Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Potential of Natural Diterpenes Against Tuberculosis: An Updated Review

Author(s): Kadidiatou O. Ndjoubi, Rajan Sharma* and Ahmed A. Hussein

Volume 26, Issue 24, 2020

Page: [2909 - 2932] Pages: 24

DOI: 10.2174/1381612826666200612163326

Price: $65

Abstract

Every year, 10 million people are affected by tuberculosis (TB). Despite being a preventable and curable disease, 1.5 million people die from TB each year, making it the world’s top infectious disease. Many of the frontline antibiotics cause painful and disagreeable side effects. To mitigate the side effects from the use of chemically synthesized or clinical anti-tubercular drugs, there are many research studies focussed on natural products as a source of potential anti-tuberculosis drugs. Among different phytoconstituents, several classes of diterpenoids exert significant antimicrobial effects. This review explores diterpenoids as potential anti-tubercular drugs from natural sources. A total of 204 diterpenoids isolated from medicinal plants and marine species are discussed that inhibit the growth of Mycobacterium tuberculosis. The literature from 1994-2018 is reviewed, and 158 diterpenoids from medicinal plants, as well as 40 diterpenoids from marines, are alluded to have antituberculosis properties. The antitubercular activities discussed in the review indicate that the type of diterpenoids, the Mtb strains, substituents attached to diterpenoids and their position in the diterpenoids general skeleton can change the compounds antimycobacterial inhibitory effects.

Keywords: Diterpenes, terrestrial and marine resources, anti-mycobacterial activity, tuberculosis, anti-tubercular, diterpenoids.

« Previous
[1]
Jeong YJ, Lee KS. Pulmonary tuberculosis: up-to-date imaging and management. AJR Am J Roentgenol 2008; 191(3): 834-44.
[http://dx.doi.org/10.2214/AJR.07.3896] [PMID: 18716117]
[2]
Njaria PM. Antimycobacterial 2-aminoquinazolinones and benzoxazole- based oximes: synthesis biological evaluation physicochemical profiling and supramolecular derivatization PhD thesis University of Cape Town. 2017.
[3]
Quan D, Nagalingam G, Payne R, Triccas JA. New tuberculosis drug leads from naturally occurring compounds. Int J Infect Dis 2017; 56: 212-20.
[http://dx.doi.org/10.1016/j.ijid.2016.12.024] [PMID: 28062229]
[4]
Global WHO report on tuberculosis 2018.Available from:. https://wwwwhoint/tb/publications/global_report/en/
[5]
Srivastava V, Rouanet C, Srivastava R, Ramalingam B, Locht C, Srivastava BS. Macrophage-specific Mycobacterium tuberculosis genes: identification by green fluorescent protein and kanamycin resistance selection. Microbiology 2007; 153(Pt 3): 659-66.
[http://dx.doi.org/10.1099/mic.0.2006/000547-0] [PMID: 17322185]
[6]
Koch A, Mizrahi V, Warner DF. The impact of drug resistance on Mycobacterium tuberculosis physiology: what can we learn from rifampicin? Emerg Microbes Infect 2014; 3(3)e17
[http://dx.doi.org/10.1038/emi.2014.17] [PMID: 26038512]
[7]
Aston LE, Makunga NP, Platten SJ. Local medicinal plant knowledge in South Africa preserved by apartheid. Hum Ecol 2018; 39(2): 203-16.
[http://dx.doi.org/10.1007/s10745-011-9387-x]
[8]
Suddee S, Paton A. A revision of Anisochilus Wall ex Benth (Lamiaceae). Kew Bull 2009; 64: 235-57.
[http://dx.doi.org/10.1007/s12225-009-9115-5]
[9]
Lekphrom R, Kanokmedhakul S, Kanokmedhakul K. Bioactive diterpenes from the aerial parts of Anisochilus harmandii. Planta Med 2010; 76(7): 726-8.
[http://dx.doi.org/10.1055/s-0029-1240656] [PMID: 19950052]
[10]
Joshi SP, Kulkarni RR. Pimarane diterpenes from Anisochilus verticillatus United States patent US 9024043B2 2015.
[11]
Loyola LA, Bórquez J, Morales G, et al. Yaretol, a norditerpenoid from Azorella madreporica. J Nat Prod 2002; 65(11): 1678-80.
[http://dx.doi.org/10.1021/np010529p] [PMID: 12444700]
[12]
Faraone I, Rai DK, Russo D, et al. Antioxidant, antidiabetic, and anticholinesterase activities and phytochemical profile of Azorella glabra Wedd. Plants (Basel) 2019; 8(8): 1-14.
[http://dx.doi.org/10.3390/plants8080265] [PMID: 31382601]
[13]
Molina-Salinas GM, Bórquez J, Ardiles A, et al. Antituberculosis activity of natural and semisynthetic azorellane and mulinane diterpenoids. Fitoterapia 2010; 81(1): 50-4.
[http://dx.doi.org/10.1016/j.fitote.2009.07.005] [PMID: 19635530]
[14]
Chiang LC, Chiang W, Liu MC, Lin CC. In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoids. J Antimicrob Chemother 2003; 52(2): 194-8.
[http://dx.doi.org/10.1093/jac/dkg291] [PMID: 12837746]
[15]
Krag K. Plants used as contraceptives by the North American Indians: an ethnobotanical study, Botanical Museum. Cambridge, MA: Harvard University 1976.
[16]
Dickson RA, Fleischer TC, Houghton PJ. Cassane-type diterpenoids from the genus Caesalpinia. Phcog Commun 2011; 1(1): 63-77.
[http://dx.doi.org/10.5530/pc.2011.1.4]
[17]
Garbarino JA, Chamy MC, Piovano M. Chemistry of the Calceolaria genus. Molecules 2000; 5: 302-5.
[http://dx.doi.org/10.3390/50300302]
[18]
Woldemichael GM, Wächter G, Singh MP, Maiese WM, Timmermann BN. Antibacterial diterpenes from Calceolaria pinifolia. J Nat Prod 2003; 66(2): 242-6.
[http://dx.doi.org/10.1021/np020380x] [PMID: 12608857]
[19]
Woldemichael GM, Franzblau SG, Zhang F, Wang Y, Timmermann BN. Inhibitory effect of sterols from Ruprechtia triflora and diterpenes from Calceolaria pinnifolia on the growth of Mycobacterium tuberculosis. Planta Med 2003; 69(7): 628-31.
[http://dx.doi.org/10.1055/s-2003-41109] [PMID: 12898418]
[20]
Encarnación-Dimayuga R, Agúndez-Espinoza J, García A, Delgado G, Molina-Salinas GM, Said-Fernández S. Two new cassane-type diterpenes from Calliandra californica with antituberculosis and cytotoxic activities. Planta Med 2006; 72(8): 757-61.
[http://dx.doi.org/10.1055/s-2006-931587] [PMID: 16755469]
[21]
Chen JJ, Wu HM, Peng CF, Chen IS, Chu SD. seco-Abietane diterpenoids, a phenylethanoid derivative, and antitubercular constituents from Callicarpa pilosissima. J Nat Prod 2009; 72(2): 223-8.
[http://dx.doi.org/10.1021/np800721f] [PMID: 19193025]
[22]
Guittet E, Stoven V, Lallemand JY, et al. Pitumbin a novel kolavene acylal from Casearia pitumba Pleumer. Tetrahedron 1998; 44: 2893-901.
[23]
Kanokmedhakul S, Kanokmedhakul K, Kanarsa T, Buayairaksa M. New bioactive clerodane diterpenoids from the bark of Casearia grewiifolia. J Nat Prod 2005; 68(2): 183-8.
[http://dx.doi.org/10.1021/np049757k] [PMID: 15730240]
[24]
Smitinand T. Thai plant names (botanical names-vernacular names). Bangkok: Funny Publishing 1980.
[25]
Karchesy JJ, Kelsey RG, González-Hernández MP. Yellow-Cedar, Callitropsis (Chamaecyparis) nootkatensis, secondary metabolites, biological activities, and chemical ecology. J Chem Ecol 2018; 44(5): 510-24.
[http://dx.doi.org/10.1007/s10886-018-0956-y] [PMID: 29654493]
[26]
De Souza MV, De Souza N. Plants and fungal products with activity against tuberculosis. Scientific World J 2005; 5: 609-28.
[http://dx.doi.org/10.1100/tsw.2005.80] [PMID: 16113939]
[27]
Salatino A, Salatino MLF, Negri G. Traditional uses chemistry and pharmacology of Croton species (Euphorbiaceae). J Braz Chem Soc 2007; 18: 11-33.
[http://dx.doi.org/10.1590/S0103-50532007000100002]
[28]
Júnior SFP, Conserva LM, Filho JMB. Clerodane diterpenes from Croton species: Distribution and a compilation of their 13C-NMR spectral data. Nat Prod Commun 2006; 1: 319-44.
[http://dx.doi.org/10.1177/1934578X0600100410]
[29]
Wu XA, Zhao YM. Advance on chemical composition and pharmacological action of Croton L. Nat Prod Res Dev 2004; 16: 467-72.
[30]
Xu WH, Liu WY, Liang Q. Chemical constituents from Croton Species and their biological activities. Molecules 2018; 23(9): 1-38.
[http://dx.doi.org/10.3390/molecules23092333] [PMID: 30213129]
[31]
Jang WS, Jyoti A, Kim S, et al. In vitro antituberculosis activity of diterpenoids from the Vietnamese medicinal plant Croton tonkinensis. J Nat Med 2015; 1: 1-7.
[PMID: 26386972]
[32]
Thongtan J, Kittakoop P, Ruangrungsi N, Saenboonrueng J, Thebtaranonth Y. New antimycobacterial and antimalarial 8,9-secokaurane diterpenes from Croton kongensis. J Nat Prod 2003; 66(6): 868-70.
[http://dx.doi.org/10.1021/np030067a] [PMID: 12828479]
[33]
Zhao BQ, Peng S, He WJ, Liu YH, Wang JF, Zhou XJ. Antitubercular and cytotoxic tigliane-type diterpenoids from Croton tiglium. Bioorg Med Chem Lett 2016; 26(20): 4996-9.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.002] [PMID: 27623549]
[34]
Xu ZH, Sun J, Xu RS, Qin GW. Casbane diterpenoids from Euphorbia ebracteolata. Phytochemistry 1998; 49: 149-51.
[http://dx.doi.org/10.1016/S0031-9422(97)00900-X]
[35]
Yu Z, Wei Y, Tian X, et al. Diterpenoids from the roots of Euphorbia ebracteolata and their anti-tuberculosis effects. Bioorg Chem 2018; 77: 471-7.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.007] [PMID: 29453078]
[36]
Songsri S, Nuntawong N. Cytotoxic labdane diterpenes from Hedychium ellipticum Buch-Ham ex Sm Sineenard. Molecules 2006; 8(17): 1-7.
[37]
Iwu MM. Handbook of African medicinal plants. Boca Raton: CRC Press 1993.
[38]
Prawatsri S, Suksamrarn A, Chindaduang A, Rukachaisirikul T. Abietane diterpenes from Hyptis suaveolens. Chem Biodivers 2013; 10(8): 1494-500.
[http://dx.doi.org/10.1002/cbdv.201200213] [PMID: 23939797]
[39]
van den Berg AJJ, Horsten SFAJ, Kettenes-van den Bosch JJ, et al. Curcacycline A--a novel cyclic octapeptide isolated from the latex of Jatropha curcas L. FEBS Lett 1995; 358(3): 215-8.
[http://dx.doi.org/10.1016/0014-5793(94)01405-P] [PMID: 7843403]
[40]
Auvin C, Baraguey C, Blond A, et al. A cyclic nonapeptide from Jatropha curcas enhancing rotamaseactivity of cyclophilin. Tetrahedron Lett 1997; 38(16): 2845.
[http://dx.doi.org/10.1016/S0040-4039(97)00495-4]
[41]
Kumar A, Tewari SK. Origin distribution ethnobotany and pharmacology of Jatropha curcas. J Med Plants Res 2015; 1: 1-7.
[42]
Mitscher LA, Rao GSR, Veysoglu T, Drake S, Haas TJ. Isolation and identification of trachyloban-19-oic and (-)-kaur-16-en-19-oic acids as antimicrobial agents from the pairie sunflower. J Nat Prod 1983; 46: 745-6.
[http://dx.doi.org/10.1021/np50029a024] [PMID: 6361218]
[43]
Mullin CA, Alfatafta AA, Harman JL, Everett SL, Serino AAJ. Feeding and toxic effects of floral sesquiterpene lactones diterpenes and phenolics from sunflower. Agric Food Chem 1991; 39(12): 2293-9.
[http://dx.doi.org/10.1021/jf00012a041]
[44]
Block S, Baccelli C, Tinant B, et al. Diterpenes from the leaves of Croton zambesicus. Phytochemistry 2004; 65(8): 1165-71.
[http://dx.doi.org/10.1016/j.phytochem.2004.02.023] [PMID: 15110699]
[45]
Scher JM, Schinkovitz A, Zapp J, et al. Structure and anti-TB activity of trachylobanes from the liverwort Jungermannia exsertifolia ssp. cordifolia. J Nat Prod 2010; 73(4): 656-63.
[http://dx.doi.org/10.1021/np900806j] [PMID: 20353194]
[46]
Panchareon O, Tuntiwachwuttikul P, Taylor WC. Cyclohexane diepoxides from Kaempferia rotunda. Phytochemistry 1989; 28: 1143-8.
[47]
Yun JM, Kwon H, Hwang JK. In vitro anti-inflammatory activity of panduratin A isolated from Kaempferia pandurata in RAW264.7 cells. Planta Med 2003; 69(12): 1102-8.
[http://dx.doi.org/10.1055/s-2003-45190] [PMID: 14750025]
[48]
Othman R, Ibrahim H, Mohd MA, Awang K, Gilani AU, Mustafa MR. Vasorelaxant effects of ethyl cinnamate isolated from Kaempferia galanga on smooth muscles of the rat aorta. Planta Med 2002; 68(7): 655-7.
[http://dx.doi.org/10.1055/s-2002-32900] [PMID: 12143006]
[49]
Tuchinda P, Udchachon J, Reutrakul V, et al. Pimarane diterpenes from Kaempferia pulchra. Phytochemistry 1994; 36: 731-4.
[http://dx.doi.org/10.1016/S0031-9422(00)89806-4]
[50]
Prawat U, Tuntiwachwuttikul P, Taylor WC, et al. Diterpenes from a Kaempferia species. Phytochemistry 1993; 32: 991-7.
[http://dx.doi.org/10.1016/0031-9422(93)85242-J]
[51]
Kiuchi F, Nakamura N, Tsuda Y. 3-caren-5-one from Kaempferia galanga. Phytochemistry 1987; 26(12): 3350-1.
[http://dx.doi.org/10.1016/S0031-9422(00)82505-4]
[52]
Yenjai C, Prasanphen K, Daodee S, Wongpanich V, Kittakoop P. Bioactive flavonoids from Kaempferia parviflora. Fitoterapia 2004; 75(1): 89-92.
[http://dx.doi.org/10.1016/j.fitote.2003.08.017] [PMID: 14693228]
[53]
Thongnest S, Mahidol C, Sutthivaiyakit S, Ruchirawat S. Oxygenated pimarane diterpenes from Kaempferia marginata. J Nat Prod 2005; 68(11): 1632-6.
[http://dx.doi.org/10.1021/np050186l] [PMID: 16309313]
[54]
Balderas-Renteria I, Camacho-Corona MdelR, Carranza-Rosales P, et al. Hepatoprotective effect of Leucophyllum frutescens on Wistar albino rats intoxicated with carbon tetrachloride. Ann Hepatol 2007; 6(4): 251-4.
[http://dx.doi.org/10.1016/S1665-2681(19)31906-4] [PMID: 18007555]
[55]
Molina-Salinas GM, Rivas-Galindo VM, Said-Fernández S, et al. Stereochemical analysis of leubethanol, an anti-TB-active serrulatane, from Leucophyllum frutescens. J Nat Prod 2011; 74(9): 1842-50.
[http://dx.doi.org/10.1021/np2000667] [PMID: 21859082]
[56]
Burkill IH. A dictionary of the economic products of the malay peninsula ministry of agriculture and cooperatives. Kuala Lumpur, Malaysia 1996.
[57]
Peerzada N, Renaud S, Ryan P. Vitamin C and elemental composition of some bush fruits. J Plant Nutr 1990; 13: 787-93.
[http://dx.doi.org/10.1080/01904169009364117]
[58]
Farnsworth NR, Bunyapraphatsara N. Thai medicinal plants recommended for primary health care pracha- chon Co Ltd. Bangkok 1992.
[59]
Saludes JP, Garson MJ, Franzblau SG, Aguinaldo AM. Antitubercular constituents from the hexane fraction of Morinda citrifolia Linn. (Rubiaceae). Phytother Res 2002; 16(7): 683-5.
[http://dx.doi.org/10.1002/ptr.1003] [PMID: 12410555]
[60]
Bórquez J, Ardiles A, Loyola LA, et al. Further mulinane and azorellane diterpenoids isolated from Mulinum crassifolium and Azorella compacta. Molecules 2014; 19(4): 3898-908.
[http://dx.doi.org/10.3390/molecules19043898] [PMID: 24686578]
[61]
Hussein AA, Meyer JJM, Jimeno ML, Rodríguez B. Bioactive diterpenes from Orthosiphon labiatus and Salvia africana-lutea. J Nat Prod 2007; 70(2): 293-5.
[http://dx.doi.org/10.1021/np0680376] [PMID: 17256988]
[62]
Kapewangolo P, Omolo JJ, Bruwer R, Fonteh P, Meyer D. Antioxidant and anti-inflammatory activity of Ocimum labiatum extract and isolated labdane diterpenoid. J Inflamm (Lond) 2015; 12(4): 4.
[http://dx.doi.org/10.1186/s12950-015-0049-4] [PMID: 25705127]
[63]
Kapewangolo P, Kandawa-Schulz M, Meyer D. Anti-HIV Activity of Ocimum labiatum extract and isolated pheophytin-a. molecules 2017; 22(11): 1-12.
[http://dx.doi.org/10.3390/molecules22111763] [PMID: 29113139]
[64]
Phupattanapong L, Wongprasert T. Thai Medicinal Plants: Part 5 Chutima. Bangkok 1987.
[65]
Mongkolvisut W, Sutthivaiyakit S. Antimalarial and antituberculous poly-O-acylated jatrophane diterpenoids from Pedilanthus tithymaloides. J Nat Prod 2007; 70(9): 1434-8.
[http://dx.doi.org/10.1021/np070174v] [PMID: 17844996]
[66]
Bunyapraphatsara N, Chokchaichareonporn A. Medicinal plants indigenous to Thailand Prachachon. Bangkok 2000.
[67]
Cerqueira F, Cordeiro-Da-Silva A, Gaspar-Marques C, Simões F, Pinto MM, Nascimento MS. Effect of abietane diterpenes from Plectranthus grandidentatus on T- and B-lymphocyte proliferation. Bioorg Med Chem 2004; 12(1): 217-23.
[http://dx.doi.org/10.1016/j.bmc.2003.10.006] [PMID: 14697786]
[68]
Gaspar-Marques C, Rijo P, Simoes MF, Duarte MA, Rodríguez B. Abietanes from Plectranthus grandidentatus and Plectranthus hereroensis against methicillin- resistance and vancomycin-resistant bacteria. Phytomedicine 2006; 13: 267-71.
[http://dx.doi.org/10.1016/j.phymed.2005.06.002] [PMID: 16492530]
[69]
Rijo P, Simões MF, Francisco AP, et al. Antimycobacterial metabolites from Plectranthus: royleanone derivatives against Mycobacterium tuberculosis strains. Chem Biodivers 2010; 7(4): 922-32.
[http://dx.doi.org/10.1002/cbdv.200900099] [PMID: 20397225]
[70]
Ulubelen A, Topcu G, Johansson CB. Norditerpenoids and diterpenoids from Salvia multicaulis with antituberculous activity. J Nat Prod 1997; 60(12): 1275-80.
[http://dx.doi.org/10.1021/np9700681] [PMID: 9428161]
[71]
Wu WL, Chang WL, Chen CF. Cytotoxic activities of tanshinones against human carcinoma cell lines. Am J Chin Med 1991; 19(3-4): 207-16.
[http://dx.doi.org/10.1142/S0192415X91000284] [PMID: 1767792]
[72]
Liu X, Chen C, He W, et al. Exploring anti-TB leads from natural products library originated from marine microbes and medicinal plants. Antonie van Leeuwenhoek 2012; 102(3): 447-61.
[http://dx.doi.org/10.1007/s10482-012-9777-0] [PMID: 22814612]
[73]
Wang J, Kodali S, Lee SH, et al. Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties. Proc Natl Acad Sci USA 2007; 104(18): 7612-6.a.
[http://dx.doi.org/10.1073/pnas.0700746104] [PMID: 17456595]
[74]
Al Muqarrabun LMR, Ahmat N, Aris SRS. A review of the medicinal uses, phytochemistry and pharmacology of the genus Sapium. J Ethnopharmacol 2014; 155(1): 9-20.
[http://dx.doi.org/10.1016/j.jep.2014.05.028] [PMID: 24877849]
[75]
Panda SS, Sahoo K, Khatua D, Dhal NK. Phytochemical investigation and antibacterial activity of leaf and stem extracts of Sapium indicum Linn. Int J Phytomed 2012; 4: 409-13.
[76]
Chumkaew P, Karalai C, Ponglimanont C, Chantrapromma K. Antimycobacterial activity of phorbol esters from the fruits of Sapium indicum. J Nat Prod 2003; 66(4): 540-3.
[http://dx.doi.org/10.1021/np0204489] [PMID: 12713411]
[77]
Copp BR, Pearce AN. Natural product growth inhibitors of Mycobacterium tuberculosis. Nat Prod Rep 2007; 24(2): 278-97.
[http://dx.doi.org/10.1039/B513520F] [PMID: 17389998]
[78]
Chuakul W, Saralump P, Prathanturaruk S. Medicinal Plants in Thailand Amarin Printing and Publishing. Bangkok 1997.
[79]
Kaemchantuek P, Chokchaisiri R, Prabpai S, et al. Terpenoids with potent antimycobacterial activity against Mycobacterium tuberculosis from Trigonostemon reidioides roots. Tetrahedron 2017; 1: 3-13.
[http://dx.doi.org/10.1016/j.tet.2017.02.006]
[80]
Alam G, Wahyuono S, Ganjar IG, Hakim L, Timmerman H, Verpoorte R. Tracheospasmolytic activity of viteosin-A and vitexicarpin isolated from vitex trifolia. Planta Med 2002; 68(11): 1047-9.
[http://dx.doi.org/10.1055/s-2002-35650] [PMID: 12451502]
[81]
Kiuchi F, Matsuo K, Ito M, Qui TK, Honda G. New norditerpenoids with trypanocidal activity from Vitex trifolia. Chem Pharm Bull (Tokyo) 2004; 52(12): 1492-4.
[http://dx.doi.org/10.1248/cpb.52.1492] [PMID: 15577254]
[82]
Li WX, Cui CB, Cai B, Yao XS. Labdane-type diterpenes as new cell cycle inhibitors and apoptosis inducers from Vitex trifolia L. J Asian Nat Prod Res 2005; 7(2): 95-105.
[http://dx.doi.org/10.1080/10286020310001617165] [PMID: 15621610]
[83]
Ono M, Masuoka C, Ito Y, Nohara T. Antioxidative constituents from Viticis trifoliae fructus (Fruit of Vitex rotundifolia L). Food Sci Technol Int 1998; 4: 9-13. b.
[84]
Ono M, Ito Y, Kubo S, Nohara T. Two new iridoids from Viticis trifoliae fructus (fruit of Vitex rotundifolia L). Chem Pharm Bull (Tokyo) 1997; 45: 1094-6.
[http://dx.doi.org/10.1248/cpb.45.1094]
[85]
Kirtikar KR, Basu BD. Indian Medicinal Plants. Basu LM Allahabad India 1991.
[86]
Ghani A. Medicinal plants of Bangladesh Chemical Constituents and Uses.Asiatic Soc of Bangladesh 1998; 320.
[87]
Tiwari N, Thakur J, Saikia D, Gupta MM. Antitubercular diterpenoids from Vitex trifolia. Phytomedicine 2013; 20(7): 605-10.
[http://dx.doi.org/10.1016/j.phymed.2013.01.003] [PMID: 23462211]
[88]
Wächter GA, Franzblau SG, Montenegro G, et al. A new antitubercular mulinane diterpenoid from Azorella madreporica Clos. J Nat Prod 1998; 61(7): 965-8.
[http://dx.doi.org/10.1021/np980066w] [PMID: 9677287]
[89]
Marcos IS, Moro RF, Gil-Meson A, Diez D. 7-6-5-tricarbocycloc diterpenes: valparanes Mulinanes Cythanes Homoverrucosanes and related ones. Studies in Natural Products Chemistry.Amsterdam: Elsevier 2016; pp. 143-8.
[90]
Kuo PC, Yang ML, Hwang TL, et al. Anti-inflammatory diterpenoids from Croton tonkinensis. J Nat Prod 2013; 76(2): 230-6.
[http://dx.doi.org/10.1021/np300699f] [PMID: 23347584]
[91]
Giang PM, Jin HZ, Son PT, Lee JH, Hong YS, Lee JJ. ent-Kaurane diterpenoids from croton tonkinensis inhibit LPS-induced NF-kappaB activation and NO production. J Nat Prod 2003; 66(9): 1217-20.
[http://dx.doi.org/10.1021/np030139y] [PMID: 14510600]
[92]
Giang PM, Son PT, Lee JJ, Otsuka H. Four ent-kaurane-type diterpenoids from Croton tonkinensis Gagnep. Chem Pharm Bull (Tokyo) 2004; 52(7): 879-82.
[http://dx.doi.org/10.1248/cpb.52.879] [PMID: 15256715]
[93]
Phan MG, Phan TS, Hamada Y, Otsuka H. Cytotoxic diterpenoids from Vietnamese medicinal plant Croton tonkinensis GAGNEP. Chem Pharm Bull (Tokyo) 2005; 53(3): 296-300.
[http://dx.doi.org/10.1248/cpb.53.296] [PMID: 15744101]
[94]
Dao TT, Lee KY, Jeong HM, et al. ent-Kaurane diterpenoids from Croton tonkinensis stimulate osteoblast differentiation. J Nat Prod 2011; 74(12): 2526-31.
[http://dx.doi.org/10.1021/np200667f] [PMID: 22085418]
[95]
Qi S. Bioactive compounds from Marine Gorgonian. In: Atta-ur- Rahman, Ed. Studies in Natural Products Chemistry.Amsterdam: Elsevier 2012; 325-51.
[96]
Katzt E, Adamczeski M. Organic chemistry and biological activity of metabolites derived from marine sea plumes Pseudopterogorgia species of Gorgonian octacorals.In: Studies in Natural Products Chemistry. Amsterdam: Elsevier 200; 23: pp. 153-84.
[http://dx.doi.org/10.1016/S1572-5995(00)80129-5]
[97]
Rodríguez AD, González E, Huang SD. Unusual terpenes with novel carbon skeletons from the West indian sea whip Pseudopterogorgia elisabethae (Octocorallia). J Org Chem 1998; 63(20): 7083-91.
[http://dx.doi.org/10.1021/jo981385v] [PMID: 11672336]
[98]
Sansinenea E, Ortiz A. Antimycobacterial natural products from marine Pseudopterogorgia elisabethae. Curr Org Synth 2016; 13: 1-12.
[http://dx.doi.org/10.2174/1570179413666151218203531]
[99]
Rodríguez AD, Ramírez C, Rodríguez II, González E. Novel antimycobacterial benzoxazole alkaloids, from the west Indian Sea whip Pseudopterogorgia elisabethae. Org Lett 1999; 1(3): 527-30.
[http://dx.doi.org/10.1021/ol9907116] [PMID: 10822593]
[100]
Rodríguez II, Rodríguez AD. Homopseudopteroxazole, a new antimycobacterial diterpene alkaloid from Pseudopterogorgia elisabethae. J Nat Prod 2003; 66(6): 855-7.
[http://dx.doi.org/10.1021/np030052c] [PMID: 12828474]
[101]
Rodríguez AD, Ramírez C, Rodríguez II. Elisabatins A and B: new amphilectane-type diterpenes from the West Indian sea whip Pseudopterogorgia elisabethae. J Nat Prod 1999; 62(7): 997-9.
[http://dx.doi.org/10.1021/np990090p] [PMID: 10425124]
[102]
Rodríguez AD, Ramírez C, Rodríguez II, Barnes CL. Novel terpenoids from the West Indian sea whip Pseudopterogorgia elisabethae (Bayer). Elisapterosins A and B: rearranged diterpenes possessing an unprecedented cagelike framework. J Org Chem 2000; 65(5): 1390-8.
[http://dx.doi.org/10.1021/jo9914869] [PMID: 10814100]
[103]
Rodríguez AD, Ramírez C. A marine diterpene with a novel tetracyclic framework from the West Indian gorgonian octocoral Pseudopterogorgia elisabethae. Org Lett 2000; 2(4): 507-10.
[http://dx.doi.org/10.1021/ol991362i] [PMID: 10814363]
[104]
Marrero J, Rodríguez II, Rodríguez AD. The natural products chemistry of the Gorgonian genus Pseudopterogorgia (Octocorallia : Gorgoniidae). Chem Biol. Amsterdam: Elsevier 2010; pp. 363-91.
[http://dx.doi.org/10.1016/B978-008045382-8.00637-7]
[105]
Rodríguez AD, Ramírez C. Erogorgiaene displayed 96% inhibition of Mycobacterium tuberculosis H37Rv at 125 µg/mL. J Nat Prod 2001; 64: 100-2.
[PMID: 11170678]
[106]
Rodríguez AD, Ramírez C, Medina V, Shi YP. Novel lactones from Pseudopterogorgia elisabethae (Bayer). Tetrahedron Lett 2000; 41(27): 5177-80.
[http://dx.doi.org/10.1016/S0040-4039(00)00767-X]
[107]
Rodríguez AD, Ramírez C, Rodríguez II. Sandresolides A and B: novel nor-diterpenes from the sea whip Pseudopterogorgia elisabethae (Bayer). Tetrahedron Lett 1999; 40: 7627-31.
[http://dx.doi.org/10.1016/S0040-4039(99)01559-2]
[108]
Shi YP, Wei X, Rodríguez II, Rodríguez AD, Mayer AMS. New terpenoid constituents of the southwestern caribbean Sea Whip Pseudopterogorgia elisabethae (Bayer) including a unique Pentanorditerpene. Eur J Org Chem 2009; 4: 493-502.
[http://dx.doi.org/10.1002/ejoc.200800795]
[109]
Wei X, Rodríguez II, Rodríguez AD, Barnes CL. Caribenols A and B, sea whip derived norditerpenes with novel tricarbocyclic skeletons. J Org Chem 2007; 72(19): 7386-9.
[http://dx.doi.org/10.1021/jo070649n] [PMID: 17715964]
[110]
Rodríguez AD, Ramírez C, Shi YP. The cumbiasins, structurally novel diterpenes possessing intricate carbocyclic skeletons from the West Indian sea whip Pseudopterogorgia elisabethae (Bayer). J Org Chem 2000; 65(20): 6682-7.
[http://dx.doi.org/10.1021/jo000875w] [PMID: 11052119]
[111]
Rodriguez II, Rodriguez AD, Wang Y, Franzblau SG. Ileabethoxazole: a novel benzoxazole alkaloid with antimycobacterial activity. Tetrahedron Lett 2000; 47: 3229-32.
[http://dx.doi.org/10.1016/j.tetlet.2006.03.048]
[112]
Duque C, Puyana M, Narvaez G, et al. Pseudopterosins P-V new compounds from the gorgonian octocoral Pseudopterogorgia elisabethae from Providencia island Colombian Caribbean. Tetrahedron 2004; 60: 10627-35.
[http://dx.doi.org/10.1016/j.tet.2004.09.017]
[113]
Rodríguez II, Shi YP, García OJ, et al. New pseudopterosin and seco-pseudopterosin diterpene glycosides from two Colombian isolates of Pseudopterogorgia elisabethae and their diverse biological activities. J Nat Prod 2004; 67(10): 1672-80.
[http://dx.doi.org/10.1021/np049802o] [PMID: 15497938]
[114]
Lin X, Huang Y, Fang M, Wang J, Zheng Z, Su W. Cytotoxic and antimicrobial metabolites from marine lignicolous fungi, Diaporthe sp. FEMS Microbiol Lett 2005; 251(1): 53-8.
[http://dx.doi.org/10.1016/j.femsle.2005.07.025] [PMID: 16102912]
[115]
Nieves M, Prudhomme J, Le Roch KG, et al. Natural product-based synthesis of novel anti-infective isothiocyanate and isoselenocyanate functionalized amphilectane diterpenes. Bioorg Med Chem Lett 2015; 1: 2-12.
[PMID: 26748697]
[116]
Avíles E, Rodríguez AD, Vicente J. Two rare-class tricyclic diterpenes with antitubercular activity from the Caribbean sponge Svenzea flava. Application of vibrational circular dichroism spectroscopy for determining absolute configuration. J Org Chem 2013; 78(22): 289-313.
[PMID: 24138557]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy