Review Article

镰状细胞病治疗进展

卷 28, 期 10, 2021

发表于: 10 June, 2020

页: [2008 - 2032] 页: 25

弟呕挨: 10.2174/0929867327666200610175400

价格: $65

摘要

镰状细胞病(SCD)是一种由β -球蛋白基因单一突变引起的红细胞遗传性疾病。这一疾病主要在低收入国家折磨着全世界数百万患者,其特点是发病率高、死亡率高和预期寿命低。为了促进能够减少患者痛苦和提高其生活质量的治疗,迫切需要新的药物和非药物治疗策略。自1998年FDA批准HU以来,在发现新药方面几乎没有什么进展;然而,在过去的三年中,voxelotor, crizanlizumab和谷氨酰胺已经被批准为新的治疗替代品。此外,已经描述了新的有希望的化合物来治疗SCD的主要症状。在这里,我们以药物发现为重点,讨论了治疗SCD的新策略,这些策略在过去十年中已经被实施,发现了新的、安全的、有效的治疗方法。此外,非药理学方法,包括红细胞交换,基因治疗和造血干细胞移植将被提出。

关键词: 镰状细胞病,新药,胎儿血红蛋白,一氧化氮,抗镰状细胞,铁螯合,红细胞

[1]
Aygun, B.; Odame, I. A global perspective on sickle cell disease. Pediatr. Blood Cancer, 2012, 59(2), 386-390.
[http://dx.doi.org/10.1002/pbc.24175] [PMID: 22535620]
[2]
Piel, F.B.; Patil, A.P.; Howes, R.E.; Nyangiri, O.A.; Gething, P.W.; Dewi, M.; Temperley, W.H.; Williams, T.N.; Weatherall, D.J.; Hay, S.I. Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet, 2013, 381(9861), 142-151.
[http://dx.doi.org/10.1016/S0140-6736(12)61229-X] [PMID: 23103089]
[3]
Alrayyes, S.; Baghdan, D.; Haddad, R.Y.; Compton, A.A.; Mohama, S.; Goreishi, R.; Kawar, N. Sickle cell disease: an overview of the disease and its systemic effects. Dis. Mon., 2018, 64(6), 283-289.
[http://dx.doi.org/10.1016/j.disamonth.2017.12.003] [PMID: 29395106]
[4]
Piel, F.B.; Hay, S.I.; Gupta, S.; Weatherall, D.J.; Williams, T.N. Global burden of sickle cell anaemia in children under five, 2010-2050: modelling based on demographics, excess mortality, and interventions. PLoS Med., 2013, 10(7), e1001484.
[http://dx.doi.org/10.1371/journal.pmed.1001484] [PMID: 23874164]
[5]
Cançado, R.D.; Jesus, J.A. A doença falciforme no Brasil. Rev. Bras. Hematol. Hemoter., 2007, 29(3), 203-206.
[http://dx.doi.org/10.1590/S1516-84842007000300002]
[6]
Herrick, J.B. Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. Arch. Intern. Med., 1910, 6(5), 517-521.
[http://dx.doi.org/10.1001/archinte.1910.00050330050003]
[7]
Bunn, H.F. Pathogenesis and treatment of sickle cell disease. N. Engl. J. Med., 1997, 337(11), 762-769.
[http://dx.doi.org/10.1056/NEJM199709113371107] [PMID: 9287233]
[8]
Brittenham, G.M.; Schechter, A.N.; Noguchi, C.T. Hemoglobin S polymerization: primary determinant of the hemolytic and clinical severity of the sickling syndromes. Blood, 1985, 65(1), 183-189.
[http://dx.doi.org/10.1182/blood.V65.1.183.183] [PMID: 3965046]
[9]
Belcher, J.D.; Bryant, C.J.; Nguyen, J.; Bowlin, P.R.; Kielbik, M.C.; Bischof, J.C.; Hebbel, R.P.; Vercellotti, G.M. Transgenic sickle mice have vascular inflammation. Blood, 2003, 101(10), 3953-3959.
[http://dx.doi.org/10.1182/blood-2002-10-3313] [PMID: 12543857]
[10]
Hebbel, R.P. Reconstructing sickle cell disease: a data-based analysis of the “hyperhemolysis paradigm” for pulmonary hypertension from the perspective of evidence-based medicine. Am. J. Hematol., 2011, 86(2), 123-154.
[http://dx.doi.org/10.1002/ajh.21952] [PMID: 21264896]
[11]
Hebbel, R.P.; Osarogiagbon, R.; Kaul, D. The endothelial biology of sickle cell disease: inflammation and a chronic vasculopathy. Microcirculation, 2004, 11(2), 129-151.
[http://dx.doi.org/10.1080/mic.11.2.129.151] [PMID: 15280088]
[12]
Kato, G.J.; Gladwin, M.T.; Steinberg, M.H. Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev., 2007, 21(1), 37-47.
[http://dx.doi.org/10.1016/j.blre.2006.07.001] [PMID: 17084951]
[13]
Zhang, D.; Xu, C.; Manwani, D.; Frenette, P.S. Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood, 2016, 127(7), 801-809.
[http://dx.doi.org/10.1182/blood-2015-09-618538] [PMID: 26758915]
[14]
Turhan, A.; Weiss, L.A.; Mohandas, N.; Coller, B.S.; Frenette, P.S. Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 3047-3051.
[http://dx.doi.org/10.1073/pnas.052522799] [PMID: 11880644]
[15]
Belcher, J.D.; Mahaseth, H.; Welch, T.E.; Vilback, A.E.; Sonbol, K.M.; Kalambur, V.S.; Bowlin, P.R.; Bischof, J.C.; Hebbel, R.P.; Vercellotti, G.M. Critical role of endothelial cell activation in hypoxia-induced vasoocclusion in transgenic sickle mice. Am. J. Physiol. Hear. Circ. Physiol., 2005, 288(6), H2715-H2725.
[http://dx.doi.org/10.1152/ajpheart.00986.2004] [PMID: 15665055]
[16]
Platt, O.S.; Brambilla, D.J.; Rosse, W.F.; Milner, P.F.; Castro, O.; Steinberg, M.H.; Klug, P.P. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N. Engl. J. Med., 1994, 330(23), 1639-1644.
[http://dx.doi.org/10.1056/NEJM199406093302303] [PMID: 7993409]
[17]
Stearns, B.; Losee, K.A.; Bernstein, J. Hydroxyurea. A new type of potential antitumor agent. J. Med. Chem., 1963, 6(2), 201.
[http://dx.doi.org/10.1021/jm00338a026] [PMID: 14188794]
[18]
Kennedy, B.J.; Yarbro, J.W. Metabolic and therapeutic effects of hydroxyurea in chronic myeloid leukemia. JAMA, 1966, 195(12), 1038-1043.
[http://dx.doi.org/10.1001/jama.1966.03100120106029] [PMID: 5218042]
[19]
Rees, D.C. The rationale for using hydroxycarbamide in the treatment of sickle cell disease. Haematologica, 2011, 96(4), 488-491.
[http://dx.doi.org/10.3324/haematol.2011.041988] [PMID: 21454878]
[20]
Platt, O.S.; Orkin, S.H.; Dover, G.; Beardsley, G.P.; Miller, B.; Nathan, D.G. Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia. J. Clin. Invest., 1984, 74(2), 652-656.
[http://dx.doi.org/10.1172/JCI111464] [PMID: 6205021]
[21]
Cokic, V.P.; Smith, R.D.; Beleslin-Cokic, B.B.; Njoroge, J.M.; Miller, J.L.; Gladwin, M.T.; Schechter, A.N. Hydroxyurea induces fetal hemoglobin by the nitric oxide-dependent activation of soluble guanylyl cyclase. J. Clin. Invest., 2003, 111(2), 231-239.
[http://dx.doi.org/10.1172/JCI200316672] [PMID: 12531879]
[22]
Nader, E.; Grau, M.; Fort, R.; Collins, B.; Cannas, G.; Gauthier, A.; Walpurgis, K.; Martin, C.; Bloch, W.; Poutrel, S.; Hot, A.; Renoux, C.; Thevis, M.; Joly, P.; Romana, M.; Guillot, N.; Connes, P. Hydroxyurea therapy modulates sickle cell anemia red blood cell physiology: Impact on RBC deformability, oxidative stress, nitrite levels and nitric oxide synthase signalling pathway. Nitric Oxide, 2018, 81, 28-35.
[http://dx.doi.org/10.1016/j.niox.2018.10.003] [PMID: 30342855]
[23]
Styles, L.A.; Lubin, B.; Vichinsky, E.; Lawrence, S.; Hua, M.; Test, S.; Kuypers, F. Decrease of very late activation antigen-4 and CD36 on reticulocytes in sickle cell patients treated with hydroxyurea. Blood, 1997, 89(7), 2554-2559.
[http://dx.doi.org/10.1182/blood.V89.7.2554] [PMID: 9116302]
[24]
Ware, R.E.; Rees, R.C.; Sarnaik, S.A.; Iyer, R.V.; Alvarez, O.A.; Casella, J.F.; Shulkin, B.L.; Shalaby-Rana, E.; Strife, C.F.; Miller, J.H.; Lane, P.A.; Wang, W.C.; Miller, S.T. Renal function in infants with sickle cell anemia: baseline data from the baby hug trial. J. Pediatr., 2010, 156(1), 66.e1-70.e1.
[http://dx.doi.org/10.1016/j.jpeds.2009.06.060] [PMID: 19880138]
[25]
Strouse, J.J.; Lanzkron, S.; Beach, M.C.; Haywood, C.; Park, H.; Witkop, C.; Wilson, R.F.; Bass, E.B.; Segal, J.B. Hydroxyurea for sickle cell disease: a systematic review for efficacy and toxicity in children. Pediatrics, 2008, 122(6), 1332-1342.
[http://dx.doi.org/10.1542/peds.2008-0441] [PMID: 19047254]
[26]
Cannas, G.; Poutrel, S.; Thomas, X. Hydroxycarbamine: from an old drug used in malignant hemopathies to a current standard in sickle cell disease. Mediterr. J. Hematol. Infect. Dis., 2017, 9(1), e2017015.
[http://dx.doi.org/10.4084/mjhid.2017.015] [PMID: 28293403]
[27]
Najean, Y.; Rain, J.D. Treatment of polycythemia vera: the use of hydroxyurea and pipobroman in 292 patients under the age of 65 years. Blood, 1997, 90(9), 3370-3377.
[http://dx.doi.org/10.1182/blood.V90.9.3370] [PMID: 9345019]
[28]
DePass, L.R.; Weaver, E.V. Comparison of teratogenic effects of aspirin and hydroxyurea in the Fischer 344 and Wistar strains. J. Toxicol. Environ. Health, 1982, 10(2), 297-305.
[http://dx.doi.org/10.1080/15287398209530252] [PMID: 7143483]
[29]
dos Santos, J.L.; Varanda, E.A.; Lima, L.M.; Chin, C.M. Mutagenicity of new lead compounds to treat sickle cell disease symptoms in a Salmonella/microsome assay. Int. J. Mol. Sci., 2010, 11(2), 779-788.
[http://dx.doi.org/10.3390/ijms11020779] [PMID: 20386668]
[30]
de Lima, P.D.L.; Cardoso, P.C.S.; Khayat, A.S.; Bahia, M.O.; Burbano, R.R. Evaluation of the mutagenic activity of hydroxyurea on the G1-S-G2 phases of the cell cycle: an in vitro study. Genet. Mol. Res., 2003, 2(3), 328-333.
[PMID: 14966681]
[31]
Strouse, J.J. Is low dose hydroxyurea the solution to the global epidemic of sickle cell disease? Pediatr. Blood Cancer, 2015, 62(6), 929-930.
[http://dx.doi.org/10.1002/pbc.25471] [PMID: 25755219]
[32]
Jain, D.L.; Apte, M.; Colah, R.; Sarathi, V.; Desai, S.; Gokhale, A.; Bhandarwar, A.; Jain, H.L.; Ghosh, K. Efficacy of fixed low dose hydroxyurea in Indian children with sickle cell anemia: a single centre experience. Indian Pediatr., 2013, 50(10), 929-933.
[http://dx.doi.org/10.1007/s13312-013-0264-0] [PMID: 23798623]
[33]
Sethy, S.; Panda, T.; Jena, R.K. Beneficial effect of low fixed dose of hydroxyurea in vaso-occlusive crisis and transfusion requirements in adult hbss patients: a prospective study in a tertiary care center. Indian J. Hematol. Blood Transfus., 2018, 34(2), 294-298.
[http://dx.doi.org/10.1007/s12288-017-0869-x] [PMID: 29622872]
[34]
Wilmore, D.W. Food and drug administration approval of glutamine for sickle cell disease: success and precautions in glutamine research. JPEN J. Parenter. Enteral Nutr., 2017, 41(6), 912-917.
[http://dx.doi.org/10.1177/0148607117727271] [PMID: 28858569]
[35]
Niihara, Y.; Zerez, C.R.; Akiyama, D.S.; Tanaka, K.R. Oral L-glutamine therapy for sickle cell anemia: I. Subjective clinical improvement and favorable change in red cell NAD redox potential. Am. J. Hematol., 1998, 58(2), 117-121.
[http://dx.doi.org/10.1002/(SICI)1096-8652(199806)58: 2<117:AID-AJH5>3.0.CO;2-V] [PMID: 9625578]
[36]
Niihara, Y.; Matsui, N.M.; Shen, Y.M.; Akiyama, D.A.; Johnson, C.S.; Sunga, M.A.; Magpayo, J.; Embury, S.H.; Kalra, V.K.; Cho, S.H.; Tanaka, K.R. L-glutamine therapy reduces endothelial adhesion of sickle red blood cells to human umbilical vein endothelial cells. BMC Blood Disord., 2005, 5, 4.
[http://dx.doi.org/10.1186/1471-2326-5-4] [PMID: 16042803]
[37]
De Ingeniis, J.; Kazanov, M.D.; Shatalin, K.; Gelfand, M.S.; Osterman, A.L.; Sorci, L. Glutamine versus ammonia utilization in the NAD synthetase family. PLoS One, 2012, 7(6), e39115.
[http://dx.doi.org/10.1371/journal.pone.0039115] [PMID: 22720044]
[38]
de Montellano, P.R.O. A new step in the treatment of sickle cell disease (Published as part of the biochemistry series “biochemistry to bedside”). Biochemistry, 2018, 57(5), 470-471.
[http://dx.doi.org/10.1021/acs.biochem.7b00785] [PMID: 29172465]
[39]
Niihara, Y.; Macan, H.; Eckman, J.R.; Koh, H.; Cooper, M.L.; Ziegler, T.R.; Razon, R.; Tanaka, K.R.; Stark, C.W.; Johnson, C.S. L-glutamine therapy reduces hospitalization for sickle cell anemia and sickle β-thalassemia patients at six months - a phase II randomized trial. Clin. Pharmacol. Biopharm., 2014, 3(1), 1-5.
[http://dx.doi.org/10.4172/2167-065X.1000116]
[40]
Niihara, Y.; Miller, S.T.; Kanter, J.; Lanzkron, S.; Smith, W.R.; Hsu, L.L.; Gordeuk, V.R.; Viswanathan, K.; Sarnaik, S.; Osunkwo, I.; Guillaume, E.; Sadanandan, S.; Sieger, L.; Lasky, J.L.; Panosyan, E.H.; Blake, O.A.; New, T.N.; Bellevue, R.; Tran, L.T.; Razon, R.L.; Stark, C.W.; Neumayr, L.D.; Vichinsky, E.P. A phase 3 trial of l-glutamine in sickle cell disease. N. Engl. J. Med., 2018, 379(3), 226-235.
[http://dx.doi.org/10.1056/NEJMoa1715971] [PMID: 30021096]
[41]
Kaufman, M.B. Pharmaceutical approval update. P&T, 2018, 43(12), 734-735.
[PMID: 30559583]
[42]
Ataga, K.I.; Kutlar, A.; Kanter, J.; Liles, D.; Cancado, R.; Friedrisch, J.; Guthrie, T.H.; Knight-Madden, J.; Alvarez, O.A.; Gordeuk, V.R.; Gualandro, S.; Colella, M.P.; Smith, W.R.; Rollins, S.A.; Stocker, J.W.; Rother, R.P. Crizanlizumab for the prevention of pain crises in sickle cell disease. N. Engl. J. Med., 2017, 376(5), 429-439.
[http://dx.doi.org/10.1056/NEJMoa1611770] [PMID: 27959701]
[43]
Kutlar, A.; Kanter, J.; Liles, D.K.; Alvarez, O.A.; Cançado, R.D.; Friedrisch, J.R.; Knight-Madden, J.M.; Bruederle, A.; Shi, M.; Zhu, Z.; Ataga, K.I. Effect of crizanlizumab on pain crises in subgroups of patients with sickle cell disease: a SUSTAIN study analysis. Am. J. Hematol., 2019, 94(1), 55-61.
[http://dx.doi.org/10.1002/ajh.25308] [PMID: 30295335]
[44]
Blair, H.A. Crizanlizumab: first approval. Drugs, 2020, 80(1), 79-84.
[http://dx.doi.org/10.1007/s40265-019-01254-2] [PMID: 31933169]
[45]
Dufu, K.; Patel, M.; Oksenberg, D.; Cabrales, P. GBT440 improves red blood cell deformability and reduces viscosity of sickle cell blood under deoxygenated conditions. Clin. Hemorheol. Microcirc., 2018, 70(1), 95-105.
[http://dx.doi.org/10.3233/CH-170340] [PMID: 29660913]
[46]
Hutchaleelaha, A.; Patel, M.; Washington, C.; Siu, V.; Allen, E.; Oksenberg, D.; Gretler, D.D.; Mant, T.; Lehrer-Graiwer, J. Pharmacokinetics and pharmacodynamics of voxelotor (GBT440) in healthy adults and patients with sickle cell disease. Br. J. Clin. Pharmacol., 2019, 85(6), 1290-1302.
[http://dx.doi.org/10.1111/bcp.13896] [PMID: 30743314]
[47]
Howard, J.; Hemmaway, C.J.; Telfer, P.; Layton, D.M.; Porter, J.; Awogbade, M.; Mant, T.; Gretler, D.D.; Dufu, K.; Hutchaleelaha, A.; Patel, M.; Siu, V.; Dixon, S.; Landsman, N.; Tonda, M.; Lehrer-Graiwer, J. A phase 1/2 ascending dose study and open-label extension study of voxelotor in patients with sickle cell disease. Blood, 2019, 133(17), 1865-1875.
[http://dx.doi.org/10.1182/blood-2018-08-868893] [PMID: 30655275]
[48]
Blyden, G.; Bridges, K.R.; Bronte, L. Case series of patients with severe sickle cell disease treated with voxelotor (GBT440) by compassionate access. Am. J. Hematol., 2018, 93(8), E188-E190.
[http://dx.doi.org/10.1002/ajh.25139] [PMID: 29752824]
[49]
Bradner, J.E.; Mak, R.; Tanguturi, S.K.; Mazitschek, R.; Haggarty, S.J.; Ross, K.; Chang, C.Y.; Bosco, J.; West, N.; Morse, E.; Lin, K.; Shen, J.P.; Kwiatkowski, N.P.; Gheldof, N.; Dekker, J.; DeAngelo, D.J.; Carr, S.A.; Schreiber, S.L.; Golub, T.R.; Ebert, B.L. Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease. Proc. Natl. Acad. Sci. USA, 2010, 107(28), 12617-12622.
[http://dx.doi.org/10.1073/pnas.1006774107] [PMID: 20616024]
[50]
Esrick, E.B.; McConkey, M.; Lin, K.; Frisbee, A.; Ebert, B.L. Inactivation of HDAC1 or HDAC2 induces gamma globin expression without altering cell cycle or proliferation. Am. J. Hematol., 2015, 90(7), 624-628.
[http://dx.doi.org/10.1002/ajh.24019] [PMID: 25808664]
[51]
Shearstone, J.R.; Chonkar, A.; Bhol, K.; Jones, S.S.; Jarpe, M. The histone deacetylase 1 and 2 (HDAC1/2) inhibitor ACY-957 increases epsilon (HbE) and gamma (HbG) globin mRNA in the peripheral blood of non-anemic rats and monkeys. Blood, 2015, 126(23), 3378.
[http://dx.doi.org/10.1182/blood.V126.23.3378.3378]
[52]
Chonkar, A.; Jarpe, M.; Bhol, K.; Jones, S.S.; Shearstone, J.R. The histone deacetylase 1 and 2 (HDAC1/2) inhibitor ACY-957: impact of dosing schedule on pharmacokinetics (PK), pharmacodynamics (PD), hematopoietic toxicity, and gamma globin (HBG, γ) expression in monkey. Blood, 2016, 128(22), 323.
[http://dx.doi.org/10.1182/blood.V128.22.323.323]
[53]
Rivers, A.; Vaitkus, K.; Jagadeeswaran, R.; Ruiz, M.A.; Ibanez, V.; Ciceri, F.; Cavalcanti, F.; Molokie, R.E.; Saunthararajah, Y.; Engel, J.D.; DeSimone, J.; Lavelle, D. Oral administration of the LSD1 inhibitor ORY-3001 increases fetal hemoglobin in sickle cell mice and baboons. Exp. Hematol., 2018, 67, 60.e2-64.e2.
[http://dx.doi.org/10.1016/j.exphem.2018.08.003] [PMID: 30125603]
[54]
Rivers, A.; Vaitkus, K.; Ibanez, V.; Ruiz, M.A.; Jagadeeswaran, R.; Saunthararajah, Y.; Cui, S.; Engel, J.D.; DeSimone, J.; Lavelle, D. The LSD1 inhibitor RN-1 recapitulates the fetal pattern of hemoglobin synthesis in baboons (P. anubis). Haematologica, 2016, 101(6), 688-697.
[http://dx.doi.org/10.3324/haematol.2015.140749] [PMID: 26858356]
[55]
Rivers, A.; Vaitkus, K.; Ruiz, M.A.; Ibanez, V.; Jagadeeswaran, R.; Kouznetsova, T.; DeSimone, J.; Lavelle, D. RN-1, a potent and selective LSD1 inhibitor, increases γ-globin expression, F-retics, and F-cells in a sickle cell disease mouse model. Exp. Hematol., 2015, 43(7), 546-553.
[http://dx.doi.org/10.1016/j.exphem.2015.04.005] [PMID: 25931013]
[56]
Ibanez, V.; Vaitkus, K.; Rivers, A.; Molokie, R.; Cui, S.; Engel, J.D.; DeSimone, J.; Lavelle, D. Efficacy and safety of long-term RN-1 treatment to increase HbF in baboons. Blood, 2017, 129(2), 260-263.
[http://dx.doi.org/10.1182/blood-2016-10-746727] [PMID: 27908882]
[57]
Bird, A.P.; Wolffe, A.P. Methylation-induced repression-belts, braces, and chromatin. Cell, 1999, 99(5), 451-454.
[http://dx.doi.org/10.1016/S0092-8674(00)81532-9] [PMID: 10589672]
[58]
Jones, P.A.; Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet., 2002, 3(6), 415-428.
[http://dx.doi.org/10.1038/nrg816] [PMID: 12042769]
[59]
Klose, R.J.; Bird, A.P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci., 2006, 31(2), 89-97.
[http://dx.doi.org/10.1016/j.tibs.2005.12.008] [PMID: 16403636]
[60]
Molokie, R.; Lavelle, D.; Gowhari, M.; Pacini, M.; Krauz, L.; Hassan, J.; Ibanez, V.; Ruiz, M.A.; Ng, K.P.; Woost, P.; Radivoyevitch, T.; Pacelli, D.; Fada, S.; Rump, M.; Hsieh, M.; Tisdale, J.F.; Jacobberger, J.; Phelps, M.; Engel, J.D.; Saraf, S.; Hsu, L.L.; Gordeuk, V.; DeSimone, J.; Saunthararajah, Y. Oral tetrahydrouridine and decitabine for non-cytotoxic epigenetic gene regulation in sickle cell disease: a randomized phase 1 study. PLoS Med., 2017, 14(9), e1002382.
[http://dx.doi.org/10.1371/journal.pmed.1002382] [PMID: 28880867]
[61]
He, Y.; Rank, G.; Zhang, M.; Ju, J.; Liu, R.; Xu, Z.; Brown, F.; Cerruti, L.; Ma, C.; Tan, R.; Jane, S.M.; Zhao, Q. Induction of human fetal hemoglobin expression by adenosine-2′,3′-dialdehyde. J. Transl. Med., 2013, 11(1), 14.
[http://dx.doi.org/10.1186/1479-5876-11-14] [PMID: 23316703]
[62]
Habibi, H.; Atashi, A.; Abroun, S.; Noruzinia, M. Synergistic effect of simvastatin and romidepsin on gamma-globin gene induction. Cell J., 2019, 20(4), 576-583.
[http://dx.doi.org/10.22074/cellj.2019.5589] [PMID: 30124006]
[63]
Dai, Y.; Chen, T.; Ijaz, H.; Cho, E.H.; Steinberg, M.H. SIRT1 activates the expression of fetal hemoglobin genes. Am. J. Hematol., 2017, 92(11), 1177-1186.
[http://dx.doi.org/10.1002/ajh.24879] [PMID: 28776729]
[64]
Meiler, S.E.; Wade, M.; Kutlar, F.; Yerigenahally, S.D.; Xue, Y.; Moutouh-de Parseval, L.A.; Corral, L.G.; Swerdlow, P.S.; Kutlar, A. Pomalidomide augments fetal hemoglobin production without the myelosuppressive effects of hydroxyurea in transgenic sickle cell mice. Blood, 2011, 118(4), 1109-1112.
[http://dx.doi.org/10.1182/blood-2010-11-319137] [PMID: 21536862]
[65]
Moutouh-de Parseval, L.A.; Verhelle, D.; Glezer, E.; Jensen-Pergakes, K.; Ferguson, G.D.; Corral, L.G.; Morris, C.L.; Muller, G.; Brady, H.; Chan, K. Pomalidomide and lenalidomide regulate erythropoiesis and fetal hemoglobin production in human CD34+ cells. J. Clin. Invest., 2008, 118(1), 248-258.
[http://dx.doi.org/10.1172/JCI32322] [PMID: 18064299]
[66]
Dulmovits, B.M.; Appiah-Kubi, A.O.; Papoin, J.; Hale, J.; He, M.; Al-Abed, Y.; Didier, S.; Gould, M.; Husain-Krautter, S.; Singh, S.A.; Chan, K.W.; Vlachos, A.; Allen, S.L.; Taylor, N.; Marambaud, P.; An, X.; Gallagher, P.G.; Mohandas, N.; Lipton, J.M.; Liu, J.M.; Blanc, L. Pomalidomide reverses γ-globin silencing through the transcriptional reprogramming of adult hematopoietic progenitors. Blood, 2016, 127(11), 1481-1492.
[http://dx.doi.org/10.1182/blood-2015-09-667923] [PMID: 26679864]
[67]
Lowrey, C.H. Down the repressors! Up the fetal hemoglobin! Blood, 2016, 127(11), 1384-1385.
[http://dx.doi.org/10.1182/blood-2016-01-689018] [PMID: 26989189]
[68]
Malhotra, D.; Portales-Casamar, E.; Singh, A.; Srivastava, S.; Arenillas, D.; Happel, C.; Shyr, C.; Wakabayashi, N.; Kensler, T.W.; Wasserman, W.W.; Biswal, S. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res., 2010, 38(17), 5718-5734.
[http://dx.doi.org/10.1093/nar/gkq212] [PMID: 20460467]
[69]
Macari, E.R.; Lowrey, C.H. Induction of human fetal hemoglobin via the NRF2 antioxidant response signaling pathway. Blood, 2011, 117(22), 5987-5997.
[http://dx.doi.org/10.1182/blood-2010-10-314096] [PMID: 21464371]
[70]
Krishnamoorthy, S.; Pace, B.; Gupta, D.; Sturtevant, S.; Li, B.; Makala, L.; Brittain, J.; Moore, N.; Vieira, B.F.; Thullen, T.; Stone, I.; Li, H.; Hobbs, W.E.; Light, D.R. Dimethyl fumarate increases fetal hemoglobin, provides heme detoxification, and corrects anemia in sickle cell disease. JCI Insight, 2017, 2(20), 1-16.
[http://dx.doi.org/10.1172/jci.insight.96409] [PMID: 29046485]
[71]
Zhang, Y.; Paikari, A.; Sumazin, P.; Summarell, C.C.G.; Crosby, J.R.; Boerwinkle, E.; Weiss, M.J.; Sheehan, V.A. Metformin induces FOXO3-dependent fetal hemoglobin production in human primary erythroid cells. Blood, 2018, 132(3), 321-333.
[http://dx.doi.org/10.1182/blood-2017-11-814335] [PMID: 29884740]
[72]
Zhang, X.; Campreciós, G.; Rimmelé, P.; Liang, R.; Yalcin, S.; Mungamuri, S.K.; Barminko, J.; D’Escamard, V.; Baron, M.H.; Brugnara, C.; Papatsenko, D.; Rivella, S.; Ghaffari, S. FOXO3-mTOR metabolic cooperation in the regulation of erythroid cell maturation and homeostasis. Am. J. Hematol., 2014, 89(10), 954-963.
[http://dx.doi.org/10.1002/ajh.23786] [PMID: 24966026]
[73]
Knight, Z.A.; Schmidt, S.F.; Birsoy, K.; Tan, K.; Friedman, J.M. A critical role for mTORC1 in erythropoiesis and anemia. eLife, 2014, 3, e01913.
[http://dx.doi.org/10.7554/eLife.01913] [PMID: 25201874]
[74]
Chung, J.; Bauer, D.E.; Ghamari, A.; Nizzi, C.P.; Deck, K.M.; Kingsley, P.D.; Yien, Y.Y.; Huston, N.C.; Chen, C.; Schultz, I.J.; Dalton, A.J.; Wittig, J.G.; Palis, J.; Orkin, S.H.; Lodish, H.F.; Eisenstein, R.S.; Cantor, A.B.; Paw, B.H. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability. Sci. Signal., 2015, 8(372), ra34.
[http://dx.doi.org/10.1126/scisignal.aaa5903] [PMID: 25872869]
[75]
Sehgal, S.N. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant. Proc., 2003, 35(3)(Suppl.), 7S-14S.
[http://dx.doi.org/10.1016/S0041-1345(03)00211-2] [PMID: 12742462]
[76]
Khaibullina, A.; Almeida, L.E.F.; Wang, L.; Kamimura, S.; Wong, E.C.C.; Nouraie, M.; Maric, I.; Albani, S.; Finkel, J.; Quezado, Z.M.N. Rapamycin increases fetal hemoglobin and ameliorates the nociception phenotype in sickle cell mice. Blood Cells Mol. Dis., 2015, 55(4), 363-372.
[http://dx.doi.org/10.1016/j.bcmd.2015.08.001] [PMID: 26460261]
[77]
Pecoraro, A.; Troia, A.; Calzolari, R.; Scazzone, C.; Rigano, P.; Martorana, A.; Sacco, M.; Maggio, A.; Di Marzo, R. Efficacy of rapamycin as inducer of HbF in primary erythroid cultures from sickle cell disease and β-thalassemia patients. Hemoglobin, 2015, 39(4), 225-229.
[http://dx.doi.org/10.3109/03630269.2015.1036882] [PMID: 26016899]
[78]
Gaudre, N.; Cougoul, P.; Bartolucci, P.; Dörr, G.; Bura-Riviere, A.; Kamar, N.; Del Bello, A. improved fetal hemoglobin with mTOR inhibitor-based immunosuppression in a kidney transplant recipient with sickle cell disease. Am. J. Transplant., 2017, 17(8), 2212-2214.
[http://dx.doi.org/10.1111/ajt.14263] [PMID: 28276629]
[79]
Charache, S.; Grisolia, S.; Fiedler, A.J.; Hellegers, A.E. Effect of 2,3-diphosphoglycerate on oxygen affinity of blood in sickle cell anemia. J. Clin. Invest., 1970, 49(4), 806-812.
[http://dx.doi.org/10.1172/JCI106294] [PMID: 5443181]
[80]
MacDonald, R. Red cell 2,3-diphosphoglycerate and oxygen affinity. Anaesthesia, 1977, 32(6), 544-553.
[http://dx.doi.org/10.1111/j.1365-2044.1977.tb10002.x] [PMID: 327846]
[81]
Riggs, A.; Wells, M. The oxygen equilibrium of sickle-cell hemoglobin. Biochim. Biophys. Acta, 1961, 50(2), 243-248.
[http://dx.doi.org/10.1016/0006-3002(61)90322-5] [PMID: 13741620]
[82]
Oder, E.; Safo, M.K.; Abdulmalik, O.; Kato, G.J. New developments in anti-sickling agents: can drugs directly prevent the polymerization of sickle haemoglobin in vivo? Br. J. Haematol., 2016, 175(1), 24-30.
[http://dx.doi.org/10.1111/bjh.14264] [PMID: 27605087]
[83]
Safo, M.K.; Kato, G.J. Therapeutic strategies to alter oxygen affinity of sickle hemoglobin. Hematol. Oncol. Clin. North. Am., 2014, 28(2), 217-231.
[http://dx.doi.org/10.1016/j.hoc.2013.11.001] [PMID: 24589263]
[84]
Safo, M.K.; Abdulmalik, O.; Danso-Danquah, R.; Burnett, J.C.; Nokuri, S.; Joshi, G.S.; Musayev, F.N.; Asakura, T.; Abraham, D.J. Structural basis for the potent antisickling effect of a novel class of five-membered heterocyclic aldehydic compounds. J. Med. Chem., 2004, 47(19), 4665-4676.
[http://dx.doi.org/10.1021/jm0498001] [PMID: 15341482]
[85]
Abdulmalik, O.; Safo, M.K.; Chen, Q.; Yang, J.; Brugnara, C.; Ohene-Frempong, K.; Abraham, D.J.; Asakura, T. 5-hydroxymethyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells. Br. J. Haematol., 2005, 128(4), 552-561.
[http://dx.doi.org/10.1111/j.1365-2141.2004.05332.x] [PMID: 15686467]
[86]
Xu, G.G.; Pagare, P.P.; Ghatge, M.S.; Safo, R.P.; Gazi, A.; Chen, Q.; David, T.; Alabbas, A.B.; Musayev, F.N.; Venitz, J.; Zhang, Y.; Safo, M.K.; Abdulmalik, O. Design, synthesis, and biological evaluation of ester and ether derivatives of antisickling agent 5-HMF for the treatment of sickle cell disease. Mol. Pharm., 2017, 14(10), 3499-3511.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00553] [PMID: 28858508]
[87]
Nakagawa, A.; Lui, F.E.; Wassaf, D.; Yefidoff-Freedman, R.; Casalena, D.; Palmer, M.A.; Meadows, J.; Mozzarelli, A.; Ronda, L.; Abdulmalik, O.; Bloch, K.D.; Safo, M.K.; Zapol, W.M. Identification of a small molecule that increases hemoglobin oxygen affinity and reduces SS erythrocyte sickling. ACS Chem. Biol., 2014, 9(10), 2318-2325.
[http://dx.doi.org/10.1021/cb500230b] [PMID: 25061917]
[88]
Nakagawa, A.; Ferrari, M.; Schleifer, G.; Cooper, M.K.; Liu, C.; Yu, B.; Berra, L.; Klings, E.S.; Safo, R.S.; Chen, Q.; Musayev, F.N.; Safo, M.K.; Abdulmalik, O.; Bloch, D.B.; Zapol, W.M. A triazole disulfide compound increases the affinity of hemoglobin for oxygen and reduces the sickling of human sickle cells. Mol. Pharm., 2018, 15(5), 1954-1963.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00108] [PMID: 29634905]
[89]
Al Balushi, H.; Dufu, K.; Rees, D.C.; Brewin, J.N.; Hannemann, A.; Oksenberg, D.; Lu, D.C.Y.; Gibson, J.S. The effect of the antisickling compound GBT1118 on the permeability of red blood cells from patients with sickle cell anemia. Physiol. Rep., 2019, 7(6), e14027.
[http://dx.doi.org/10.14814/phy2.14027] [PMID: 30916477]
[90]
Pagare, P.P.; Ghatge, M.S.; Musayev, F.N.; Deshpande, T.M.; Chen, Q.; Braxton, C.; Kim, S.; Venitz, J.; Zhang, Y.; Abdulmalik, O.; Safo, M.K. Rational design of pyridyl derivatives of vanillin for the treatment of sickle cell disease. Bioorg. Med. Chem., 2018, 26(9), 2530-2538.
[http://dx.doi.org/10.1016/j.bmc.2018.04.015] [PMID: 29655608]
[91]
Deshpande, T.M.; Pagare, P.P.; Ghatge, M.S.; Chen, Q.; Musayev, F.N.; Venitz, J.; Zhang, Y.; Abdulmalik, O.; Safo, M.K. Rational modification of vanillin derivatives to stereospecifically destabilize sickle hemoglobin polymer formation. Acta Crystallogr. D Struct. Biol., 2018, 74(Pt 10), 956-964.
[http://dx.doi.org/10.1107/S2059798318009919] [PMID: 30289405]
[92]
Muhammad, A.; Waziri, A.D.; Forcados, G.E.; Sanusi, B.; Sani, H.; Malami, I.; Abubakar, I.B.; Oluwatoyin, H.Y.; Adinoyi, O.A.; Mohammed, H.A. Sickling-preventive effects of rutin is associated with modulation of deoxygenated haemoglobin, 2,3-bisphosphoglycerate mutase, redox status and alteration of functional chemistry in sickle erythrocytes. Heliyon, 2019, 5(6), e01905.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01905] [PMID: 31297461]
[93]
Purvis, S.H.; Keefer, J.R.; Fortenberry, Y.M.; Barron-Casella, E.A.; Casella, J.F. Identification of aptamers that bind to sickle hemoglobin and inhibit its polymerization. Nucleic Acid Ther., 2017, 27(6), 354-364.
[http://dx.doi.org/10.1089/nat.2016.0646] [PMID: 29039727]
[94]
Li, Q.; Henry, E.R.; Hofrichter, J.; Smith, J.F.; Cellmer, T.; Dunkelberger, E.B.; Metaferia, B.B.; Jones-Straehle, S.; Boutom, S.; Christoph, G.W.; Wakefield, T.H.; Link, M.E.; Staton, D.; Vass, E.R.; Miller, J.L.; Hsieh, M.M.; Tisdale, J.F.; Eaton, W.A. Kinetic assay shows that increasing red cell volume could be a treatment for sickle cell disease. Proc. Natl. Acad. Sci. USA, 2017, 114(5), E689-E696.
[http://dx.doi.org/10.1073/pnas.1619054114] [PMID: 28096387]
[95]
Tantawy, A.A.G.; Adly, A.A.M.; Ismail, E.A.R.; Aly, S.H. Endothelial nitric oxide synthase gene intron 4 VNTR polymorphism in sickle cell disease: relation to vasculopathy and disease severity. Pediatr. Blood Cancer, 2015, 62(3), 389-394.
[http://dx.doi.org/10.1002/pbc.25234] [PMID: 25263931]
[96]
Antwi-Boasiako, C.; Dzudzor, B.; Kudzi, W.; Doku, A.; Dale, C.A.; Sey, F.; Otu, K.H.; Boatemaa, G.D.; Ekem, I.; Ahenkorah, J.; Achel, D.G.; Aboagye, E.T.; Donkor, E.S. Association between eNOS gene polymorphism (T786C and VNTR) and sickle cell disease patients in Ghana. Diseases, 2018, 6(4), 1-9.
[http://dx.doi.org/10.3390/diseases6040090] [PMID: 30274269]
[97]
Miguel, L.I.; Almeida, C.B.; Traina, F.; Canalli, A.A.; Dominical, V.M.; Saad, S.T.O.; Costa, F.F.; Conran, N. Inhibition of phosphodiesterase 9A reduces cytokine-stimulated in vitro adhesion of neutrophils from sickle cell anemia individuals. Inflamm. Res., 2011, 60(7), 633-642.
[http://dx.doi.org/10.1007/s00011-011-0315-8] [PMID: 21336703]
[98]
Barodka, V.; Mohanty, J.G.; Mustafa, A.K.; Santhanam, L.; Nyhan, A.; Bhunia, A.K.; Sikka, G.; Nyhan, D.; Berkowitz, D.E.; Rifkind, J.M. Nitroprusside inhibits calcium-induced impairment of red blood cell deformability. Transfusion, 2014, 54(2), 434-444.
[http://dx.doi.org/10.1111/trf.12291] [PMID: 23781865]
[99]
Belanger, A.M.; Keggi, C.; Kanias, T.; Gladwin, M.T.; Kim-Shapiro, D.B. Effects of nitric oxide and its congeners on sickle red blood cell deformability. Transfusion, 2015, 55(10), 2464-2472.
[http://dx.doi.org/10.1111/trf.13134] [PMID: 25912054]
[100]
Wajih, N.; Basu, S.; Jailwala, A.; Kim, H.W.; Ostrowski, D.; Perlegas, A.; Bolden, C.A.; Buechler, N.L.; Gladwin, M.T.; Caudell, D.L.; Rahbar, E.; Alexander-Miller, M.A.; Vachharajani, V.; Kim-Shapiro, D.B. Potential therapeutic action of nitrite in sickle cell disease. Redox Biol., 2017, 12, 1026-1039.
[http://dx.doi.org/10.1016/j.redox.2017.05.006] [PMID: 28511346]
[101]
Morris, C.R.; Kato, G.J.; Poljakovic, M.; Wang, X.; Blackwelder, W.C.; Sachdev, V.; Hazen, S.L.; Vichinsky, E.P.; Morris, S.M. Jr.; Gladwin, M.T. Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. JAMA, 2005, 294(1), 81-90.
[http://dx.doi.org/10.1001/jama.294.1.81] [PMID: 15998894]
[102]
Elias, D.B.D.; Barbosa, M.C.; Rocha, L.B. da S.; Dutra, L.L.A.; Silva, H.F.; Martins, A.M.C.; Gonçalves, R.P. L-arginine as an adjuvant drug in the treatment of sickle cell anaemia. Br. J. Haematol., 2013, 160(3), 410-412.
[http://dx.doi.org/10.1111/bjh.12114] [PMID: 23157285]
[103]
Eleutério, R.M.N.; Nascimento, F.O.; Araújo, T.G.; Castro, M.F.; Filho, T.P.A.; Filho, P.A.M.; Eleutério, J., Jr.; Elias, D.B.D.; Lemes, R.P.G. Double-blind clinical trial of arginine supplementation in the treatment of adult patients with sickle cell anaemia. Adv. Hematol., 2019, 2019, 4397150.
[http://dx.doi.org/10.1155/2019/4397150] [PMID: 30853991]
[104]
Marealle, A.I.; Siervo, M.; Wassel, S.; Bluck, L.; Prentice, A.M.; Minzi, O.; Sasi, P.; Kamuhabwa, A.; Soka, D.; Makani, J.; Cox, S.E. A pilot study of a non-invasive oral nitrate stable isotopic method suggests that arginine and citrulline supplementation increases whole-body NO production in Tanzanian children with sickle cell disease. Nitric Oxide, 2018, 74, 19-22.
[http://dx.doi.org/10.1016/j.niox.2017.12.009] [PMID: 29305240]
[105]
Benites, B.D.; Olalla-Saad, S.T. An update on arginine in sickle cell disease. Expert Rev. Hematol., 2019, 12(4), 235-244.
[http://dx.doi.org/10.1080/17474086.2019.1591948] [PMID: 30855194]
[106]
Ikuta, T.; Ausenda, S.; Cappellini, M.D. Mechanism for fetal globin gene expression: role of the soluble guanylate cyclase-cGMP-dependent protein kinase pathway. Proc. Natl. Acad. Sci. USA, 2001, 98(4), 1847-1852.
[http://dx.doi.org/10.1073/pnas.98.4.1847] [PMID: 11172039]
[107]
Conran, N.; Torres, L. cGMP modulation therapeutics for sickle cell disease. Exp. Biol. Med. (Maywood), 2019, 244(2), 132-146.
[http://dx.doi.org/10.1177/1535370219827276] [PMID: 30691292]
[108]
Makowski, C.T.; Rissmiller, R.W.; Bullington, W.M. Riociguat: a novel new drug for treatment of pulmonary hypertension. Pharmacotherapy, 2015, 35(5), 502-519.
[http://dx.doi.org/10.1002/phar.1592] [PMID: 26011143]
[109]
Weir, N.A.; Conrey, A.; Lewis, D.; Mehari, A. Riociguat use in sickle cell related chronic thromboembolic pulmonary hypertension: a case series. Pulm. Circ., 2018, 8(4), 204589-4018791802.
[http://dx.doi.org/10.1177/2045894018791802] [PMID: 30033820]
[110]
Miyashiro, J.; Pant, P.; Tchernychev, B.; Milne, T.; Currie, M.; Graul, R.; Masferrer, J. The effect of the soluble guanylyl cyclase stimulator olinciguat on ƴ-globin gene induction in K562 cells. Blood, 2018, 132(Suppl. 1), 1078.
[http://dx.doi.org/10.1182/blood-2018-99-116011]
[111]
de Melo, T.R.F.; Kumkhaek, C.; Fernandes, G.F.S.; Pires, M.E.S.; Chelucci, R.C.; Barbieri, K.P.; Coelho, F.; Capote, T.S.O.; Lanaro, C.; Carlos, I.Z.; Marcondes, S.; Chegaev, K.; Guglielmo, S.; Fruttero, R.; Chung, M.C.; Costa, F.F.; Rodgers, G.P.; dos Santos, J.L. Discovery of phenylsulfonylfuroxan derivatives as gamma globin inducers by histone acetylation. Eur. J. Med. Chem., 2018, 154, 341-353.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.008] [PMID: 29852459]
[112]
Dos Santos, J.L.; Lanaro, C.; Chelucci, R.C.; Gambero, S.; Bosquesi, P.L.; Reis, J.S.; Lima, L.M.; Cerecetto, H.; González, M.; Costa, F.F.; Chung, M.C. Design, synthesis, and pharmacological evaluation of novel hybrid compounds to treat sickle cell disease symptoms. part II: furoxan derivatives. J. Med. Chem., 2012, 55(17), 7583-7592.
[http://dx.doi.org/10.1021/jm300602n] [PMID: 22889416]
[113]
dos Santos, J.L.; Lanaro, C.; Lima, L.M.; Gambero, S.; Franco-Penteado, C.F.; Alexandre-Moreira, M.S.; Wade, M.; Yerigenahally, S.; Kutlar, A.; Meiler, S.E.; Costa, F.F.; Chung, M. Design, synthesis, and pharmacological evaluation of novel hybrid compounds to treat sickle cell disease symptoms. J. Med. Chem., 2011, 54(16), 5811-5819.
[http://dx.doi.org/10.1021/jm200531f] [PMID: 21766854]
[114]
Eaton, W.A.; Hofrichter, J. Sickle cell hemoglobin polymerization. Adv. Protein Chem., 1990, 40, 263-279.
[http://dx.doi.org/10.1016/s0065-3233(08)60287-9] [PMID: 2195851]
[115]
Rosa, R.M.; Bierer, B.E.; Thomas, R.; Stoff, J.S.; Kruskall, M.; Robinson, S.; Bunn, H.F.; Epstein, F.H. A study of induced hyponatremia in the prevention and treatment of sickle-cell crisis. N. Engl. J. Med., 1980, 303(20), 1138-1143.
[http://dx.doi.org/10.1056/NEJM198011133032002] [PMID: 6999348]
[116]
Brugnara, C. Sickle cell dehydration: pathophysiology and therapeutic applications. Clin. Hemorheol. Microcirc., 2018, 68(2-3), 187-204.
[http://dx.doi.org/10.3233/CH-189007] [PMID: 29614632]
[117]
Lew, V.L.; Tiffert, T.; Etzion, Z.; Perdomo, D.; Daw, N.; Macdonald, L.; Bookchin, R.M. Distribution of dehydration rates generated by maximal Gardos-channel activation in normal and sickle red blood cells. Blood, 2005, 105(1), 361-367.
[http://dx.doi.org/10.1182/blood-2004-01-0125] [PMID: 15339840]
[118]
De Franceschi, L.; Beuzard, Y.; Jouault, H.; Brugnara, C. Modulation of erythrocyte potassium chloride cotransport, potassium content, and density by dietary magnesium intake in transgenic SAD mouse. Blood, 1996, 88(7), 2738-2744.
[http://dx.doi.org/10.1182/blood.V88.7.2738.bloodjournal8872738] [PMID: 8839870]
[119]
De Franceschi, L.; Bachir, D.; Galacteros, F.; Tchernia, G.; Cynober, T.; Alper, S.; Platt, O.; Beuzard, Y.; Brugnara, C. Oral magnesium supplements reduce erythrocyte dehydration in patients with sickle cell disease. J. Clin. Invest., 1997, 100(7), 1847-1852.
[http://dx.doi.org/10.1172/JCI119713] [PMID: 9312186]
[120]
Wang, W.; Brugnara, C.; Snyder, C.; Wynn, L.; Rogers, Z.; Kalinyak, K.; Brown, C.; Qureshi, A.; Bigelow, C.; Neumayr, L.; Smith-Whitley, K.; Chui, D.H.; Delahunty, M.; Woolson, R.; Steinberg, M.; Telen, M.; Kesler, K. The effects of hydroxycarbamide and magnesium on haemoglobin SC disease: results of the multi-centre CHAMPS trial. Br. J. Haematol., 2011, 152(6), 771-776.
[http://dx.doi.org/10.1111/j.1365-2141.2010.08523.x] [PMID: 21275961]
[121]
Goldman, R.D.; Mounstephen, W.; Kirby-Allen, M.; Friedman, J.N. Intravenous magnesium sulfate for vaso-occlusive episodes in sickle cell disease. Pediatrics, 2013, 132(6), e1634-e1641.
[http://dx.doi.org/10.1542/peds.2013-2065] [PMID: 24276838]
[122]
Brousseau, D.C.; Scott, J.P.; Badaki-Makun, O.; Darbari, D.S.; Chumpitazi, C.E.; Airewele, G.E.; Ellison, A.M.; Smith-Whitley, K.; Mahajan, P.; Sarnaik, S.A.; Casper, T.C.; Cook, L.J.; Dean, J.M.; Leonard, J.; Hulbert, M.L.; Powell, E.C.; Liem, R.I.; Hickey, R.; Krishnamurti, L.; Hillery, C.A.; Nimmer, M.; Panepinto, J.A. A multicenter randomized controlled trial of intravenous magnesium for sickle cell pain crisis in children. Blood, 2015, 126(14), 1651-1657.
[http://dx.doi.org/10.1182/blood-2015-05-647107] [PMID: 26232172]
[123]
Gardos, G. The function of calcium in the potassium permeability of human erythrocytes. Biochim. Biophys. Acta, 1958, 30(3), 653-654.
[http://dx.doi.org/10.1016/0006-3002(58)90124-0] [PMID: 13618284]
[124]
Joiner, C.H.; Rettig, R.K.; Jiang, M.; Risinger, M.; Franco, R.S. Urea stimulation of KCl cotransport induces abnormal volume reduction in sickle reticulocytes. Blood, 2007, 109(4), 1728-1735.
[http://dx.doi.org/10.1182/blood-2006-04-018630] [PMID: 17023583]
[125]
Berkowitz, L.R.; Orringer, E.P. An analysis of the mechanism by which cetiedil inhibits the Gardos phenomenon. Am. J. Hematol., 1984, 17(3), 217-223.
[http://dx.doi.org/10.1002/ajh.2830170302] [PMID: 6475933]
[126]
Abu-Salah, K.M.; Gambo, A.H.A. An analysis of the mechanism by which cetiedil inhibits sickling. Life Sci., 2002, 70(9), 1003-1011.
[http://dx.doi.org/10.1016/S0024-3205(01)01477-1] [PMID: 11860149]
[127]
Brugnara, C.; Gee, B.; Armsby, C.C.; Kurth, S.; Sakamoto, M.; Rifai, N.; Alper, S.L.; Platt, O.S. Therapy with oral clotrimazole induces inhibition of the Gardos channel and reduction of erythrocyte dehydration in patients with sickle cell disease. J. Clin. Invest., 1996, 97(5), 1227-1234.
[http://dx.doi.org/10.1172/JCI118537] [PMID: 8636434]
[128]
Stocker, J.W.; De Franceschi, L.; McNaughton-Smith, G.A.; Corrocher, R.; Beuzard, Y.; Brugnara, C. ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice. Blood, 2003, 101(6), 2412-2418.
[http://dx.doi.org/10.1182/blood-2002-05-1433] [PMID: 12433690]
[129]
Ataga, K.I.; Reid, M.; Ballas, S.K.; Yasin, Z.; Bigelow, C.; James, L.S.; Smith, W.R.; Galacteros, F.; Kutlar, A.; Hull, J.H.; Stocker, J.W. Improvements in haemolysis and indicators of erythrocyte survival do not correlate with acute vaso-occlusive crises in patients with sickle cell disease: a phase III randomized, placebo-controlled, double-blind study of the Gardos channel blocker senicapoc (ICA-17043). Br. J. Haematol., 2011, 153(1), 92-104.
[http://dx.doi.org/10.1111/j.1365-2141.2010.08520.x] [PMID: 21323872]
[130]
Adams, R.J.; McKie, V.C.; Hsu, L.; Files, B.; Vichinsky, E.; Pegelow, C.; Abboud, M.; Gallagher, D.; Kutlar, A.; Nichols, F.T.; Bonds, D.R.; Brambilla, D. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N. Engl. J. Med., 1998, 339(1), 5-11.
[http://dx.doi.org/10.1056/NEJM199807023390102] [PMID: 9647873]
[131]
Darbari, D.S.; Kple-Faget, P.; Kwagyan, J.; Rana, S.; Gordeuk, V.R.; Castro, O. Circumstances of death in adult sickle cell disease patients. Am. J. Hematol., 2006, 81(11), 858-863.
[http://dx.doi.org/10.1002/ajh.20685] [PMID: 16924640]
[132]
Thuret, I. Post-transfusional iron overload in the haemoglobinopathies. C. R. Biol., 2013, 336(3), 164-172.
[http://dx.doi.org/10.1016/j.crvi.2012.09.010] [PMID: 23643400]
[133]
Porter, J.B.; de Witte, T.; Cappellini, M.D.; Gattermann, N. New insights into transfusion-related iron toxicity: implications for the oncologist. Crit. Rev. Oncol. Hematol., 2016, 99, 261-271.
[http://dx.doi.org/10.1016/j.critrevonc.2015.11.017] [PMID: 26806144]
[134]
Allali, S.; de Montalembert, M.; Brousse, V.; Chalumeau, M.; Karim, Z. Management of iron overload in hemoglobinopathies. Transfus. Clin. Biol., 2017, 24(3), 223-226.
[http://dx.doi.org/10.1016/j.tracli.2017.06.008] [PMID: 28673501]
[135]
Shah, N.R. Advances in iron chelation therapy: transitioning to a new oral formulation. Drugs Context, 2017, 6, 212502.
[http://dx.doi.org/10.7573/dic.212502] [PMID: 28706555]
[136]
Rodrigues, M.; Bonham, C.A.; Minniti, C.P.; Gupta, K.; Longaker, M.T.; Gurtner, G.C. Iron chelation with transdermal deferoxamine accelerates healing of murine sickle cell ulcers. Adv. Wound Care, 2018, 7(10), 323-332.
[http://dx.doi.org/10.1089/wound.2018.0789] [PMID: 30374417]
[137]
Abbina, S.; Abbasi, U.; Gill, A.; Wong, K.; Kalathottukaren, M.T.; Kizhakkedathu, J.N. Design of safe nanotherapeutics for the excretion of excess systemic toxic iron. ACS Cent. Sci., 2019, 5(5), 917-926.
[http://dx.doi.org/10.1021/acscentsci.9b00284] [PMID: 31139728]
[138]
Akinsulie, A.O.; Temiye, E.O.; Akanmu, A.S.; Lesi, F.E.A.; Whyte, C.O. Clinical evaluation of extract of Cajanus cajan (Ciklavit) in sickle cell anaemia. J. Trop. Pediatr., 2005, 51(4), 200-205.
[http://dx.doi.org/10.1093/tropej/fmh097] [PMID: 15917266]
[139]
Wambebe, C. Chemistry and clinical evaluation of NIPRISAN in patients with sickle cell anemia. In: National Sickle Cell Disease Program 30th Annual Meeting Conference Proceedings, Washington D.C.2002, p. 46a.
[140]
Imaga, N.A. Phytomedicines and nutraceuticals: alternative therapeutics for sickle cell anemia. Scientific World J., 2013, 2013, 269659.
[http://dx.doi.org/10.1155/2013/269659] [PMID: 23476125]
[141]
Afolabi, I.S.; Osikoya, I.O.; Fajimi, O.D.; Usoro, P.I.; Ogunleye, D.O.; Bisi-Adeniyi, T.; Adeyemi, A.O.; Adekeye, B.T. Solenostemon monostachyus, Ipomoea involucrata and Carica papaya seed oil versus glutathione, or Vernonia amygdalina: methanolic extracts of novel plants for the management of sickle cell anemia disease. BMC Complement. Altern. Med., 2012, 12, 262-273.
[http://dx.doi.org/10.1186/1472-6882-12-262] [PMID: 23259718]
[142]
Pauline, N.; Cabral, B.N.P.; Anatole, P.C.; Jocelyne, A.M.V.; Bruno, M.; Jeanne, N.Y. The in vitro antisickling and antioxidant effects of aqueous extracts Zanthoxyllum heitzii on sickle cell disorder. BMC Complement. Altern. Med., 2013, 13, 162-169.
[http://dx.doi.org/10.1186/1472-6882-13-162] [PMID: 23829696]
[143]
Abere, T.A.; Okoye, C.J.; Agoreyo, F.O.; Eze, G.I.; Jesuorobo, R.I.; Egharevba, C.O.; Aimator, P.O. Antisickling and toxicological evaluation of the leaves of Scoparia dulcis Linn (scrophulariaceae). BMC Complement. Altern. Med., 2015, 15, 414-421.
[http://dx.doi.org/10.1186/s12906-015-0928-5] [PMID: 26597857]
[144]
Ren, H.; Okpala, I.; Ghebremeskel, K.; Ugochukwu, C.C.; Ibegbulam, O.; Crawford, M. Blood mononuclear cells and platelets have abnormal fatty acid composition in homozygous sickle cell disease. Ann. Hematol., 2005, 84(9), 578-583.
[http://dx.doi.org/10.1007/s00277-005-1023-7] [PMID: 15809883]
[145]
Tomer, A.; Kasey, S.; Connor, W.E.; Clark, S.; Harker, L.A.; Eckman, J.R. Reduction of pain episodes and prothrombotic activity in sickle cell disease by dietary n-3 fatty acids. Thromb. Haemost., 2001, 85(6), 966-974.
[http://dx.doi.org/10.1055/s-0037-1615948] [PMID: 11434703]
[146]
Daak, A.A.; Elderdery, A.Y.; Elbashir, L.M.; Mariniello, K.; Mills, J.; Scarlett, G.; Elbashir, M.I.; Ghebremeskel, K. Omega 3 (n-3) fatty acids down-regulate nuclear factor-kappa B (NF-κB) gene and blood cell adhesion molecule expression in patients with homozygous sickle cell disease. Blood Cells Mol. Dis., 2015, 55(1), 48-55.
[http://dx.doi.org/10.1016/j.bcmd.2015.03.014] [PMID: 25976467]
[147]
Daak, A.; Rabinowicz, A.; Ghebremeskel, K. Omega-3 fatty acids are a potential therapy for patients with sickle cell disease. Nat. Rev. Dis. Primers, 2018, 4(1), 15.
[http://dx.doi.org/10.1038/s41572-018-0012-9] [PMID: 30093627]
[148]
Conran, N.; Rees, D.C. Prasugrel hydrochloride for the treatment of sickle cell disease. Expert Opin. Investig. Drugs, 2017, 26(7), 865-872.
[http://dx.doi.org/10.1080/13543784.2017.1335710] [PMID: 28562105]
[149]
Kutlar, A.; Reid, M.E.; Inati, A.; Taher, A.T.; Abboud, M.R.; El-Beshlawy, A.; Buchanan, G.R.; Smith, H.; Ataga, K.I.; Perrine, S.P.; Ghalie, R.G. A dose-escalation phase IIa study of 2,2-dimethylbutyrate (HQK-1001), an oral fetal globin inducer, in sickle cell disease. Am. J. Hematol., 2013, 88(11), E255-E260.
[http://dx.doi.org/10.1002/ajh.23533] [PMID: 23828223]
[150]
Jagadeeswaran, R.; Vazquez, B.A.; Thiruppathi, M.; Ganesh, B.B.; Ibanez, V.; Cui, S.; Engel, J.D.; Diamond, A.M.; Molokie, R.E.; DeSimone, J.; Lavelle, D.; Rivers, A. Pharmacological inhibition of LSD1 and mTOR reduces mitochondrial retention and associated ROS levels in the red blood cells of sickle cell disease. Exp. Hematol., 2017, 50, 46-52.
[http://dx.doi.org/10.1016/j.exphem.2017.02.003] [PMID: 28238805]
[151]
Kim, H.C. Red cell exchange: special focus on sickle cell disease. Hematology (Am. Soc. Hematol. Educ. Program), 2014, 2014(1), 450-456.
[http://dx.doi.org/10.1182/asheducation-2014.1.450] [PMID: 25696893]
[152]
Driss, F.; Hequet, O. Red blood cell exchange techniques and methods. Transfus. Apheresis Sci., 2019, 58(2), 132-135.
[http://dx.doi.org/10.1016/j.transci.2019.03.005] [PMID: 30910617]
[153]
Sarode, R.; Ballas, S.K.; Garcia, A.; Kim, H.C.; King, K.; Sachais, B.; Williams, L.A. III. Red blood cell exchange: 2015 American Society for Apheresis consensus conference on the management of patients with sickle cell disease. J. Clin. Apher., 2017, 32(5), 342-367.
[http://dx.doi.org/10.1002/jca.21511] [PMID: 27723109]
[154]
Swerdlow, P.S. Red cell exchange in sickle cell disease. Am. Soc. Hematol., 2006, 1, 48-53.
[http://dx.doi.org/10.1182/asheducation-2006.1.48]
[155]
Mansilla-Soto, J.; Riviere, I.; Boulad, F.; Sadelain, M. Cell and gene therapy for the beta-thalassemias: advances and prospects. Hum. Gene Ther., 2016, 27(4), 295-304.
[http://dx.doi.org/10.1089/hum.2016.037] [PMID: 27021486]
[156]
Cavazzana, M.; Mavilio, F. Gene therapy for hemoglobinopathies. Hum. Gene Ther., 2018, 29(10), 1106-1113.
[http://dx.doi.org/10.1089/hum.2018.122] [PMID: 30200783]
[157]
Antoniani, C.; Meneghini, V.; Lattanzi, A.; Felix, T.; Romano, O.; Magrin, E.; Weber, L.; Pavani, G.; El Hoss, S.; Kurita, R.; Nakamura, Y.; Cradick, T.J.; Lundberg, A.S.; Porteus, M.; Amendola, M.; El Nemer, W.; Cavazzana, M.; Mavilio, F.; Miccio, A. Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus. Blood, 2018, 131(17), 1960-1973.
[http://dx.doi.org/10.1182/blood-2017-10-811505] [PMID: 29519807]
[158]
Wu, Y.; Zeng, J.; Roscoe, B.P.; Liu, P.; Yao, Q.; Lazzarotto, C.R.; Clement, K.; Cole, M.A.; Luk, K.; Baricordi, C.; Shen, A.H.; Ren, C.; Esrick, E.B.; Manis, J.P.; Dorfman, D.M.; Williams, D.A.; Biffi, A.; Brugnara, C.; Biasco, L.; Brendel, C.; Pinello, L.; Tsai, S.Q.; Wolfe, S.A.; Bauer, D.E. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat. Med., 2019, 25(5), 776-783.
[http://dx.doi.org/10.1038/s41591-019-0401-y] [PMID: 30911135]
[159]
Li, C.; Psatha, N.; Sova, P.; Gil, S.; Wang, H.; Kim, J.; Kulkarni, C.; Valensisi, C.; Hawkins, R.D.; Stamatoyannopoulos, G.; Lieber, A. Reactivation of γ-globin in adult β-YAC mice after ex vivo and in vivo hematopoietic stem cell genome editing. Blood, 2018, 131(26), 2915-2928.
[http://dx.doi.org/10.1182/blood-2018-03-838540] [PMID: 29789357]
[160]
Dever, D.P.; Bak, R.O.; Reinisch, A.; Camarena, J.; Washington, G.; Nicolas, C.E.; Pavel-Dinu, M.; Saxena, N.; Wilkens, A.B.; Mantri, S.; Uchida, N.; Hendel, A.; Narla, A.; Majeti, R.; Weinberg, K.I.; Porteus, M.H. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature, 2016, 539(7629), 384-389.
[http://dx.doi.org/10.1038/nature20134] [PMID: 27820943]
[161]
Park, S.H.; Lee, C.M.; Dever, D.P.; Davis, T.H.; Camarena, J.; Srifa, W.; Zhang, Y.; Paikari, A.; Chang, A.K.; Porteus, M.H.; Sheehan, V.A.; Bao, G. Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res., 2019, 47(15), 7955-7972.
[http://dx.doi.org/10.1093/nar/gkz475] [PMID: 31147717]
[162]
Khosravi, M.A.; Abbasalipour, M.; Concordet, J.P.; Berg, J.V.; Zeinali, S.; Arashkia, A.; Azadmanesh, K.; Buch, T.; Karimipoor, M. Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: a promising approach for gene therapy of beta thalassemia disease. Eur. J. Pharmacol., 2019, 854, 398-405.
[http://dx.doi.org/10.1016/j.ejphar.2019.04.042] [PMID: 31039344]
[163]
Shenoy, S.; Eapen, M.; Panepinto, J.A.; Logan, B.R.; Wu, J.; Abraham, A.; Brochstein, J.; Chaudhury, S.; Godder, K.; Haight, A.E.; Kasow, K.A.; Leung, K.; Andreansky, M.; Bhatia, M.; Dalal, J.; Haines, H.; Jaroscak, J.; Lazarus, H.M.; Levine, J.E.; Krishnamurti, L.; Margolis, D.; Megason, G.C.; Yu, L.C.; Pulsipher, M.A.; Gersten, I.; DiFronzo, N.; Horowitz, M.M.; Walters, M.C.; Kamani, N. A trial of unrelated donor marrow transplantation for children with severe sickle cell disease. Blood, 2016, 128(21), 2561-2567.
[http://dx.doi.org/10.1182/blood-2016-05-715870] [PMID: 27625358]
[164]
Schwartz, J.; Winters, J.L.; Padmanabhan, A.; Balogun, R.A.; Delaney, M.; Linenberger, M.L.; Szczepiorkowski, Z.M.; Williams, M.E.; Wu, Y.; Shaz, B.H. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the Writing Committee of the American Society for Apheresis: the sixth special issue. J. Clin. Apher., 2013, 28(3), 145-284.
[http://dx.doi.org/10.1002/jca.21276] [PMID: 23868759]
[165]
Fort, R. Recommendations for the use of red blood cell exchange in sickle cell disease. Transfus. Apheresis Sci., 2019, 58(2), 128-131.
[http://dx.doi.org/10.1016/j.transci.2019.03.004] [PMID: 30879904]
[166]
Tsitsikas, D.A.; Sirigireddy, B.; Nzouakou, R.; Calvey, A.; Quinn, J.; Collins, J.; Orebayo, F.; Lewis, N.; Todd, S.; Amos, R.J. Safety, tolerability, and outcomes of regular automated red cell exchange transfusion in the management of sickle cell disease. J. Clin. Apher., 2016, 31(6), 545-550.
[http://dx.doi.org/10.1002/jca.21447] [PMID: 26878828]
[167]
Weatherall, D.J. The slow road to gene therapy. Nature, 1988, 331(6151), 13-14.
[http://dx.doi.org/10.1038/331013a0] [PMID: 3422340]
[168]
Cavazzana-Calvo, M.; Payen, E.; Negre, O.; Wang, G.; Hehir, K.; Fusil, F.; Down, J.; Denaro, M.; Brady, T.; Westerman, K.; Cavallesco, R.; Gillet-Legrand, B.; Caccavelli, L.; Sgarra, R.; Maouche-Chrétien, L.; Bernaudin, F.; Girot, R.; Dorazio, R.; Mulder, G-J.; Polack, A.; Bank, A.; Soulier, J.; Larghero, J.; Kabbara, N.; Dalle, B.; Gourmel, B.; Socie, G.; Chrétien, S.; Cartier, N.; Aubourg, P.; Fischer, A.; Cornetta, K.; Galacteros, F.; Beuzard, Y.; Gluckman, E.; Bushman, F.; Hacein-Bey-Abina, S.; Leboulch, P. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature, 2010, 467(7313), 318-322.
[http://dx.doi.org/10.1038/nature09328] [PMID: 20844535]
[169]
Pawliuk, R.; Westerman, K.A.; Fabry, M.E.; Payen, E.; Tighe, R.; Bouhassira, E.E.; Acharya, S.A.; Ellis, J.; London, I.M.; Eaves, C.J.; Humphries, R.K.; Beuzard, Y.; Nagel, R.L.; Leboulch, P. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science, 2001, 294(5550), 2368-2371.
[http://dx.doi.org/10.1126/science.1065806] [PMID: 11743206]
[170]
Levasseur, D.N.; Ryan, T.M.; Reilly, M.P.; McCune, S.L.; Asakura, T.; Townes, T.M. A recombinant human hemoglobin with anti-sickling properties greater than fetal hemoglobin. J. Biol. Chem., 2004, 279(26), 27518-27524.
[http://dx.doi.org/10.1074/jbc.M402578200] [PMID: 15084588]
[171]
Demirci, S.; Uchida, N.; Tisdale, J.F. Gene therapy for sickle cell disease: an update. Cytotherapy, 2018, 20(7), 899-910.
[http://dx.doi.org/10.1016/j.jcyt.2018.04.003] [PMID: 29859773]
[172]
Lux, C.T.; Pattabhi, S.; Berger, M.; Nourigat, C.; Flowers, D.A.; Negre, O.; Humbert, O.; Yang, J.G.; Lee, C.; Jacoby, K.; Bernstein, I.; Kiem, H.P.; Scharenberg, A.; Rawlings, D.J. TALEN-mediated gene editing of HBG in human hematopoietic stem cells leads to therapeutic fetal hemoglobin induction. Mol. Ther. Methods Clin. Dev., 2018, 12, 175-183.
[http://dx.doi.org/10.1016/j.omtm.2018.12.008] [PMID: 30705922]
[173]
Gluckman, E.; Cappelli, B.; Bernaudin, F.; Labopin, M.; Volt, F.; Carreras, J.; Pinto Simões, B.; Ferster, A.; Dupont, S.; de la Fuente, J.; Dalle, J.H.; Zecca, M.; Walters, M.C.; Krishnamurti, L.; Bhatia, M.; Leung, K.; Yanik, G.; Kurtzberg, J.; Dhedin, N.; Kuentz, M.; Michel, G.; Apperley, J.; Lutz, P.; Neven, B.; Bertrand, Y.; Vannier, J.P.; Ayas, M.; Cavazzana, M.; Matthes-Martin, S.; Rocha, V.; Elayoubi, H.; Kenzey, C.; Bader, P.; Locatelli, F.; Ruggeri, A.; Eapen, M. Sickle cell disease: an International survey of results of HLA-identical sibling hematopoietic stem cell transplantation. Blood, 2017, 129(11), 1548-1556.
[http://dx.doi.org/10.1182/blood-2016-10-745711] [PMID: 27965196]
[174]
Walters, M.C.; Patience, M.; Leisenring, W.; Eckman, J.R.; Scott, J.P.; Mentzer, W.C.; Davies, S.C.; Ohene-Frempong, K.; Bernaudin, F.; Matthews, D.C.; Storb, R.; Sullivan, K.M. Bone marrow transplantation for sickle cell disease. N. Engl. J. Med., 1996, 335(6), 369-376.
[http://dx.doi.org/10.1056/NEJM199608083350601] [PMID: 8663884]
[175]
Khemani, K.; Katoch, D.; Krishnamurti, L. Curative therapies for sickle cell disease. Ochsner J., 2019, 19(2), 131-137.
[http://dx.doi.org/10.31486/toj.18.0044] [PMID: 31258425]
[176]
Angelucci, E.; Matthes-Martin, S.; Baronciani, D.; Bernaudin, F.; Bonanomi, S.; Cappellini, M.D.; Dalle, J.H.; Di Bartolomeo, P.; de Heredia, C.D.; Dickerhoff, R.; Giardini, C.; Gluckman, E.; Hussein, A.A.; Kamani, N.; Minkov, M.; Locatelli, F.; Rocha, V.; Sedlacek, P.; Smiers, F.; Thuret, I.; Yaniv, I.; Cavazzana, M.; Peters, C. Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: indications and management recommendations from an International expert panel. Haematologica, 2014, 99(5), 811-820.
[http://dx.doi.org/10.3324/haematol.2013.099747] [PMID: 24790059]
[177]
Bernaudin, F.; Pondarré, C.; Galambrun, C.; Thuret, I. Allogeneic/matched related transplantation for β-thalassemia and sickle cell anemia. Adv. Exp. Med. Biol., 2017, 1013, 89-122.
[http://dx.doi.org/10.1007/978-1-4939-7299-9_4] [PMID: 29127678]
[178]
Bolaños-Meade, J.; Fuchs, E.J.; Luznik, L.; Lanzkron, S.M.; Gamper, C.J.; Jones, R.J.; Brodsky, R.A. HLA-haploidentical bone marrow transplantation with posttransplant cyclophosphamide expands the donor pool for patients with sickle cell disease. Blood, 2012, 120(22), 4285-4291.
[http://dx.doi.org/10.1182/blood-2012-07-438408] [PMID: 22955919]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy