Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Deep Eutectic Solvents: An Alternative Medium for the Preparation of Organosulfur Compounds

Author(s): Daniela Hartwig*, José E.R. Nascimento, Luana Bettanin, Thalita F. B. Aquino, Raquel G. Jacob and Eder J. Lenardão*

Volume 7, Issue 2, 2020

Page: [179 - 200] Pages: 22

DOI: 10.2174/2213346107999200616110434

Price: $65

Abstract

Deep Eutectic Solvent (DES) as a “green solvent” has been used as an alternative to replace Volatile Organic Compounds (VOCs) and traditional Ionic Liquids (ILs). In recent years, DES has gained much attention due to its excellent properties such as low cost, easy preparation, high viscosity, low vapor pressure, low volatility, high thermal stability, biodegradability and non-toxicity, among others. Other classes of compounds with increased interest are organosulfur compounds due to their applicability as synthetic intermediates in organic reactions and their high importance in pharmaceutical and agrochemical industries. This review describes the recent advances in the preparation of organosulfur compounds using DES as an alternative solvent, focusing on several types of organic reactions, including aromatic substitution reactions (SNAr), condensation, cyclocondensation, cyclization, ring-opening, thia-Michael addition, one-pot reactions and heterocyclodehydrations.

Keywords: Deep eutectic solvent (DES), green chemistry, green solvent, organosulfur compounds, heterocyclodehydrations, aromatic substitution reactions.

Graphical Abstract

[1]
Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chem. Rev., 2011, 111(5), 3508-3576.
[http://dx.doi.org/10.1021/cr1003248] [PMID: 21469639]
[2]
Qiao, Y.; Ma, W.; Theyssen, N.; Chen, C.; Hou, Z. Temperature-responsive ionic liquids: Fundamental behaviors and catalytic applications. Chem. Rev., 2017, 117(10), 6881-6928.
[http://dx.doi.org/10.1021/acs.chemrev.6b00652] [PMID: 28358505]
[3]
Lei, Z.; Chen, B.; Koo, Y-M.; MacFarlane, D.R. Introduction: Ionic liquids. Chem. Rev., 2017, 117(10), 6633-6635.
[http://dx.doi.org/10.1021/acs.chemrev.7b00246] [PMID: 28535681]
[4]
Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural deep eutectic solvents - solvents for the 21st century. ACS Sustain. Chem.& Eng., 2014, 2, 1063-1071.
[http://dx.doi.org/10.1021/sc500096j]
[5]
Welton, T. Ionic liquids in green chemistry. Green Chem., 2011, 13, 225-225.
[http://dx.doi.org/10.1039/c0gc90047h]
[6]
Jessop, P.G. Searching for green solvents. Green Chem., 2011, 13, 1391-1398.
[http://dx.doi.org/10.1039/c0gc00797h]
[7]
Swatloski, R.P.; Holbrey, J.D.; Rogers, R.D. Ionic liquids are not always green: Hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem., 2003, 5, 361-363.
[http://dx.doi.org/10.1039/b304400a]
[8]
Alonso, D.A.; Baeza, A.; Chinchilla, R.; Guillena, G.; Pastor, I.M.; Ramon, D.J. Deep eutectic solvents: The organic reaction medium of the Century. Eur. J. Org. Chem., 2016, 612-632.
[http://dx.doi.org/10.1002/ejoc.201501197]
[9]
Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev., 2012, 41(21), 7108-7146.
[http://dx.doi.org/10.1039/c2cs35178a] [PMID: 22806597]
[10]
Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. (Camb.), 2003, 9(1), 70-71.
[http://dx.doi.org/10.1039/b210714g] [PMID: 12610970]
[11]
Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev., 2014, 114(21), 11060-11082.
[http://dx.doi.org/10.1021/cr300162p] [PMID: 25300631]
[12]
Tang, B.; Row, K.H. Recent developments in deep eutectic solvents in chemical science. Monatsh. Chem., 2013, 144, 1427-1454.
[http://dx.doi.org/10.1007/s00706-013-1050-3]
[13]
Longo, L.S., Jr; Craveiro, M.V. Deep eutectic solvents as unconventional media for multicomponent reactions. J. Braz. Chem. Soc., 2018, 29, 1999-2025.
[http://dx.doi.org/10.21577/0103-5053.20180147]
[14]
Hu, W.; Guo, Z.; Chu, F.; Bai, A.; Yi, X.; Cheng, G.; Li, J. Synthesis and biological evaluation of substituted 2-sulfonyl-phenyl-3-phenyl-indoles: A new series of selective COX-2 inhibitors. Bioorg. Med. Chem., 2003, 11(7), 1153-1160.
[http://dx.doi.org/10.1016/S0968-0896(03)00046-4] [PMID: 12628642]
[15]
Martinez, D.M.; Barcellos, A.M.; Casaril, A.M.; Savegnago, L.; Perin, G.; Schiesser, C.H.; Callaghan, K.L.; Lenardão, E.J. Twice acting antioxidants: Synthesis and antioxidant properties of selenium and sulfur-containing zingerone derivatives. Tetrahedron Lett., 2015, 56, 2243-2246.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.030]
[16]
Eardley, I.; Morgan, R.; Dinsmore, W.; Yates, P.; Boolell, M. Efficacy and safety of sildenafil citrate in the treatment of men with mild to moderate erectile dysfunction. Br. J. Psychiatry, 2001, 178, 325-330.
[http://dx.doi.org/10.1192/bjp.178.4.325] [PMID: 11282811]
[17]
Smith, K.E.; Wall, R.; Howard, J.J.; Strong, L.; Marchiondo, A.A.; Jeannin, P. In vitro insecticidal effects of fipronil and β-cyfluthrin on larvae of the blowfly Lucilia sericata. Vet. Parasitol., 2000, 88(3-4), 261-268.
[http://dx.doi.org/10.1016/S0304-4017(99)00223-X] [PMID: 10714463]
[18]
Nappi, G.; Micieli, G. Sumatriptan in the treatment of migraine attacks. Curr. Ther. Res. Clin. Exp., 1993, 53, 599-602.
[http://dx.doi.org/10.1016/S0011-393X(05)80664-2]
[19]
Bryson, H.M.; Fulton, B.; Benfield, P. Riluzole. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in amyotrophic lateral sclerosis. Drugs, 1996, 52(4), 549-563.
[http://dx.doi.org/10.2165/00003495-199652040-00010] [PMID: 8891467]
[20]
Hamdouchi, C.; de Blas, J.; del Prado, M.; Gruber, J.; Heinz, B.A.; Vance, L. 2-Amino-3-substituted-6-[(E)-1-phenyl-2-(N-methylcarbamoyl)vinyl]imid azo[1,2-a]pyridines as a novel class of inhibitors of human rhinovirus: Stereospecific synthesis and antiviral activity. J. Med. Chem., 1999, 42(1), 50-59.
[http://dx.doi.org/10.1021/jm9810405] [PMID: 9888832]
[21]
Romagnoli, R.; Baraldi, P.G.; Kimatrai Salvador, M.; Preti, D.; Aghazadeh Tabrizi, M.; Bassetto, M.; Brancale, A.; Hamel, E.; Castagliuolo, I.; Bortolozzi, R.; Basso, G.; Viola, G. Synthesis and biological evaluation of 2-(alkoxycarbonyl)-3-anilinobenzo[b]thiophenes and thieno[2,3-b]pyridines as new potent anticancer agents. J. Med. Chem., 2013, 56(6), 2606-2618.
[http://dx.doi.org/10.1021/jm400043d] [PMID: 23445496]
[22]
La Regina, G.; Bai, R.; Rensen, W.M.; Di Cesare, E.; Coluccia, A.; Piscitelli, F.; Famiglini, V.; Reggio, A.; Nalli, M.; Pelliccia, S.; Da Pozzo, E.; Costa, B.; Granata, I.; Porta, A.; Maresca, B.; Soriani, A.; Iannitto, M.L.; Santoni, A.; Li, J.; Miranda Cona, M.; Chen, F.; Ni, Y.; Brancale, A.; Dondio, G.; Vultaggio, S.; Varasi, M.; Mercurio, C.; Martini, C.; Hamel, E.; Lavia, P.; Novellino, E.; Silvestri, R. Toward highly potent cancer agents by modulating the C-2 group of the arylthioindole class of tubulin polymerization inhibitors. J. Med. Chem., 2013, 56(1), 123-149.
[http://dx.doi.org/10.1021/jm3013097] [PMID: 23214452]
[23]
Mobinikhaledi, A.; Amiri, K. Natural eutectic salts catalyzed one-pot synthesis of 5-arylidene-2-imino-4-thiazolidinones. Res. Chem. Intermed., 2013, 39, 1491-1498.
[http://dx.doi.org/10.1007/s11164-012-0707-6]
[24]
Bhosle, M.R.; Mali, J.R.; Mulay, A.A.; Mane, R.A. Polyethylene glycol mediated one-pot three-component synthesis of new 4-thiazolidinones. Heteroatom Chem., 2011, 23, 166-170.
[http://dx.doi.org/10.1002/hc.20766]
[25]
Pant, P.L.; Shankarling, G.S. Deep eutectic solvent: an efficient and recyclable catalyst for synthesis of thioethers. ChemistrySelect, 2017, 2, 7645-7650.
[http://dx.doi.org/10.1002/slct.201701318]
[26]
Azizi, N.; Gholibeglo, E. A highly efficient synthesis of dithiocarbamates in green reaction media. RSC Advances, 2012, 2, 7413-7416.
[http://dx.doi.org/10.1039/c2ra20615c]
[27]
Azizi, N.; Mariami, M.; Edrisi, M. Greener construction of 4H-chromenes based dyes in deep eutectic solvent. Dyes Pigm., 2014, 100, 215-221.
[http://dx.doi.org/10.1016/j.dyepig.2013.09.007]
[28]
Azizi, N.; Yadollahy, Z.; Rahimzadeh-Oskooee, A. An atom-economic and odorless thia-Michael addition in a deep eutectic solvent. Tetrahedron Lett., 2014, 55, 1722-1725.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.104]
[29]
Shahcheragh, S.M.; Habibi, A.; Khosravi, S. Straightforward synthesis of novel substituted 1,3,4-thiadiazole derivatives in choline chloride-based deep eutectic solvent. Tetrahedron Lett., 2017, 50, 855-859.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.057]
[30]
Mancuso, R.; Maner, A.; Cicco, L.; Capriati, V.; Gabriele, B. Synthesis of thiophenes in a deep eutectic solvent: heterocyclodehydration and iodocyclization of 1-mercapto-3-yn-2-ols in a choline chloride/glycerol medium. Tetrahedron, 2016, 72, 4239-4244.
[http://dx.doi.org/10.1016/j.tet.2016.05.062]
[31]
Liu, S.; Ni, Y.; Wei, W.; Qiua, F.; Xub, S.; Ying, A. Choline chloride and urea based eutectic solvents: Effective catalytic systems for the Knoevenagel condensation reactions of substituted acetonitriles. J. Chem. Res., 2014, 38, 186-188.
[http://dx.doi.org/10.3184/174751914X13926483381319]
[32]
Singh, R.; Singh, A. Regio- and stereoselective synthesis of novel trispiropyrrolidine/thiapyrrolizidines using deep eutectic solvent as an efficient reaction media. J. Iran. Chem. Soc., 2017, 14, 1119-1129.
[http://dx.doi.org/10.1007/s13738-017-1062-8]
[33]
Singh, R.; Singh, A. Selective synthesis of trispiropyrrolidine/thiapyrrolizidines using green deep eutectic solvent. Chem. Sci. Trans., 2018, 7, 402-407.
[34]
Sharabiyani, A.; Hooshmand, S.E.; Afaridoun, H. A green chemical approach: A straightforward one-pot synthesis of 2-aminothiophene derivatives via Gewald reaction in deep eutectic solvents. Monatsh. Chem., 2017, 148, 711-716.
[http://dx.doi.org/10.1007/s00706-016-1787-6]
[35]
Azizi, N.; Batebi, E. Highly efficient deep eutectic solvent catalyzed ring opening of epoxides. Catal. Sci. Technol., 2012, 2, 2445-2448.
[http://dx.doi.org/10.1039/c2cy20456h]
[36]
Azizi, N.; Yadollahy, Z.; Rahimzadeh-oskooee, A. Odourless strategy for deep eutectic solvent-mediated ring opening of epoxides with in situ generated S-alkylisothiouronium salts. Synlett, 2014, 25, 1085-1088.
[http://dx.doi.org/10.1055/s-0033-1341050]
[37]
Ditter, D.C.; Katritzky, A.R.; Rees, C.W. Thiiranes and Thiirenes.Comprehensive Heterocyclic Chemistry; Pergamon: Elmsford, NY, 1984, Vol. 7, pp. 132-182.
[http://dx.doi.org/10.1016/B978-008096519-2.00112-0]
[38]
Dilauro, G.; Cicco, L.; Perna, F.M.; Vitale, P. Solvent-catalyzed umpolung carbon-sulfur bond-forming reactions by nucleophilic addition of thiolate and sulfinate ions to in situ-derived nitrosoalkenes in deep eutectic solvents. C. R. Chim., 2017, 20, 617-623.
[http://dx.doi.org/10.1016/j.crci.2017.01.008]
[39]
Marset, X.; Guillena, G.; Ramón, D.J. Deep eutectic solvents as reaction media for the palladium catalysed C-S bond formation. Scope and mechanistic studies, ‎. Chemistry, 2017, 23(44), 10522-10526.
[http://dx.doi.org/10.1002/chem.201702892] [PMID: 28662288]
[40]
Molnar, M.; Klenkar, J.; Tarnai, T. Eco-friendly rapid synthesis of 3-substituted-2-thioxo-2,3-dihydroquinazolin-4(1H)-ones in choline chloride based deep eutectic solvent. Synth. Commun., 2017, 47, 1040-1045.
[http://dx.doi.org/10.1080/00397911.2017.1291815]
[41]
Azizi, N.; Rahimi, Z.; Alipour, M. Deep eutectic solvent-assisted one-pot synthesis of 2-aminothiazole and 2-aminoxazole derivatives. C. R. Chim., 2015, 18, 626-629.
[http://dx.doi.org/10.1016/j.crci.2014.10.001]
[42]
Azizi, N.; Haghayegh, M.S. Greener and additive-free reactions in deep eutectic solvent: one-pot, three-component synthesis of highly substituted pyridines. ChemistrySelect, 2017, 2, 8870-8873.
[http://dx.doi.org/10.1002/slct.201701682]
[43]
Ma, C-T.; Liu, P.; Wu, W.; Zhang, Z-H. Low melting oxalic acid/proline mixture as dual solvent/catalyst for efficient synthesis of 13-aryl-13H-benzo[g] benzothiazolo[2,3-b]quinazoline-5,14-diones under microwave irradiation. J. Mol. Liq., 2017, 242, 606-611.
[http://dx.doi.org/10.1016/j.molliq.2017.07.060]
[44]
Yedage, D.B.; Patil, D.V. Environmentally benign deep eutectic solvent for synthesis of 1,3-thiazolidin-4-ones. ChemistrySelect, 2018, 3, 3611-3614.
[http://dx.doi.org/10.1002/slct.201800157]
[45]
Bahrani, A.; Karimi-Jaberi, Z. A green one-pot synthesis of α-amino nitrile derivatives via Strecker reaction in deep eutectic solvents. Monatsh. Chem., 2019, 150, 303-307.
[http://dx.doi.org/10.1007/s00706-018-2313-9]
[46]
Singh, R.; Ganaie, S.A.; Singh, A.; Chaudhary, A. Carbon-SO3H catalyzed expedient synthesis of new spiro-[indeno[1,2-b]quinoxaline-[11,2′]-thiazolidine]-4′-ones as biologically important scaffold. Synth. Commun., 2019, 49, 80-93.
[http://dx.doi.org/10.1080/00397911.2018.1542003]
[47]
Kumar, D.; Reddy, V.B.; Sharad, S.; Dube, U.; Kapur, S. A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes. Eur. J. Med. Chem., 2009, 44(9), 3805-3809.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.017] [PMID: 19419801]
[48]
May, B.C.H.; Zorn, J.A.; Witkop, J.; Sherrill, J.; Wallace, A.C.; Legname, G.; Prusiner, S.B.; Cohen, F.E. Structure-activity relationship study of prion inhibition by 2-aminopyridine-3,5-dicarbonitrile-based compounds: parallel synthesis, bioactivity, and in vitro pharmacokinetics. J. Med. Chem., 2007, 50(1), 65-73.
[http://dx.doi.org/10.1021/jm061045z] [PMID: 17201410]
[49]
Alegaon, S.G.; Hiepara, M.B.; Alagawadi, K.R.; Jalalpure, S.S.; Rasal, V.P.; Salve, P.S.; Kumbar, V.M. Synthesis and biological evaluation of 1,3,4-trisubstituted pyrazole analogues as anti-mycobacterial agents. Med. Chem. Res., 2017, 26, 1127-1138.
[http://dx.doi.org/10.1007/s00044-017-1821-1]
[50]
Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Calonghi, N.; Cappadone, C.; Voltattorni, M.; Zini, M.; Stefanelli, C.; Masotti, L.; Shoemaker, R.H. Antitumor activity of new substituted 3-(5-imidazo[2,1-b]thiazolylmethylene)-2-indolinones and 3-(5-imidazo[2,1-b]thiadiazolylmethylene)-2-indolinones: selectivity against colon tumor cells and effect on cell cycle-related events. J. Med. Chem., 2008, 51(23), 7508-7513.
[http://dx.doi.org/10.1021/jm800827q] [PMID: 19006285]
[51]
Roudesly, F.; Oble, J.; Poli, G. Metal-catalyzed C-H activation/functionalization: The fundamentals. J. Mol. Catal. Chem., 2017, 426, 275-296.
[http://dx.doi.org/10.1016/j.molcata.2016.06.020]
[52]
Punzi, A.; Coppi, D.I.; Matera, S.; Capozzi, M.A.M.; Operamolla, A.; Ragni, R.; Babudri, F.; Farinola, G.M. Pd-Catalyzed thiophene-aryl coupling reaction via C−H bond activation in deep eutectic solvents. Org. Lett., 2017, 19(18), 4754-4757.
[http://dx.doi.org/10.1021/acs.orglett.7b02114] [PMID: 28876956]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy