[http://dx.doi.org/10.1016/j.clinbiochem.2016.04.008] [PMID: 27106797]
[42]
Volaric, A.; Gentzler, R.; Hall, R.; Mehaffey, J.H.; Stelow, E.B.; Bullock, T.N.; Martin, L.W.; Mills, A.M. Indoleamine-2,3-dioxygenase in non-small cell lung cancer: a targetable mechanism of immune resistance frequently coexpressed With PD-L1. Am. J. Surg. Pathol., 2018, 42(9), 1216-1223.
[http://dx.doi.org/10.1097/PAS.0000000000001099] [PMID: 29901571]
[43]
Long, G.V.; Dummer, R.; Hamid, O.; Gajewski, T.F.; Caglevic, C.; Dalle, S.; Arance, A.; Carlino, M.S.; Grob, J.J.; Kim, T.M.; Demidov, L.; Robert, C.; Larkin, J.; Anderson, J.R.; Maleski, J.; Jones, M.; Diede, S.J.; Mitchell, T.C. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol., 2019, 20(8), 1083-1097.
[http://dx.doi.org/10.1016/S1470-2045(19)30274-8] [PMID: 31221619]
[44]
Albini, A.; Bruno, A.; Noonan, D.M.; Mortara, L. Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: implications for immunotherapy. Front. Immunol., 2018, 9, 527.
[http://dx.doi.org/10.3389/fimmu.2018.00527] [PMID: 29675018]
[45]
Payne, S.J.L.; Jones, L. Influence of the tumor microenvironment on angiogenesis. Future Oncol., 2011, 7(3), 395-408.
[http://dx.doi.org/10.2217/fon.11.13] [PMID: 21417903]
[46]
Glass, C.K.; Natoli, G. Molecular control of activation and priming in macrophages. Nat. Immunol., 2016, 17(1), 26-33.
[http://dx.doi.org/10.1038/ni.3306] [PMID: 26681459]
[47]
Sica, A.; Erreni, M.; Allavena, P.; Porta, C. Macrophage polarization in pathology. Cell. Mol. Life Sci., 2015, 72(21), 4111-4126.
[http://dx.doi.org/10.1007/s00018-015-1995-y] [PMID: 26210152]
[48]
Ran, S.; Montgomery, K.E. Macrophage-mediated lymphangiogenesis: the emerging role of macrophages as lymphatic endothelial progenitors. Cancers (Basel), 2012, 4(3), 618-657.
[http://dx.doi.org/10.3390/cancers4030618] [PMID: 22946011]
[49]
Mazzieri, R.; Pucci, F.; Moi, D.; Zonari, E.; Ranghetti, A.; Berti, A.; Politi, L.S.; Gentner, B.; Brown, J.L.; Naldini, L.; De Palma, M. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell, 2011, 19(4), 512-526.
[http://dx.doi.org/10.1016/j.ccr.2011.02.005] [PMID: 21481792]
[50]
Palucka, A.K.; Coussens, L.M. The basis of oncoimmunology. Cell, 2016, 164(6), 1233-1247.
[http://dx.doi.org/10.1016/j.cell.2016.01.049] [PMID: 26967289]
[51]
Liang, W.; Ferrara, N. The Complex Role of Neutrophils in Tumor Angiogenesis and Metastasis. Cancer Immunol. Res., 2016, 4(2), 83-91.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0313] [PMID: 26839309]
[52]
Motz, G.T.; Coukos, G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat. Rev. Immunol., 2011, 11(10), 702-711.
[http://dx.doi.org/10.1038/nri3064] [PMID: 21941296]
[53]
Nyberg, P.; Salo, T.; Kalluri, R. Tumor microenvironment and angiogenesis. Front. Biosci., 2008, 13(7), 6537-6553.
[http://dx.doi.org/10.2741/3173] [PMID: 18508679]
[54]
Sherr, C.J.; Bartek, J. Cell Cycle–Targeted Cancer Therapies. Annual Review of Cancer Biology, 2017, 1(1), 41-57.
[http://dx.doi.org/10.1146/annurev-cancerbio-040716-075628]
[55]
Asghar, U.; Witkiewicz, A.K.; Turner, N.C.; Knudsen, E.S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov., 2015, 14(2), 130-146.
[http://dx.doi.org/10.1038/nrd4504] [PMID: 25633797]
[56]
Finn, R.S.; Martin, M.; Rugo, H.S.; Jones, S. Im, S.A.; Gelmon, K.; Harbeck, N.; Lipatov, O.N.; Walshe, J.M.; Moulder, S.; Gauthier, E.; Lu, D.R.; Randolph, S.; Diéras, V.; Slamon, D.J. Im, S.-A.; Gelmon, K.; Harbeck, N.; Lipatov, O. N.; Walshe, J. M.; Moulder, S., Palbociclib and letrozole in advanced breast cancer. N. Engl. J. Med., 2016, 375(20), 1925-1936.
[http://dx.doi.org/10.1056/NEJMoa1607303] [PMID: 27959613]
[57]
Swanton, C. Cell-cycle targeted therapies. Lancet Oncol., 2004, 5(1), 27-36.
[http://dx.doi.org/10.1016/S1470-2045(03)01321-4] [PMID: 14700606]
[58]
Polyak, K.; Lee, M.H.; Erdjument-Bromage, H.; Koff, A.; Roberts, J.M.; Tempst, P.; Massagué, J. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell, 1994, 78(1), 59-66.
[http://dx.doi.org/10.1016/0092-8674(94)90572-X] [PMID: 8033212]
[59]
Carrano, A.C.; Eytan, E.; Hershko, A.; Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat. Cell Biol., 1999, 1(4), 193-199.
[http://dx.doi.org/10.1038/12013] [PMID: 10559916]
[60]
Pagano, M.; Tam, S.W.; Theodoras, A.M.; Beer-Romero, P.; Del Sal, G.; Chau, V.; Yew, P.R.; Draetta, G.F.; Rolfe, M. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science, 1995, 269(5224), 682-685.
[http://dx.doi.org/10.1126/science.7624798] [PMID: 7624798]
[61]
Nakayama, K.I.; Nakayama, K. Ubiquitin ligases: cell-cycle control and cancer. Nat. Rev. Cancer, 2006, 6(5), 369-381.
[http://dx.doi.org/10.1038/nrc1881] [PMID: 16633365]
[62]
el-Deiry, W.S.; Tokino, T.; Velculescu, V.E.; Levy, D.B.; Parsons, R.; Trent, J.M.; Lin, D.; Mercer, W.E.; Kinzler, K.W.; Vogelstein, B. WAF1, a potential mediator of p53 tumor suppression. Cell, 1993, 75(4), 817-825.
[http://dx.doi.org/10.1016/0092-8674(93)90500-P] [PMID: 8242752]
[63]
Hirai, H.; Iwasawa, Y.; Okada, M.; Arai, T.; Nishibata, T.; Kobayashi, M.; Kimura, T.; Kaneko, N.; Ohtani, J.; Yamanaka, K.; Itadani, H.; Takahashi-Suzuki, I.; Fukasawa, K.; Oki, H.; Nambu, T.; Jiang, J.; Sakai, T.; Arakawa, H.; Sakamoto, T.; Sagara, T.; Yoshizumi, T.; Mizuarai, S.; Kotani, H. Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol. Cancer Ther., 2009, 8(11), 2992-3000.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0463] [PMID: 19887545]
[64]
Bryant, H.E.; Schultz, N.; Thomas, H.D.; Parker, K.M.; Flower, D.; Lopez, E.; Kyle, S.; Meuth, M.; Curtin, N.J.; Helleday, T. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature, 2005, 434(7035), 913-917.
[http://dx.doi.org/10.1038/nature03443] [PMID: 15829966]
[65]
Farmer, H.; McCabe, N.; Lord, C.J.; Tutt, A.N.J.; Johnson, D.A.; Richardson, T.B.; Santarosa, M.; Dillon, K.J.; Hickson, I.; Knights, C.; Martin, N.M.B.; Jackson, S.P.; Smith, G.C.M.; Ashworth, A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 2005, 434(7035), 917-921.
[http://dx.doi.org/10.1038/nature03445] [PMID: 15829967]
[66]
Rhyu, M.S. Telomeres, telomerase, and immortality. J. Natl. Cancer Inst., 1995, 87(12), 884-894.
[http://dx.doi.org/10.1093/jnci/87.12.884] [PMID: 7666477]
[67]
Dahse, R.; Fiedler, W.; Ernst, G. Telomeres and telomerase: biological and clinical importance. Clin. Chem., 1997, 43(5), 708-714.
[http://dx.doi.org/10.1093/clinchem/43.5.708] [PMID: 9166220]
[68]
Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer, 2011, 11(2), 85-95.
[http://dx.doi.org/10.1038/nrc2981] [PMID: 21258394]
[69]
Dang, L.; Jin, S.; Su, S.M. IDH mutations in glioma and acute myeloid leukemia. Trends Mol. Med., 2010, 16(9), 387-397.
[http://dx.doi.org/10.1016/j.molmed.2010.07.002] [PMID: 20692206]
[70]
Paschka, P.; Schlenk, R.F.; Gaidzik, V.I.; Habdank, M.; Krönke, J.; Bullinger, L.; Späth, D.; Kayser, S.; Zucknick, M.; Götze, K.; Horst, H-A.; Germing, U.; Döhner, H.; Döhner, K. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J. Clin. Oncol., 2010, 28(22), 3636-3643.
[http://dx.doi.org/10.1200/JCO.2010.28.3762] [PMID: 20567020]
[71]
Cheong, H.; Lu, C.; Lindsten, T.; Thompson, C.B. Therapeutic targets in cancer cell metabolism and autophagy. Nat. Biotechnol., 2012, 30(7), 671-678.
[http://dx.doi.org/10.1038/nbt.2285] [PMID: 22781696]
[72]
Zhao, Z.; Wu, M.S.; Zou, C.; Tang, Q.; Lu, J.; Liu, D.; Wu, Y.; Yin, J.; Xie, X.; Shen, J.; Kang, T.; Wang, J. Downregulation of MCT1 inhibits tumor growth, metastasis and enhances chemotherapeutic efficacy in osteosarcoma through regulation of the NF-κB pathway. Cancer Lett., 2014, 342(1), 150-158.
[http://dx.doi.org/10.1016/j.canlet.2013.08.042] [PMID: 24012639]
[73]
Sonveaux, P.; Végran, F.; Schroeder, T.; Wergin, M.C.; Verrax, J.; Rabbani, Z.N.; De Saedeleer, C.J.; Kennedy, K.M.; Diepart, C.; Jordan, B.F.; Kelley, M.J.; Gallez, B.; Wahl, M.L.; Feron, O.; Dewhirst, M.W. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest., 2008, 118(12), 3930-3942.
[http://dx.doi.org/10.1172/JCI36843] [PMID: 19033663]
[74]
Mathupala, S.P.; Parajuli, P.; Sloan, A.E. Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma: an in vitro study. Neurosurgery, 2004, 55(6), 1410-1419.
[http://dx.doi.org/10.1227/01.NEU.0000143034.62913.59] [PMID: 15574223]
[75]
Wang, J.B.; Erickson, J.W.; Fuji, R.; Ramachandran, S.; Gao, P.; Dinavahi, R.; Wilson, K.F.; Ambrosio, A.L.; Dias, S.M.; Dang, C.V.; Cerione, R.A. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell, 2010, 18(3), 207-219.
[http://dx.doi.org/10.1016/j.ccr.2010.08.009] [PMID: 20832749]
[76]
Katt, W.P.; Cerione, R.A. Glutaminase regulation in cancer cells: a druggable chain of events. Drug Discov. Today, 2014, 19(4), 450-457.
[http://dx.doi.org/10.1016/j.drudis.2013.10.008] [PMID: 24140288]
[77]
Chang, M.T.; Asthana, S.; Gao, S.P.; Lee, B.H.; Chapman, J.S.; Kandoth, C.; Gao, J.; Socci, N.D.; Solit, D.B.; Olshen, A.B.; Schultz, N.; Taylor, B.S. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat. Biotechnol., 2016, 34(2), 155-163.
[http://dx.doi.org/10.1038/nbt.3391] [PMID: 26619011]
[78]
McCubrey, J.A.; Steelman, L.S.; Kempf, C.R.; Chappell, W.H.; Abrams, S.L.; Stivala, F.; Malaponte, G.; Nicoletti, F.; Libra, M.; Bäsecke, J.; Maksimovic-Ivanic, D.; Mijatovic, S.; Montalto, G.; Cervello, M.; Cocco, L.; Martelli, A.M. Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways. J. Cell. Physiol., 2011, 226(11), 2762-2781.
[http://dx.doi.org/10.1002/jcp.22647] [PMID: 21302297]
[79]
McCubrey, J.A.; Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Wong, E.W.; Chang, F.; Lehmann, B.; Terrian, D.M.; Milella, M.; Tafuri, A.; Stivala, F.; Libra, M.; Basecke, J.; Evangelisti, C.; Martelli, A.M.; Franklin, R.A. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta, 2007, 1773(8), 1263-1284.
[http://dx.doi.org/10.1016/j.bbamcr.2006.10.001] [PMID: 17126425]
[80]
Steelman, L.S.; Franklin, R.A.; Abrams, S.L.; Chappell, W.; Kempf, C.R.; Bäsecke, J.; Stivala, F.; Donia, M.; Fagone, P.; Nicoletti, F.; Libra, M.; Ruvolo, P.; Ruvolo, V.; Evangelisti, C.; Martelli, A.M.; McCubrey, J.A. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia, 2011, 25(7), 1080-1094.
[http://dx.doi.org/10.1038/leu.2011.66] [PMID: 21494257]
[81]
Hayashi, K.; Shibata, K.; Morita, T.; Iwasaki, K.; Watanabe, M.; Sobue, K. Insulin receptor substrate-1/SHP-2 interaction, a phenotype-dependent switching machinery of insulin-like growth factor-I signaling in vascular smooth muscle cells. J. Biol. Chem., 2004, 279(39), 40807-40818.
[http://dx.doi.org/10.1074/jbc.M405100200] [PMID: 15272025]
[82]
Marais, R.; Light, Y.; Paterson, H.F.; Mason, C.S.; Marshall, C.J. Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J. Biol. Chem., 1997, 272(7), 4378-4383.
[http://dx.doi.org/10.1074/jbc.272.7.4378] [PMID: 9020159]
[83]
Jones, P.A.; Baylin, S.B. The epigenomics of cancer. Cell, 2007, 128(4), 683-692.
[http://dx.doi.org/10.1016/j.cell.2007.01.029] [PMID: 17320506]
[84]
Esteller, M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum. Mol. Genet., 2007, 16(Spec No 1), R50-R59.
[http://dx.doi.org/10.1093/hmg/ddm018] [PMID: 17613547]
[85]
Mund, C.; Lyko, F. Epigenetic cancer therapy: Proof of concept and remaining challenges. BioEssays, 2010, 32(11), 949-957.
[http://dx.doi.org/10.1002/bies.201000061] [PMID: 21154865]
[86]
Linhart, A.; Kampmann, C.; Zamorano, J.L.; Sunder-Plassmann, G.; Beck, M.; Mehta, A.; Elliott, P.M.; European, F.O.S.I. Cardiac manifestations of Anderson-Fabry disease: results from the international Fabry outcome survey. Eur. Heart J., 2007, 28(10), 1228-1235.
[http://dx.doi.org/10.1093/eurheartj/ehm153] [PMID: 17483538]
[87]
Rius, M.; Lyko, F. Epigenetic cancer therapy: rationales, targets and drugs. Oncogene, 2012, 31(39), 4257-4265.
[http://dx.doi.org/10.1038/onc.2011.601] [PMID: 22179827]
[88]
Yoo, C.B.; Jones, P.A. Epigenetic therapy of cancer: past, present and future. Nat. Rev. Drug Discov., 2006, 5(1), 37-50.
[http://dx.doi.org/10.1038/nrd1930] [PMID: 16485345]
[89]
Gui, C.Y.; Ngo, L.; Xu, W.S.; Richon, V.M.; Marks, P.A. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc. Natl. Acad. Sci. USA, 2004, 101(5), 1241-1246.
[http://dx.doi.org/10.1073/pnas.0307708100] [PMID: 14734806]
[90]
Cameron, L.A. Raising the stakes in the ultimatum game: experimental evidence from Indonesia. Econ. Inq., 1999, 37(1), 47-59.
[http://dx.doi.org/10.1111/j.1465-7295.1999.tb01415.x]
[91]
Varambally, S.; Dhanasekaran, S.M.; Zhou, M.; Barrette, T.R.; Kumar-Sinha, C.; Sanda, M.G.; Ghosh, D.; Pienta, K.J.; Sewalt, R.G.; Otte, A.P.; Rubin, M.A.; Chinnaiyan, A.M. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature, 2002, 419(6907), 624-629.
[http://dx.doi.org/10.1038/nature01075] [PMID: 12374981]
[92]
Simon, J.A.; Lange, C.A. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat. Res., 2008, 647(1-2), 21-29.
[http://dx.doi.org/10.1016/j.mrfmmm.2008.07.010] [PMID: 18723033]
[93]
Christman, J.K. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene, 2002, 21(35), 5483-5495.
[http://dx.doi.org/10.1038/sj.onc.1205699] [PMID: 12154409]
[94]
Kavanaugh, S.M.; White, L.A.; Kolesar, J.M. Vorinostat: A novel therapy for the treatment of cutaneous T-cell lymphoma. Am. J. Health Syst. Pharm., 2010, 67(10), 793-797.
[http://dx.doi.org/10.2146/ajhp090247] [PMID: 20479100]
[95]
Smolewski, P.; Robak, T. The discovery and development of romidepsin for the treatment of T-cell lymphoma. Expert Opin. Drug Discov., 2017, 12(8), 859-873.
[http://dx.doi.org/10.1080/17460441.2017.1341487] [PMID: 28641053]
[96]
Whitesell, L.; Lindquist, S.L. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer, 2005, 5(10), 761-772.
[http://dx.doi.org/10.1038/nrc1716] [PMID: 16175177]
[97]
Pratt, W.B. The hsp90-based chaperone system: involvement in signal transduction from a variety of hormone and growth factor receptors. Proc. Soc. Exp. Biol. Med., 1998, 217(4), 420-434.
[http://dx.doi.org/10.3181/00379727-217-44252] [PMID: 9521088]
[98]
Garg, G.; Khandelwal, A.; Blagg, B.S. Anticancer inhibitors of Hsp90 function: beyond the usual suspects.Advances in Cancer Research; Elsevier: Amsterdam, 2016, Vol. 129, pp. 51-88.
[99]
Overall, C.M.; López-Otín, C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat. Rev. Cancer, 2002, 2(9), 657-672.
[http://dx.doi.org/10.1038/nrc884] [PMID: 12209155]
[100]
Stetler-Stevenson, W.G.; Aznavoorian, S.; Liotta, L.A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell Biol., 1993, 9, 541-573.
[http://dx.doi.org/10.1146/annurev.cb.09.110193.002545] [PMID: 8280471]
[101]
Winer, A.; Adams, S.; Mignatti, P. Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol. Cancer Ther., 2018, 17(6), 1147-1155.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0646] [PMID: 29735645]
[102]
Sievers, Q.L.; Petzold, G.; Bunker, R.D.; Renneville, A.; Słabicki, M.; Liddicoat, B.J.; Abdulrahman, W.; Mikkelsen, T.; Ebert, B.L.; Thomä, N.H. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science, 2018, 362(6414)eaat0572
[http://dx.doi.org/10.1126/science.aat0572] [PMID: 30385546]
[103]
Mitsiades, C.S.; Chen-Kiang, S. Immunomodulation as a therapeutic strategy in the treatment of multiple myeloma. Crit. Rev. Oncol. Hematol., 2013, 88(Suppl. 1), S5-S13.
[http://dx.doi.org/10.1016/j.critrevonc.2013.05.014] [PMID: 23806982]
[104]
Galustian, C.; Labarthe, M.C.; Bartlett, J.B.; Dalgleish, A.G. Thalidomide-derived immunomodulatory drugs as therapeutic agents. Expert Opin. Biol. Ther., 2004, 4(12), 1963-1970.
[http://dx.doi.org/10.1517/14712598.4.12.1963] [PMID: 15571458]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy