Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Advances in Sickle Cell Disease Treatments

Author(s): Aline Renata Pavan and Jean Leandro dos Santos*

Volume 28, Issue 10, 2021

Published on: 10 June, 2020

Page: [2008 - 2032] Pages: 25

DOI: 10.2174/0929867327666200610175400

Price: $65

Abstract

Sickle Cell Disease (SCD) is an inherited disorder of red blood cells that is caused by a single mutation in the β -globin gene. The disease, which afflicts millions of patients worldwide mainly in low income countries, is characterized by high morbidity, mortality and low life expectancy. The new pharmacological and non-pharmacological strategies for SCD is urgent in order to promote treatments able to reduce patient’s suffering and improve their quality of life. Since the FDA approval of HU in 1998, there have been few advances in discovering new drugs; however, in the last three years voxelotor, crizanlizumab, and glutamine have been approved as new therapeutic alternatives. In addition, new promising compounds have been described to treat the main SCD symptoms. Herein, focusing on drug discovery, we discuss new strategies to treat SCD that have been carried out in the last ten years to discover new, safe, and effective treatments. Moreover, non-pharmacological approaches, including red blood cell exchange, gene therapy and hematopoietic stem cell transplantation will be presented.

Keywords: Sickle cell disease, new drugs, fetal hemoglobin, nitric oxide, antisickling, iron chelation, red blood cell.

[1]
Aygun, B.; Odame, I. A global perspective on sickle cell disease. Pediatr. Blood Cancer, 2012, 59(2), 386-390.
[http://dx.doi.org/10.1002/pbc.24175] [PMID: 22535620]
[2]
Piel, F.B.; Patil, A.P.; Howes, R.E.; Nyangiri, O.A.; Gething, P.W.; Dewi, M.; Temperley, W.H.; Williams, T.N.; Weatherall, D.J.; Hay, S.I. Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet, 2013, 381(9861), 142-151.
[http://dx.doi.org/10.1016/S0140-6736(12)61229-X] [PMID: 23103089]
[3]
Alrayyes, S.; Baghdan, D.; Haddad, R.Y.; Compton, A.A.; Mohama, S.; Goreishi, R.; Kawar, N. Sickle cell disease: an overview of the disease and its systemic effects. Dis. Mon., 2018, 64(6), 283-289.
[http://dx.doi.org/10.1016/j.disamonth.2017.12.003] [PMID: 29395106]
[4]
Piel, F.B.; Hay, S.I.; Gupta, S.; Weatherall, D.J.; Williams, T.N. Global burden of sickle cell anaemia in children under five, 2010-2050: modelling based on demographics, excess mortality, and interventions. PLoS Med., 2013, 10(7), e1001484.
[http://dx.doi.org/10.1371/journal.pmed.1001484] [PMID: 23874164]
[5]
Cançado, R.D.; Jesus, J.A. A doença falciforme no Brasil. Rev. Bras. Hematol. Hemoter., 2007, 29(3), 203-206.
[http://dx.doi.org/10.1590/S1516-84842007000300002]
[6]
Herrick, J.B. Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. Arch. Intern. Med., 1910, 6(5), 517-521.
[http://dx.doi.org/10.1001/archinte.1910.00050330050003]
[7]
Bunn, H.F. Pathogenesis and treatment of sickle cell disease. N. Engl. J. Med., 1997, 337(11), 762-769.
[http://dx.doi.org/10.1056/NEJM199709113371107] [PMID: 9287233]
[8]
Brittenham, G.M.; Schechter, A.N.; Noguchi, C.T. Hemoglobin S polymerization: primary determinant of the hemolytic and clinical severity of the sickling syndromes. Blood, 1985, 65(1), 183-189.
[http://dx.doi.org/10.1182/blood.V65.1.183.183] [PMID: 3965046]
[9]
Belcher, J.D.; Bryant, C.J.; Nguyen, J.; Bowlin, P.R.; Kielbik, M.C.; Bischof, J.C.; Hebbel, R.P.; Vercellotti, G.M. Transgenic sickle mice have vascular inflammation. Blood, 2003, 101(10), 3953-3959.
[http://dx.doi.org/10.1182/blood-2002-10-3313] [PMID: 12543857]
[10]
Hebbel, R.P. Reconstructing sickle cell disease: a data-based analysis of the “hyperhemolysis paradigm” for pulmonary hypertension from the perspective of evidence-based medicine. Am. J. Hematol., 2011, 86(2), 123-154.
[http://dx.doi.org/10.1002/ajh.21952] [PMID: 21264896]
[11]
Hebbel, R.P.; Osarogiagbon, R.; Kaul, D. The endothelial biology of sickle cell disease: inflammation and a chronic vasculopathy. Microcirculation, 2004, 11(2), 129-151.
[http://dx.doi.org/10.1080/mic.11.2.129.151] [PMID: 15280088]
[12]
Kato, G.J.; Gladwin, M.T.; Steinberg, M.H. Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev., 2007, 21(1), 37-47.
[http://dx.doi.org/10.1016/j.blre.2006.07.001] [PMID: 17084951]
[13]
Zhang, D.; Xu, C.; Manwani, D.; Frenette, P.S. Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood, 2016, 127(7), 801-809.
[http://dx.doi.org/10.1182/blood-2015-09-618538] [PMID: 26758915]
[14]
Turhan, A.; Weiss, L.A.; Mohandas, N.; Coller, B.S.; Frenette, P.S. Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 3047-3051.
[http://dx.doi.org/10.1073/pnas.052522799] [PMID: 11880644]
[15]
Belcher, J.D.; Mahaseth, H.; Welch, T.E.; Vilback, A.E.; Sonbol, K.M.; Kalambur, V.S.; Bowlin, P.R.; Bischof, J.C.; Hebbel, R.P.; Vercellotti, G.M. Critical role of endothelial cell activation in hypoxia-induced vasoocclusion in transgenic sickle mice. Am. J. Physiol. Hear. Circ. Physiol., 2005, 288(6), H2715-H2725.
[http://dx.doi.org/10.1152/ajpheart.00986.2004] [PMID: 15665055]
[16]
Platt, O.S.; Brambilla, D.J.; Rosse, W.F.; Milner, P.F.; Castro, O.; Steinberg, M.H.; Klug, P.P. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N. Engl. J. Med., 1994, 330(23), 1639-1644.
[http://dx.doi.org/10.1056/NEJM199406093302303] [PMID: 7993409]
[17]
Stearns, B.; Losee, K.A.; Bernstein, J. Hydroxyurea. A new type of potential antitumor agent. J. Med. Chem., 1963, 6(2), 201.
[http://dx.doi.org/10.1021/jm00338a026] [PMID: 14188794]
[18]
Kennedy, B.J.; Yarbro, J.W. Metabolic and therapeutic effects of hydroxyurea in chronic myeloid leukemia. JAMA, 1966, 195(12), 1038-1043.
[http://dx.doi.org/10.1001/jama.1966.03100120106029] [PMID: 5218042]
[19]
Rees, D.C. The rationale for using hydroxycarbamide in the treatment of sickle cell disease. Haematologica, 2011, 96(4), 488-491.
[http://dx.doi.org/10.3324/haematol.2011.041988] [PMID: 21454878]
[20]
Platt, O.S.; Orkin, S.H.; Dover, G.; Beardsley, G.P.; Miller, B.; Nathan, D.G. Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia. J. Clin. Invest., 1984, 74(2), 652-656.
[http://dx.doi.org/10.1172/JCI111464] [PMID: 6205021]
[21]
Cokic, V.P.; Smith, R.D.; Beleslin-Cokic, B.B.; Njoroge, J.M.; Miller, J.L.; Gladwin, M.T.; Schechter, A.N. Hydroxyurea induces fetal hemoglobin by the nitric oxide-dependent activation of soluble guanylyl cyclase. J. Clin. Invest., 2003, 111(2), 231-239.
[http://dx.doi.org/10.1172/JCI200316672] [PMID: 12531879]
[22]
Nader, E.; Grau, M.; Fort, R.; Collins, B.; Cannas, G.; Gauthier, A.; Walpurgis, K.; Martin, C.; Bloch, W.; Poutrel, S.; Hot, A.; Renoux, C.; Thevis, M.; Joly, P.; Romana, M.; Guillot, N.; Connes, P. Hydroxyurea therapy modulates sickle cell anemia red blood cell physiology: Impact on RBC deformability, oxidative stress, nitrite levels and nitric oxide synthase signalling pathway. Nitric Oxide, 2018, 81, 28-35.
[http://dx.doi.org/10.1016/j.niox.2018.10.003] [PMID: 30342855]
[23]
Styles, L.A.; Lubin, B.; Vichinsky, E.; Lawrence, S.; Hua, M.; Test, S.; Kuypers, F. Decrease of very late activation antigen-4 and CD36 on reticulocytes in sickle cell patients treated with hydroxyurea. Blood, 1997, 89(7), 2554-2559.
[http://dx.doi.org/10.1182/blood.V89.7.2554] [PMID: 9116302]
[24]
Ware, R.E.; Rees, R.C.; Sarnaik, S.A.; Iyer, R.V.; Alvarez, O.A.; Casella, J.F.; Shulkin, B.L.; Shalaby-Rana, E.; Strife, C.F.; Miller, J.H.; Lane, P.A.; Wang, W.C.; Miller, S.T. Renal function in infants with sickle cell anemia: baseline data from the baby hug trial. J. Pediatr., 2010, 156(1), 66.e1-70.e1.
[http://dx.doi.org/10.1016/j.jpeds.2009.06.060] [PMID: 19880138]
[25]
Strouse, J.J.; Lanzkron, S.; Beach, M.C.; Haywood, C.; Park, H.; Witkop, C.; Wilson, R.F.; Bass, E.B.; Segal, J.B. Hydroxyurea for sickle cell disease: a systematic review for efficacy and toxicity in children. Pediatrics, 2008, 122(6), 1332-1342.
[http://dx.doi.org/10.1542/peds.2008-0441] [PMID: 19047254]
[26]
Cannas, G.; Poutrel, S.; Thomas, X. Hydroxycarbamine: from an old drug used in malignant hemopathies to a current standard in sickle cell disease. Mediterr. J. Hematol. Infect. Dis., 2017, 9(1), e2017015.
[http://dx.doi.org/10.4084/mjhid.2017.015] [PMID: 28293403]
[27]
Najean, Y.; Rain, J.D. Treatment of polycythemia vera: the use of hydroxyurea and pipobroman in 292 patients under the age of 65 years. Blood, 1997, 90(9), 3370-3377.
[http://dx.doi.org/10.1182/blood.V90.9.3370] [PMID: 9345019]
[28]
DePass, L.R.; Weaver, E.V. Comparison of teratogenic effects of aspirin and hydroxyurea in the Fischer 344 and Wistar strains. J. Toxicol. Environ. Health, 1982, 10(2), 297-305.
[http://dx.doi.org/10.1080/15287398209530252] [PMID: 7143483]
[29]
dos Santos, J.L.; Varanda, E.A.; Lima, L.M.; Chin, C.M. Mutagenicity of new lead compounds to treat sickle cell disease symptoms in a Salmonella/microsome assay. Int. J. Mol. Sci., 2010, 11(2), 779-788.
[http://dx.doi.org/10.3390/ijms11020779] [PMID: 20386668]
[30]
de Lima, P.D.L.; Cardoso, P.C.S.; Khayat, A.S.; Bahia, M.O.; Burbano, R.R. Evaluation of the mutagenic activity of hydroxyurea on the G1-S-G2 phases of the cell cycle: an in vitro study. Genet. Mol. Res., 2003, 2(3), 328-333.
[PMID: 14966681]
[31]
Strouse, J.J. Is low dose hydroxyurea the solution to the global epidemic of sickle cell disease? Pediatr. Blood Cancer, 2015, 62(6), 929-930.
[http://dx.doi.org/10.1002/pbc.25471] [PMID: 25755219]
[32]
Jain, D.L.; Apte, M.; Colah, R.; Sarathi, V.; Desai, S.; Gokhale, A.; Bhandarwar, A.; Jain, H.L.; Ghosh, K. Efficacy of fixed low dose hydroxyurea in Indian children with sickle cell anemia: a single centre experience. Indian Pediatr., 2013, 50(10), 929-933.
[http://dx.doi.org/10.1007/s13312-013-0264-0] [PMID: 23798623]
[33]
Sethy, S.; Panda, T.; Jena, R.K. Beneficial effect of low fixed dose of hydroxyurea in vaso-occlusive crisis and transfusion requirements in adult hbss patients: a prospective study in a tertiary care center. Indian J. Hematol. Blood Transfus., 2018, 34(2), 294-298.
[http://dx.doi.org/10.1007/s12288-017-0869-x] [PMID: 29622872]
[34]
Wilmore, D.W. Food and drug administration approval of glutamine for sickle cell disease: success and precautions in glutamine research. JPEN J. Parenter. Enteral Nutr., 2017, 41(6), 912-917.
[http://dx.doi.org/10.1177/0148607117727271] [PMID: 28858569]
[35]
Niihara, Y.; Zerez, C.R.; Akiyama, D.S.; Tanaka, K.R. Oral L-glutamine therapy for sickle cell anemia: I. Subjective clinical improvement and favorable change in red cell NAD redox potential. Am. J. Hematol., 1998, 58(2), 117-121.
[http://dx.doi.org/10.1002/(SICI)1096-8652(199806)58: 2<117:AID-AJH5>3.0.CO;2-V] [PMID: 9625578]
[36]
Niihara, Y.; Matsui, N.M.; Shen, Y.M.; Akiyama, D.A.; Johnson, C.S.; Sunga, M.A.; Magpayo, J.; Embury, S.H.; Kalra, V.K.; Cho, S.H.; Tanaka, K.R. L-glutamine therapy reduces endothelial adhesion of sickle red blood cells to human umbilical vein endothelial cells. BMC Blood Disord., 2005, 5, 4.
[http://dx.doi.org/10.1186/1471-2326-5-4] [PMID: 16042803]
[37]
De Ingeniis, J.; Kazanov, M.D.; Shatalin, K.; Gelfand, M.S.; Osterman, A.L.; Sorci, L. Glutamine versus ammonia utilization in the NAD synthetase family. PLoS One, 2012, 7(6), e39115.
[http://dx.doi.org/10.1371/journal.pone.0039115] [PMID: 22720044]
[38]
de Montellano, P.R.O. A new step in the treatment of sickle cell disease (Published as part of the biochemistry series “biochemistry to bedside”). Biochemistry, 2018, 57(5), 470-471.
[http://dx.doi.org/10.1021/acs.biochem.7b00785] [PMID: 29172465]
[39]
Niihara, Y.; Macan, H.; Eckman, J.R.; Koh, H.; Cooper, M.L.; Ziegler, T.R.; Razon, R.; Tanaka, K.R.; Stark, C.W.; Johnson, C.S. L-glutamine therapy reduces hospitalization for sickle cell anemia and sickle β-thalassemia patients at six months - a phase II randomized trial. Clin. Pharmacol. Biopharm., 2014, 3(1), 1-5.
[http://dx.doi.org/10.4172/2167-065X.1000116]
[40]
Niihara, Y.; Miller, S.T.; Kanter, J.; Lanzkron, S.; Smith, W.R.; Hsu, L.L.; Gordeuk, V.R.; Viswanathan, K.; Sarnaik, S.; Osunkwo, I.; Guillaume, E.; Sadanandan, S.; Sieger, L.; Lasky, J.L.; Panosyan, E.H.; Blake, O.A.; New, T.N.; Bellevue, R.; Tran, L.T.; Razon, R.L.; Stark, C.W.; Neumayr, L.D.; Vichinsky, E.P. A phase 3 trial of l-glutamine in sickle cell disease. N. Engl. J. Med., 2018, 379(3), 226-235.
[http://dx.doi.org/10.1056/NEJMoa1715971] [PMID: 30021096]
[41]
Kaufman, M.B. Pharmaceutical approval update. P&T, 2018, 43(12), 734-735.
[PMID: 30559583]
[42]
Ataga, K.I.; Kutlar, A.; Kanter, J.; Liles, D.; Cancado, R.; Friedrisch, J.; Guthrie, T.H.; Knight-Madden, J.; Alvarez, O.A.; Gordeuk, V.R.; Gualandro, S.; Colella, M.P.; Smith, W.R.; Rollins, S.A.; Stocker, J.W.; Rother, R.P. Crizanlizumab for the prevention of pain crises in sickle cell disease. N. Engl. J. Med., 2017, 376(5), 429-439.
[http://dx.doi.org/10.1056/NEJMoa1611770] [PMID: 27959701]
[43]
Kutlar, A.; Kanter, J.; Liles, D.K.; Alvarez, O.A.; Cançado, R.D.; Friedrisch, J.R.; Knight-Madden, J.M.; Bruederle, A.; Shi, M.; Zhu, Z.; Ataga, K.I. Effect of crizanlizumab on pain crises in subgroups of patients with sickle cell disease: a SUSTAIN study analysis. Am. J. Hematol., 2019, 94(1), 55-61.
[http://dx.doi.org/10.1002/ajh.25308] [PMID: 30295335]
[44]
Blair, H.A. Crizanlizumab: first approval. Drugs, 2020, 80(1), 79-84.
[http://dx.doi.org/10.1007/s40265-019-01254-2] [PMID: 31933169]
[45]
Dufu, K.; Patel, M.; Oksenberg, D.; Cabrales, P. GBT440 improves red blood cell deformability and reduces viscosity of sickle cell blood under deoxygenated conditions. Clin. Hemorheol. Microcirc., 2018, 70(1), 95-105.
[http://dx.doi.org/10.3233/CH-170340] [PMID: 29660913]
[46]
Hutchaleelaha, A.; Patel, M.; Washington, C.; Siu, V.; Allen, E.; Oksenberg, D.; Gretler, D.D.; Mant, T.; Lehrer-Graiwer, J. Pharmacokinetics and pharmacodynamics of voxelotor (GBT440) in healthy adults and patients with sickle cell disease. Br. J. Clin. Pharmacol., 2019, 85(6), 1290-1302.
[http://dx.doi.org/10.1111/bcp.13896] [PMID: 30743314]
[47]
Howard, J.; Hemmaway, C.J.; Telfer, P.; Layton, D.M.; Porter, J.; Awogbade, M.; Mant, T.; Gretler, D.D.; Dufu, K.; Hutchaleelaha, A.; Patel, M.; Siu, V.; Dixon, S.; Landsman, N.; Tonda, M.; Lehrer-Graiwer, J. A phase 1/2 ascending dose study and open-label extension study of voxelotor in patients with sickle cell disease. Blood, 2019, 133(17), 1865-1875.
[http://dx.doi.org/10.1182/blood-2018-08-868893] [PMID: 30655275]
[48]
Blyden, G.; Bridges, K.R.; Bronte, L. Case series of patients with severe sickle cell disease treated with voxelotor (GBT440) by compassionate access. Am. J. Hematol., 2018, 93(8), E188-E190.
[http://dx.doi.org/10.1002/ajh.25139] [PMID: 29752824]
[49]
Bradner, J.E.; Mak, R.; Tanguturi, S.K.; Mazitschek, R.; Haggarty, S.J.; Ross, K.; Chang, C.Y.; Bosco, J.; West, N.; Morse, E.; Lin, K.; Shen, J.P.; Kwiatkowski, N.P.; Gheldof, N.; Dekker, J.; DeAngelo, D.J.; Carr, S.A.; Schreiber, S.L.; Golub, T.R.; Ebert, B.L. Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease. Proc. Natl. Acad. Sci. USA, 2010, 107(28), 12617-12622.
[http://dx.doi.org/10.1073/pnas.1006774107] [PMID: 20616024]
[50]
Esrick, E.B.; McConkey, M.; Lin, K.; Frisbee, A.; Ebert, B.L. Inactivation of HDAC1 or HDAC2 induces gamma globin expression without altering cell cycle or proliferation. Am. J. Hematol., 2015, 90(7), 624-628.
[http://dx.doi.org/10.1002/ajh.24019] [PMID: 25808664]
[51]
Shearstone, J.R.; Chonkar, A.; Bhol, K.; Jones, S.S.; Jarpe, M. The histone deacetylase 1 and 2 (HDAC1/2) inhibitor ACY-957 increases epsilon (HbE) and gamma (HbG) globin mRNA in the peripheral blood of non-anemic rats and monkeys. Blood, 2015, 126(23), 3378.
[http://dx.doi.org/10.1182/blood.V126.23.3378.3378]
[52]
Chonkar, A.; Jarpe, M.; Bhol, K.; Jones, S.S.; Shearstone, J.R. The histone deacetylase 1 and 2 (HDAC1/2) inhibitor ACY-957: impact of dosing schedule on pharmacokinetics (PK), pharmacodynamics (PD), hematopoietic toxicity, and gamma globin (HBG, γ) expression in monkey. Blood, 2016, 128(22), 323.
[http://dx.doi.org/10.1182/blood.V128.22.323.323]
[53]
Rivers, A.; Vaitkus, K.; Jagadeeswaran, R.; Ruiz, M.A.; Ibanez, V.; Ciceri, F.; Cavalcanti, F.; Molokie, R.E.; Saunthararajah, Y.; Engel, J.D.; DeSimone, J.; Lavelle, D. Oral administration of the LSD1 inhibitor ORY-3001 increases fetal hemoglobin in sickle cell mice and baboons. Exp. Hematol., 2018, 67, 60.e2-64.e2.
[http://dx.doi.org/10.1016/j.exphem.2018.08.003] [PMID: 30125603]
[54]
Rivers, A.; Vaitkus, K.; Ibanez, V.; Ruiz, M.A.; Jagadeeswaran, R.; Saunthararajah, Y.; Cui, S.; Engel, J.D.; DeSimone, J.; Lavelle, D. The LSD1 inhibitor RN-1 recapitulates the fetal pattern of hemoglobin synthesis in baboons (P. anubis). Haematologica, 2016, 101(6), 688-697.
[http://dx.doi.org/10.3324/haematol.2015.140749] [PMID: 26858356]
[55]
Rivers, A.; Vaitkus, K.; Ruiz, M.A.; Ibanez, V.; Jagadeeswaran, R.; Kouznetsova, T.; DeSimone, J.; Lavelle, D. RN-1, a potent and selective LSD1 inhibitor, increases γ-globin expression, F-retics, and F-cells in a sickle cell disease mouse model. Exp. Hematol., 2015, 43(7), 546-553.
[http://dx.doi.org/10.1016/j.exphem.2015.04.005] [PMID: 25931013]
[56]
Ibanez, V.; Vaitkus, K.; Rivers, A.; Molokie, R.; Cui, S.; Engel, J.D.; DeSimone, J.; Lavelle, D. Efficacy and safety of long-term RN-1 treatment to increase HbF in baboons. Blood, 2017, 129(2), 260-263.
[http://dx.doi.org/10.1182/blood-2016-10-746727] [PMID: 27908882]
[57]
Bird, A.P.; Wolffe, A.P. Methylation-induced repression-belts, braces, and chromatin. Cell, 1999, 99(5), 451-454.
[http://dx.doi.org/10.1016/S0092-8674(00)81532-9] [PMID: 10589672]
[58]
Jones, P.A.; Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet., 2002, 3(6), 415-428.
[http://dx.doi.org/10.1038/nrg816] [PMID: 12042769]
[59]
Klose, R.J.; Bird, A.P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci., 2006, 31(2), 89-97.
[http://dx.doi.org/10.1016/j.tibs.2005.12.008] [PMID: 16403636]
[60]
Molokie, R.; Lavelle, D.; Gowhari, M.; Pacini, M.; Krauz, L.; Hassan, J.; Ibanez, V.; Ruiz, M.A.; Ng, K.P.; Woost, P.; Radivoyevitch, T.; Pacelli, D.; Fada, S.; Rump, M.; Hsieh, M.; Tisdale, J.F.; Jacobberger, J.; Phelps, M.; Engel, J.D.; Saraf, S.; Hsu, L.L.; Gordeuk, V.; DeSimone, J.; Saunthararajah, Y. Oral tetrahydrouridine and decitabine for non-cytotoxic epigenetic gene regulation in sickle cell disease: a randomized phase 1 study. PLoS Med., 2017, 14(9), e1002382.
[http://dx.doi.org/10.1371/journal.pmed.1002382] [PMID: 28880867]
[61]
He, Y.; Rank, G.; Zhang, M.; Ju, J.; Liu, R.; Xu, Z.; Brown, F.; Cerruti, L.; Ma, C.; Tan, R.; Jane, S.M.; Zhao, Q. Induction of human fetal hemoglobin expression by adenosine-2′,3′-dialdehyde. J. Transl. Med., 2013, 11(1), 14.
[http://dx.doi.org/10.1186/1479-5876-11-14] [PMID: 23316703]
[62]
Habibi, H.; Atashi, A.; Abroun, S.; Noruzinia, M. Synergistic effect of simvastatin and romidepsin on gamma-globin gene induction. Cell J., 2019, 20(4), 576-583.
[http://dx.doi.org/10.22074/cellj.2019.5589] [PMID: 30124006]
[63]
Dai, Y.; Chen, T.; Ijaz, H.; Cho, E.H.; Steinberg, M.H. SIRT1 activates the expression of fetal hemoglobin genes. Am. J. Hematol., 2017, 92(11), 1177-1186.
[http://dx.doi.org/10.1002/ajh.24879] [PMID: 28776729]
[64]
Meiler, S.E.; Wade, M.; Kutlar, F.; Yerigenahally, S.D.; Xue, Y.; Moutouh-de Parseval, L.A.; Corral, L.G.; Swerdlow, P.S.; Kutlar, A. Pomalidomide augments fetal hemoglobin production without the myelosuppressive effects of hydroxyurea in transgenic sickle cell mice. Blood, 2011, 118(4), 1109-1112.
[http://dx.doi.org/10.1182/blood-2010-11-319137] [PMID: 21536862]
[65]
Moutouh-de Parseval, L.A.; Verhelle, D.; Glezer, E.; Jensen-Pergakes, K.; Ferguson, G.D.; Corral, L.G.; Morris, C.L.; Muller, G.; Brady, H.; Chan, K. Pomalidomide and lenalidomide regulate erythropoiesis and fetal hemoglobin production in human CD34+ cells. J. Clin. Invest., 2008, 118(1), 248-258.
[http://dx.doi.org/10.1172/JCI32322] [PMID: 18064299]
[66]
Dulmovits, B.M.; Appiah-Kubi, A.O.; Papoin, J.; Hale, J.; He, M.; Al-Abed, Y.; Didier, S.; Gould, M.; Husain-Krautter, S.; Singh, S.A.; Chan, K.W.; Vlachos, A.; Allen, S.L.; Taylor, N.; Marambaud, P.; An, X.; Gallagher, P.G.; Mohandas, N.; Lipton, J.M.; Liu, J.M.; Blanc, L. Pomalidomide reverses γ-globin silencing through the transcriptional reprogramming of adult hematopoietic progenitors. Blood, 2016, 127(11), 1481-1492.
[http://dx.doi.org/10.1182/blood-2015-09-667923] [PMID: 26679864]
[67]
Lowrey, C.H. Down the repressors! Up the fetal hemoglobin! Blood, 2016, 127(11), 1384-1385.
[http://dx.doi.org/10.1182/blood-2016-01-689018] [PMID: 26989189]
[68]
Malhotra, D.; Portales-Casamar, E.; Singh, A.; Srivastava, S.; Arenillas, D.; Happel, C.; Shyr, C.; Wakabayashi, N.; Kensler, T.W.; Wasserman, W.W.; Biswal, S. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res., 2010, 38(17), 5718-5734.
[http://dx.doi.org/10.1093/nar/gkq212] [PMID: 20460467]
[69]
Macari, E.R.; Lowrey, C.H. Induction of human fetal hemoglobin via the NRF2 antioxidant response signaling pathway. Blood, 2011, 117(22), 5987-5997.
[http://dx.doi.org/10.1182/blood-2010-10-314096] [PMID: 21464371]
[70]
Krishnamoorthy, S.; Pace, B.; Gupta, D.; Sturtevant, S.; Li, B.; Makala, L.; Brittain, J.; Moore, N.; Vieira, B.F.; Thullen, T.; Stone, I.; Li, H.; Hobbs, W.E.; Light, D.R. Dimethyl fumarate increases fetal hemoglobin, provides heme detoxification, and corrects anemia in sickle cell disease. JCI Insight, 2017, 2(20), 1-16.
[http://dx.doi.org/10.1172/jci.insight.96409] [PMID: 29046485]
[71]
Zhang, Y.; Paikari, A.; Sumazin, P.; Summarell, C.C.G.; Crosby, J.R.; Boerwinkle, E.; Weiss, M.J.; Sheehan, V.A. Metformin induces FOXO3-dependent fetal hemoglobin production in human primary erythroid cells. Blood, 2018, 132(3), 321-333.
[http://dx.doi.org/10.1182/blood-2017-11-814335] [PMID: 29884740]
[72]
Zhang, X.; Campreciós, G.; Rimmelé, P.; Liang, R.; Yalcin, S.; Mungamuri, S.K.; Barminko, J.; D’Escamard, V.; Baron, M.H.; Brugnara, C.; Papatsenko, D.; Rivella, S.; Ghaffari, S. FOXO3-mTOR metabolic cooperation in the regulation of erythroid cell maturation and homeostasis. Am. J. Hematol., 2014, 89(10), 954-963.
[http://dx.doi.org/10.1002/ajh.23786] [PMID: 24966026]
[73]
Knight, Z.A.; Schmidt, S.F.; Birsoy, K.; Tan, K.; Friedman, J.M. A critical role for mTORC1 in erythropoiesis and anemia. eLife, 2014, 3, e01913.
[http://dx.doi.org/10.7554/eLife.01913] [PMID: 25201874]
[74]
Chung, J.; Bauer, D.E.; Ghamari, A.; Nizzi, C.P.; Deck, K.M.; Kingsley, P.D.; Yien, Y.Y.; Huston, N.C.; Chen, C.; Schultz, I.J.; Dalton, A.J.; Wittig, J.G.; Palis, J.; Orkin, S.H.; Lodish, H.F.; Eisenstein, R.S.; Cantor, A.B.; Paw, B.H. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability. Sci. Signal., 2015, 8(372), ra34.
[http://dx.doi.org/10.1126/scisignal.aaa5903] [PMID: 25872869]
[75]
Sehgal, S.N. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant. Proc., 2003, 35(3)(Suppl.), 7S-14S.
[http://dx.doi.org/10.1016/S0041-1345(03)00211-2] [PMID: 12742462]
[76]
Khaibullina, A.; Almeida, L.E.F.; Wang, L.; Kamimura, S.; Wong, E.C.C.; Nouraie, M.; Maric, I.; Albani, S.; Finkel, J.; Quezado, Z.M.N. Rapamycin increases fetal hemoglobin and ameliorates the nociception phenotype in sickle cell mice. Blood Cells Mol. Dis., 2015, 55(4), 363-372.
[http://dx.doi.org/10.1016/j.bcmd.2015.08.001] [PMID: 26460261]
[77]
Pecoraro, A.; Troia, A.; Calzolari, R.; Scazzone, C.; Rigano, P.; Martorana, A.; Sacco, M.; Maggio, A.; Di Marzo, R. Efficacy of rapamycin as inducer of HbF in primary erythroid cultures from sickle cell disease and β-thalassemia patients. Hemoglobin, 2015, 39(4), 225-229.
[http://dx.doi.org/10.3109/03630269.2015.1036882] [PMID: 26016899]
[78]
Gaudre, N.; Cougoul, P.; Bartolucci, P.; Dörr, G.; Bura-Riviere, A.; Kamar, N.; Del Bello, A. improved fetal hemoglobin with mTOR inhibitor-based immunosuppression in a kidney transplant recipient with sickle cell disease. Am. J. Transplant., 2017, 17(8), 2212-2214.
[http://dx.doi.org/10.1111/ajt.14263] [PMID: 28276629]
[79]
Charache, S.; Grisolia, S.; Fiedler, A.J.; Hellegers, A.E. Effect of 2,3-diphosphoglycerate on oxygen affinity of blood in sickle cell anemia. J. Clin. Invest., 1970, 49(4), 806-812.
[http://dx.doi.org/10.1172/JCI106294] [PMID: 5443181]
[80]
MacDonald, R. Red cell 2,3-diphosphoglycerate and oxygen affinity. Anaesthesia, 1977, 32(6), 544-553.
[http://dx.doi.org/10.1111/j.1365-2044.1977.tb10002.x] [PMID: 327846]
[81]
Riggs, A.; Wells, M. The oxygen equilibrium of sickle-cell hemoglobin. Biochim. Biophys. Acta, 1961, 50(2), 243-248.
[http://dx.doi.org/10.1016/0006-3002(61)90322-5] [PMID: 13741620]
[82]
Oder, E.; Safo, M.K.; Abdulmalik, O.; Kato, G.J. New developments in anti-sickling agents: can drugs directly prevent the polymerization of sickle haemoglobin in vivo? Br. J. Haematol., 2016, 175(1), 24-30.
[http://dx.doi.org/10.1111/bjh.14264] [PMID: 27605087]
[83]
Safo, M.K.; Kato, G.J. Therapeutic strategies to alter oxygen affinity of sickle hemoglobin. Hematol. Oncol. Clin. North. Am., 2014, 28(2), 217-231.
[http://dx.doi.org/10.1016/j.hoc.2013.11.001] [PMID: 24589263]
[84]
Safo, M.K.; Abdulmalik, O.; Danso-Danquah, R.; Burnett, J.C.; Nokuri, S.; Joshi, G.S.; Musayev, F.N.; Asakura, T.; Abraham, D.J. Structural basis for the potent antisickling effect of a novel class of five-membered heterocyclic aldehydic compounds. J. Med. Chem., 2004, 47(19), 4665-4676.
[http://dx.doi.org/10.1021/jm0498001] [PMID: 15341482]
[85]
Abdulmalik, O.; Safo, M.K.; Chen, Q.; Yang, J.; Brugnara, C.; Ohene-Frempong, K.; Abraham, D.J.; Asakura, T. 5-hydroxymethyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells. Br. J. Haematol., 2005, 128(4), 552-561.
[http://dx.doi.org/10.1111/j.1365-2141.2004.05332.x] [PMID: 15686467]
[86]
Xu, G.G.; Pagare, P.P.; Ghatge, M.S.; Safo, R.P.; Gazi, A.; Chen, Q.; David, T.; Alabbas, A.B.; Musayev, F.N.; Venitz, J.; Zhang, Y.; Safo, M.K.; Abdulmalik, O. Design, synthesis, and biological evaluation of ester and ether derivatives of antisickling agent 5-HMF for the treatment of sickle cell disease. Mol. Pharm., 2017, 14(10), 3499-3511.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00553] [PMID: 28858508]
[87]
Nakagawa, A.; Lui, F.E.; Wassaf, D.; Yefidoff-Freedman, R.; Casalena, D.; Palmer, M.A.; Meadows, J.; Mozzarelli, A.; Ronda, L.; Abdulmalik, O.; Bloch, K.D.; Safo, M.K.; Zapol, W.M. Identification of a small molecule that increases hemoglobin oxygen affinity and reduces SS erythrocyte sickling. ACS Chem. Biol., 2014, 9(10), 2318-2325.
[http://dx.doi.org/10.1021/cb500230b] [PMID: 25061917]
[88]
Nakagawa, A.; Ferrari, M.; Schleifer, G.; Cooper, M.K.; Liu, C.; Yu, B.; Berra, L.; Klings, E.S.; Safo, R.S.; Chen, Q.; Musayev, F.N.; Safo, M.K.; Abdulmalik, O.; Bloch, D.B.; Zapol, W.M. A triazole disulfide compound increases the affinity of hemoglobin for oxygen and reduces the sickling of human sickle cells. Mol. Pharm., 2018, 15(5), 1954-1963.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00108] [PMID: 29634905]
[89]
Al Balushi, H.; Dufu, K.; Rees, D.C.; Brewin, J.N.; Hannemann, A.; Oksenberg, D.; Lu, D.C.Y.; Gibson, J.S. The effect of the antisickling compound GBT1118 on the permeability of red blood cells from patients with sickle cell anemia. Physiol. Rep., 2019, 7(6), e14027.
[http://dx.doi.org/10.14814/phy2.14027] [PMID: 30916477]
[90]
Pagare, P.P.; Ghatge, M.S.; Musayev, F.N.; Deshpande, T.M.; Chen, Q.; Braxton, C.; Kim, S.; Venitz, J.; Zhang, Y.; Abdulmalik, O.; Safo, M.K. Rational design of pyridyl derivatives of vanillin for the treatment of sickle cell disease. Bioorg. Med. Chem., 2018, 26(9), 2530-2538.
[http://dx.doi.org/10.1016/j.bmc.2018.04.015] [PMID: 29655608]
[91]
Deshpande, T.M.; Pagare, P.P.; Ghatge, M.S.; Chen, Q.; Musayev, F.N.; Venitz, J.; Zhang, Y.; Abdulmalik, O.; Safo, M.K. Rational modification of vanillin derivatives to stereospecifically destabilize sickle hemoglobin polymer formation. Acta Crystallogr. D Struct. Biol., 2018, 74(Pt 10), 956-964.
[http://dx.doi.org/10.1107/S2059798318009919] [PMID: 30289405]
[92]
Muhammad, A.; Waziri, A.D.; Forcados, G.E.; Sanusi, B.; Sani, H.; Malami, I.; Abubakar, I.B.; Oluwatoyin, H.Y.; Adinoyi, O.A.; Mohammed, H.A. Sickling-preventive effects of rutin is associated with modulation of deoxygenated haemoglobin, 2,3-bisphosphoglycerate mutase, redox status and alteration of functional chemistry in sickle erythrocytes. Heliyon, 2019, 5(6), e01905.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01905] [PMID: 31297461]
[93]
Purvis, S.H.; Keefer, J.R.; Fortenberry, Y.M.; Barron-Casella, E.A.; Casella, J.F. Identification of aptamers that bind to sickle hemoglobin and inhibit its polymerization. Nucleic Acid Ther., 2017, 27(6), 354-364.
[http://dx.doi.org/10.1089/nat.2016.0646] [PMID: 29039727]
[94]
Li, Q.; Henry, E.R.; Hofrichter, J.; Smith, J.F.; Cellmer, T.; Dunkelberger, E.B.; Metaferia, B.B.; Jones-Straehle, S.; Boutom, S.; Christoph, G.W.; Wakefield, T.H.; Link, M.E.; Staton, D.; Vass, E.R.; Miller, J.L.; Hsieh, M.M.; Tisdale, J.F.; Eaton, W.A. Kinetic assay shows that increasing red cell volume could be a treatment for sickle cell disease. Proc. Natl. Acad. Sci. USA, 2017, 114(5), E689-E696.
[http://dx.doi.org/10.1073/pnas.1619054114] [PMID: 28096387]
[95]
Tantawy, A.A.G.; Adly, A.A.M.; Ismail, E.A.R.; Aly, S.H. Endothelial nitric oxide synthase gene intron 4 VNTR polymorphism in sickle cell disease: relation to vasculopathy and disease severity. Pediatr. Blood Cancer, 2015, 62(3), 389-394.
[http://dx.doi.org/10.1002/pbc.25234] [PMID: 25263931]
[96]
Antwi-Boasiako, C.; Dzudzor, B.; Kudzi, W.; Doku, A.; Dale, C.A.; Sey, F.; Otu, K.H.; Boatemaa, G.D.; Ekem, I.; Ahenkorah, J.; Achel, D.G.; Aboagye, E.T.; Donkor, E.S. Association between eNOS gene polymorphism (T786C and VNTR) and sickle cell disease patients in Ghana. Diseases, 2018, 6(4), 1-9.
[http://dx.doi.org/10.3390/diseases6040090] [PMID: 30274269]
[97]
Miguel, L.I.; Almeida, C.B.; Traina, F.; Canalli, A.A.; Dominical, V.M.; Saad, S.T.O.; Costa, F.F.; Conran, N. Inhibition of phosphodiesterase 9A reduces cytokine-stimulated in vitro adhesion of neutrophils from sickle cell anemia individuals. Inflamm. Res., 2011, 60(7), 633-642.
[http://dx.doi.org/10.1007/s00011-011-0315-8] [PMID: 21336703]
[98]
Barodka, V.; Mohanty, J.G.; Mustafa, A.K.; Santhanam, L.; Nyhan, A.; Bhunia, A.K.; Sikka, G.; Nyhan, D.; Berkowitz, D.E.; Rifkind, J.M. Nitroprusside inhibits calcium-induced impairment of red blood cell deformability. Transfusion, 2014, 54(2), 434-444.
[http://dx.doi.org/10.1111/trf.12291] [PMID: 23781865]
[99]
Belanger, A.M.; Keggi, C.; Kanias, T.; Gladwin, M.T.; Kim-Shapiro, D.B. Effects of nitric oxide and its congeners on sickle red blood cell deformability. Transfusion, 2015, 55(10), 2464-2472.
[http://dx.doi.org/10.1111/trf.13134] [PMID: 25912054]
[100]
Wajih, N.; Basu, S.; Jailwala, A.; Kim, H.W.; Ostrowski, D.; Perlegas, A.; Bolden, C.A.; Buechler, N.L.; Gladwin, M.T.; Caudell, D.L.; Rahbar, E.; Alexander-Miller, M.A.; Vachharajani, V.; Kim-Shapiro, D.B. Potential therapeutic action of nitrite in sickle cell disease. Redox Biol., 2017, 12, 1026-1039.
[http://dx.doi.org/10.1016/j.redox.2017.05.006] [PMID: 28511346]
[101]
Morris, C.R.; Kato, G.J.; Poljakovic, M.; Wang, X.; Blackwelder, W.C.; Sachdev, V.; Hazen, S.L.; Vichinsky, E.P.; Morris, S.M. Jr.; Gladwin, M.T. Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. JAMA, 2005, 294(1), 81-90.
[http://dx.doi.org/10.1001/jama.294.1.81] [PMID: 15998894]
[102]
Elias, D.B.D.; Barbosa, M.C.; Rocha, L.B. da S.; Dutra, L.L.A.; Silva, H.F.; Martins, A.M.C.; Gonçalves, R.P. L-arginine as an adjuvant drug in the treatment of sickle cell anaemia. Br. J. Haematol., 2013, 160(3), 410-412.
[http://dx.doi.org/10.1111/bjh.12114] [PMID: 23157285]
[103]
Eleutério, R.M.N.; Nascimento, F.O.; Araújo, T.G.; Castro, M.F.; Filho, T.P.A.; Filho, P.A.M.; Eleutério, J., Jr.; Elias, D.B.D.; Lemes, R.P.G. Double-blind clinical trial of arginine supplementation in the treatment of adult patients with sickle cell anaemia. Adv. Hematol., 2019, 2019, 4397150.
[http://dx.doi.org/10.1155/2019/4397150] [PMID: 30853991]
[104]
Marealle, A.I.; Siervo, M.; Wassel, S.; Bluck, L.; Prentice, A.M.; Minzi, O.; Sasi, P.; Kamuhabwa, A.; Soka, D.; Makani, J.; Cox, S.E. A pilot study of a non-invasive oral nitrate stable isotopic method suggests that arginine and citrulline supplementation increases whole-body NO production in Tanzanian children with sickle cell disease. Nitric Oxide, 2018, 74, 19-22.
[http://dx.doi.org/10.1016/j.niox.2017.12.009] [PMID: 29305240]
[105]
Benites, B.D.; Olalla-Saad, S.T. An update on arginine in sickle cell disease. Expert Rev. Hematol., 2019, 12(4), 235-244.
[http://dx.doi.org/10.1080/17474086.2019.1591948] [PMID: 30855194]
[106]
Ikuta, T.; Ausenda, S.; Cappellini, M.D. Mechanism for fetal globin gene expression: role of the soluble guanylate cyclase-cGMP-dependent protein kinase pathway. Proc. Natl. Acad. Sci. USA, 2001, 98(4), 1847-1852.
[http://dx.doi.org/10.1073/pnas.98.4.1847] [PMID: 11172039]
[107]
Conran, N.; Torres, L. cGMP modulation therapeutics for sickle cell disease. Exp. Biol. Med. (Maywood), 2019, 244(2), 132-146.
[http://dx.doi.org/10.1177/1535370219827276] [PMID: 30691292]
[108]
Makowski, C.T.; Rissmiller, R.W.; Bullington, W.M. Riociguat: a novel new drug for treatment of pulmonary hypertension. Pharmacotherapy, 2015, 35(5), 502-519.
[http://dx.doi.org/10.1002/phar.1592] [PMID: 26011143]
[109]
Weir, N.A.; Conrey, A.; Lewis, D.; Mehari, A. Riociguat use in sickle cell related chronic thromboembolic pulmonary hypertension: a case series. Pulm. Circ., 2018, 8(4), 204589-4018791802.
[http://dx.doi.org/10.1177/2045894018791802] [PMID: 30033820]
[110]
Miyashiro, J.; Pant, P.; Tchernychev, B.; Milne, T.; Currie, M.; Graul, R.; Masferrer, J. The effect of the soluble guanylyl cyclase stimulator olinciguat on ƴ-globin gene induction in K562 cells. Blood, 2018, 132(Suppl. 1), 1078.
[http://dx.doi.org/10.1182/blood-2018-99-116011]
[111]
de Melo, T.R.F.; Kumkhaek, C.; Fernandes, G.F.S.; Pires, M.E.S.; Chelucci, R.C.; Barbieri, K.P.; Coelho, F.; Capote, T.S.O.; Lanaro, C.; Carlos, I.Z.; Marcondes, S.; Chegaev, K.; Guglielmo, S.; Fruttero, R.; Chung, M.C.; Costa, F.F.; Rodgers, G.P.; dos Santos, J.L. Discovery of phenylsulfonylfuroxan derivatives as gamma globin inducers by histone acetylation. Eur. J. Med. Chem., 2018, 154, 341-353.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.008] [PMID: 29852459]
[112]
Dos Santos, J.L.; Lanaro, C.; Chelucci, R.C.; Gambero, S.; Bosquesi, P.L.; Reis, J.S.; Lima, L.M.; Cerecetto, H.; González, M.; Costa, F.F.; Chung, M.C. Design, synthesis, and pharmacological evaluation of novel hybrid compounds to treat sickle cell disease symptoms. part II: furoxan derivatives. J. Med. Chem., 2012, 55(17), 7583-7592.
[http://dx.doi.org/10.1021/jm300602n] [PMID: 22889416]
[113]
dos Santos, J.L.; Lanaro, C.; Lima, L.M.; Gambero, S.; Franco-Penteado, C.F.; Alexandre-Moreira, M.S.; Wade, M.; Yerigenahally, S.; Kutlar, A.; Meiler, S.E.; Costa, F.F.; Chung, M. Design, synthesis, and pharmacological evaluation of novel hybrid compounds to treat sickle cell disease symptoms. J. Med. Chem., 2011, 54(16), 5811-5819.
[http://dx.doi.org/10.1021/jm200531f] [PMID: 21766854]
[114]
Eaton, W.A.; Hofrichter, J. Sickle cell hemoglobin polymerization. Adv. Protein Chem., 1990, 40, 263-279.
[http://dx.doi.org/10.1016/s0065-3233(08)60287-9] [PMID: 2195851]
[115]
Rosa, R.M.; Bierer, B.E.; Thomas, R.; Stoff, J.S.; Kruskall, M.; Robinson, S.; Bunn, H.F.; Epstein, F.H. A study of induced hyponatremia in the prevention and treatment of sickle-cell crisis. N. Engl. J. Med., 1980, 303(20), 1138-1143.
[http://dx.doi.org/10.1056/NEJM198011133032002] [PMID: 6999348]
[116]
Brugnara, C. Sickle cell dehydration: pathophysiology and therapeutic applications. Clin. Hemorheol. Microcirc., 2018, 68(2-3), 187-204.
[http://dx.doi.org/10.3233/CH-189007] [PMID: 29614632]
[117]
Lew, V.L.; Tiffert, T.; Etzion, Z.; Perdomo, D.; Daw, N.; Macdonald, L.; Bookchin, R.M. Distribution of dehydration rates generated by maximal Gardos-channel activation in normal and sickle red blood cells. Blood, 2005, 105(1), 361-367.
[http://dx.doi.org/10.1182/blood-2004-01-0125] [PMID: 15339840]
[118]
De Franceschi, L.; Beuzard, Y.; Jouault, H.; Brugnara, C. Modulation of erythrocyte potassium chloride cotransport, potassium content, and density by dietary magnesium intake in transgenic SAD mouse. Blood, 1996, 88(7), 2738-2744.
[http://dx.doi.org/10.1182/blood.V88.7.2738.bloodjournal8872738] [PMID: 8839870]
[119]
De Franceschi, L.; Bachir, D.; Galacteros, F.; Tchernia, G.; Cynober, T.; Alper, S.; Platt, O.; Beuzard, Y.; Brugnara, C. Oral magnesium supplements reduce erythrocyte dehydration in patients with sickle cell disease. J. Clin. Invest., 1997, 100(7), 1847-1852.
[http://dx.doi.org/10.1172/JCI119713] [PMID: 9312186]
[120]
Wang, W.; Brugnara, C.; Snyder, C.; Wynn, L.; Rogers, Z.; Kalinyak, K.; Brown, C.; Qureshi, A.; Bigelow, C.; Neumayr, L.; Smith-Whitley, K.; Chui, D.H.; Delahunty, M.; Woolson, R.; Steinberg, M.; Telen, M.; Kesler, K. The effects of hydroxycarbamide and magnesium on haemoglobin SC disease: results of the multi-centre CHAMPS trial. Br. J. Haematol., 2011, 152(6), 771-776.
[http://dx.doi.org/10.1111/j.1365-2141.2010.08523.x] [PMID: 21275961]
[121]
Goldman, R.D.; Mounstephen, W.; Kirby-Allen, M.; Friedman, J.N. Intravenous magnesium sulfate for vaso-occlusive episodes in sickle cell disease. Pediatrics, 2013, 132(6), e1634-e1641.
[http://dx.doi.org/10.1542/peds.2013-2065] [PMID: 24276838]
[122]
Brousseau, D.C.; Scott, J.P.; Badaki-Makun, O.; Darbari, D.S.; Chumpitazi, C.E.; Airewele, G.E.; Ellison, A.M.; Smith-Whitley, K.; Mahajan, P.; Sarnaik, S.A.; Casper, T.C.; Cook, L.J.; Dean, J.M.; Leonard, J.; Hulbert, M.L.; Powell, E.C.; Liem, R.I.; Hickey, R.; Krishnamurti, L.; Hillery, C.A.; Nimmer, M.; Panepinto, J.A. A multicenter randomized controlled trial of intravenous magnesium for sickle cell pain crisis in children. Blood, 2015, 126(14), 1651-1657.
[http://dx.doi.org/10.1182/blood-2015-05-647107] [PMID: 26232172]
[123]
Gardos, G. The function of calcium in the potassium permeability of human erythrocytes. Biochim. Biophys. Acta, 1958, 30(3), 653-654.
[http://dx.doi.org/10.1016/0006-3002(58)90124-0] [PMID: 13618284]
[124]
Joiner, C.H.; Rettig, R.K.; Jiang, M.; Risinger, M.; Franco, R.S. Urea stimulation of KCl cotransport induces abnormal volume reduction in sickle reticulocytes. Blood, 2007, 109(4), 1728-1735.
[http://dx.doi.org/10.1182/blood-2006-04-018630] [PMID: 17023583]
[125]
Berkowitz, L.R.; Orringer, E.P. An analysis of the mechanism by which cetiedil inhibits the Gardos phenomenon. Am. J. Hematol., 1984, 17(3), 217-223.
[http://dx.doi.org/10.1002/ajh.2830170302] [PMID: 6475933]
[126]
Abu-Salah, K.M.; Gambo, A.H.A. An analysis of the mechanism by which cetiedil inhibits sickling. Life Sci., 2002, 70(9), 1003-1011.
[http://dx.doi.org/10.1016/S0024-3205(01)01477-1] [PMID: 11860149]
[127]
Brugnara, C.; Gee, B.; Armsby, C.C.; Kurth, S.; Sakamoto, M.; Rifai, N.; Alper, S.L.; Platt, O.S. Therapy with oral clotrimazole induces inhibition of the Gardos channel and reduction of erythrocyte dehydration in patients with sickle cell disease. J. Clin. Invest., 1996, 97(5), 1227-1234.
[http://dx.doi.org/10.1172/JCI118537] [PMID: 8636434]
[128]
Stocker, J.W.; De Franceschi, L.; McNaughton-Smith, G.A.; Corrocher, R.; Beuzard, Y.; Brugnara, C. ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice. Blood, 2003, 101(6), 2412-2418.
[http://dx.doi.org/10.1182/blood-2002-05-1433] [PMID: 12433690]
[129]
Ataga, K.I.; Reid, M.; Ballas, S.K.; Yasin, Z.; Bigelow, C.; James, L.S.; Smith, W.R.; Galacteros, F.; Kutlar, A.; Hull, J.H.; Stocker, J.W. Improvements in haemolysis and indicators of erythrocyte survival do not correlate with acute vaso-occlusive crises in patients with sickle cell disease: a phase III randomized, placebo-controlled, double-blind study of the Gardos channel blocker senicapoc (ICA-17043). Br. J. Haematol., 2011, 153(1), 92-104.
[http://dx.doi.org/10.1111/j.1365-2141.2010.08520.x] [PMID: 21323872]
[130]
Adams, R.J.; McKie, V.C.; Hsu, L.; Files, B.; Vichinsky, E.; Pegelow, C.; Abboud, M.; Gallagher, D.; Kutlar, A.; Nichols, F.T.; Bonds, D.R.; Brambilla, D. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N. Engl. J. Med., 1998, 339(1), 5-11.
[http://dx.doi.org/10.1056/NEJM199807023390102] [PMID: 9647873]
[131]
Darbari, D.S.; Kple-Faget, P.; Kwagyan, J.; Rana, S.; Gordeuk, V.R.; Castro, O. Circumstances of death in adult sickle cell disease patients. Am. J. Hematol., 2006, 81(11), 858-863.
[http://dx.doi.org/10.1002/ajh.20685] [PMID: 16924640]
[132]
Thuret, I. Post-transfusional iron overload in the haemoglobinopathies. C. R. Biol., 2013, 336(3), 164-172.
[http://dx.doi.org/10.1016/j.crvi.2012.09.010] [PMID: 23643400]
[133]
Porter, J.B.; de Witte, T.; Cappellini, M.D.; Gattermann, N. New insights into transfusion-related iron toxicity: implications for the oncologist. Crit. Rev. Oncol. Hematol., 2016, 99, 261-271.
[http://dx.doi.org/10.1016/j.critrevonc.2015.11.017] [PMID: 26806144]
[134]
Allali, S.; de Montalembert, M.; Brousse, V.; Chalumeau, M.; Karim, Z. Management of iron overload in hemoglobinopathies. Transfus. Clin. Biol., 2017, 24(3), 223-226.
[http://dx.doi.org/10.1016/j.tracli.2017.06.008] [PMID: 28673501]
[135]
Shah, N.R. Advances in iron chelation therapy: transitioning to a new oral formulation. Drugs Context, 2017, 6, 212502.
[http://dx.doi.org/10.7573/dic.212502] [PMID: 28706555]
[136]
Rodrigues, M.; Bonham, C.A.; Minniti, C.P.; Gupta, K.; Longaker, M.T.; Gurtner, G.C. Iron chelation with transdermal deferoxamine accelerates healing of murine sickle cell ulcers. Adv. Wound Care, 2018, 7(10), 323-332.
[http://dx.doi.org/10.1089/wound.2018.0789] [PMID: 30374417]
[137]
Abbina, S.; Abbasi, U.; Gill, A.; Wong, K.; Kalathottukaren, M.T.; Kizhakkedathu, J.N. Design of safe nanotherapeutics for the excretion of excess systemic toxic iron. ACS Cent. Sci., 2019, 5(5), 917-926.
[http://dx.doi.org/10.1021/acscentsci.9b00284] [PMID: 31139728]
[138]
Akinsulie, A.O.; Temiye, E.O.; Akanmu, A.S.; Lesi, F.E.A.; Whyte, C.O. Clinical evaluation of extract of Cajanus cajan (Ciklavit) in sickle cell anaemia. J. Trop. Pediatr., 2005, 51(4), 200-205.
[http://dx.doi.org/10.1093/tropej/fmh097] [PMID: 15917266]
[139]
Wambebe, C. Chemistry and clinical evaluation of NIPRISAN in patients with sickle cell anemia. In: National Sickle Cell Disease Program 30th Annual Meeting Conference Proceedings, Washington D.C.2002, p. 46a.
[140]
Imaga, N.A. Phytomedicines and nutraceuticals: alternative therapeutics for sickle cell anemia. Scientific World J., 2013, 2013, 269659.
[http://dx.doi.org/10.1155/2013/269659] [PMID: 23476125]
[141]
Afolabi, I.S.; Osikoya, I.O.; Fajimi, O.D.; Usoro, P.I.; Ogunleye, D.O.; Bisi-Adeniyi, T.; Adeyemi, A.O.; Adekeye, B.T. Solenostemon monostachyus, Ipomoea involucrata and Carica papaya seed oil versus glutathione, or Vernonia amygdalina: methanolic extracts of novel plants for the management of sickle cell anemia disease. BMC Complement. Altern. Med., 2012, 12, 262-273.
[http://dx.doi.org/10.1186/1472-6882-12-262] [PMID: 23259718]
[142]
Pauline, N.; Cabral, B.N.P.; Anatole, P.C.; Jocelyne, A.M.V.; Bruno, M.; Jeanne, N.Y. The in vitro antisickling and antioxidant effects of aqueous extracts Zanthoxyllum heitzii on sickle cell disorder. BMC Complement. Altern. Med., 2013, 13, 162-169.
[http://dx.doi.org/10.1186/1472-6882-13-162] [PMID: 23829696]
[143]
Abere, T.A.; Okoye, C.J.; Agoreyo, F.O.; Eze, G.I.; Jesuorobo, R.I.; Egharevba, C.O.; Aimator, P.O. Antisickling and toxicological evaluation of the leaves of Scoparia dulcis Linn (scrophulariaceae). BMC Complement. Altern. Med., 2015, 15, 414-421.
[http://dx.doi.org/10.1186/s12906-015-0928-5] [PMID: 26597857]
[144]
Ren, H.; Okpala, I.; Ghebremeskel, K.; Ugochukwu, C.C.; Ibegbulam, O.; Crawford, M. Blood mononuclear cells and platelets have abnormal fatty acid composition in homozygous sickle cell disease. Ann. Hematol., 2005, 84(9), 578-583.
[http://dx.doi.org/10.1007/s00277-005-1023-7] [PMID: 15809883]
[145]
Tomer, A.; Kasey, S.; Connor, W.E.; Clark, S.; Harker, L.A.; Eckman, J.R. Reduction of pain episodes and prothrombotic activity in sickle cell disease by dietary n-3 fatty acids. Thromb. Haemost., 2001, 85(6), 966-974.
[http://dx.doi.org/10.1055/s-0037-1615948] [PMID: 11434703]
[146]
Daak, A.A.; Elderdery, A.Y.; Elbashir, L.M.; Mariniello, K.; Mills, J.; Scarlett, G.; Elbashir, M.I.; Ghebremeskel, K. Omega 3 (n-3) fatty acids down-regulate nuclear factor-kappa B (NF-κB) gene and blood cell adhesion molecule expression in patients with homozygous sickle cell disease. Blood Cells Mol. Dis., 2015, 55(1), 48-55.
[http://dx.doi.org/10.1016/j.bcmd.2015.03.014] [PMID: 25976467]
[147]
Daak, A.; Rabinowicz, A.; Ghebremeskel, K. Omega-3 fatty acids are a potential therapy for patients with sickle cell disease. Nat. Rev. Dis. Primers, 2018, 4(1), 15.
[http://dx.doi.org/10.1038/s41572-018-0012-9] [PMID: 30093627]
[148]
Conran, N.; Rees, D.C. Prasugrel hydrochloride for the treatment of sickle cell disease. Expert Opin. Investig. Drugs, 2017, 26(7), 865-872.
[http://dx.doi.org/10.1080/13543784.2017.1335710] [PMID: 28562105]
[149]
Kutlar, A.; Reid, M.E.; Inati, A.; Taher, A.T.; Abboud, M.R.; El-Beshlawy, A.; Buchanan, G.R.; Smith, H.; Ataga, K.I.; Perrine, S.P.; Ghalie, R.G. A dose-escalation phase IIa study of 2,2-dimethylbutyrate (HQK-1001), an oral fetal globin inducer, in sickle cell disease. Am. J. Hematol., 2013, 88(11), E255-E260.
[http://dx.doi.org/10.1002/ajh.23533] [PMID: 23828223]
[150]
Jagadeeswaran, R.; Vazquez, B.A.; Thiruppathi, M.; Ganesh, B.B.; Ibanez, V.; Cui, S.; Engel, J.D.; Diamond, A.M.; Molokie, R.E.; DeSimone, J.; Lavelle, D.; Rivers, A. Pharmacological inhibition of LSD1 and mTOR reduces mitochondrial retention and associated ROS levels in the red blood cells of sickle cell disease. Exp. Hematol., 2017, 50, 46-52.
[http://dx.doi.org/10.1016/j.exphem.2017.02.003] [PMID: 28238805]
[151]
Kim, H.C. Red cell exchange: special focus on sickle cell disease. Hematology (Am. Soc. Hematol. Educ. Program), 2014, 2014(1), 450-456.
[http://dx.doi.org/10.1182/asheducation-2014.1.450] [PMID: 25696893]
[152]
Driss, F.; Hequet, O. Red blood cell exchange techniques and methods. Transfus. Apheresis Sci., 2019, 58(2), 132-135.
[http://dx.doi.org/10.1016/j.transci.2019.03.005] [PMID: 30910617]
[153]
Sarode, R.; Ballas, S.K.; Garcia, A.; Kim, H.C.; King, K.; Sachais, B.; Williams, L.A. III. Red blood cell exchange: 2015 American Society for Apheresis consensus conference on the management of patients with sickle cell disease. J. Clin. Apher., 2017, 32(5), 342-367.
[http://dx.doi.org/10.1002/jca.21511] [PMID: 27723109]
[154]
Swerdlow, P.S. Red cell exchange in sickle cell disease. Am. Soc. Hematol., 2006, 1, 48-53.
[http://dx.doi.org/10.1182/asheducation-2006.1.48]
[155]
Mansilla-Soto, J.; Riviere, I.; Boulad, F.; Sadelain, M. Cell and gene therapy for the beta-thalassemias: advances and prospects. Hum. Gene Ther., 2016, 27(4), 295-304.
[http://dx.doi.org/10.1089/hum.2016.037] [PMID: 27021486]
[156]
Cavazzana, M.; Mavilio, F. Gene therapy for hemoglobinopathies. Hum. Gene Ther., 2018, 29(10), 1106-1113.
[http://dx.doi.org/10.1089/hum.2018.122] [PMID: 30200783]
[157]
Antoniani, C.; Meneghini, V.; Lattanzi, A.; Felix, T.; Romano, O.; Magrin, E.; Weber, L.; Pavani, G.; El Hoss, S.; Kurita, R.; Nakamura, Y.; Cradick, T.J.; Lundberg, A.S.; Porteus, M.; Amendola, M.; El Nemer, W.; Cavazzana, M.; Mavilio, F.; Miccio, A. Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus. Blood, 2018, 131(17), 1960-1973.
[http://dx.doi.org/10.1182/blood-2017-10-811505] [PMID: 29519807]
[158]
Wu, Y.; Zeng, J.; Roscoe, B.P.; Liu, P.; Yao, Q.; Lazzarotto, C.R.; Clement, K.; Cole, M.A.; Luk, K.; Baricordi, C.; Shen, A.H.; Ren, C.; Esrick, E.B.; Manis, J.P.; Dorfman, D.M.; Williams, D.A.; Biffi, A.; Brugnara, C.; Biasco, L.; Brendel, C.; Pinello, L.; Tsai, S.Q.; Wolfe, S.A.; Bauer, D.E. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat. Med., 2019, 25(5), 776-783.
[http://dx.doi.org/10.1038/s41591-019-0401-y] [PMID: 30911135]
[159]
Li, C.; Psatha, N.; Sova, P.; Gil, S.; Wang, H.; Kim, J.; Kulkarni, C.; Valensisi, C.; Hawkins, R.D.; Stamatoyannopoulos, G.; Lieber, A. Reactivation of γ-globin in adult β-YAC mice after ex vivo and in vivo hematopoietic stem cell genome editing. Blood, 2018, 131(26), 2915-2928.
[http://dx.doi.org/10.1182/blood-2018-03-838540] [PMID: 29789357]
[160]
Dever, D.P.; Bak, R.O.; Reinisch, A.; Camarena, J.; Washington, G.; Nicolas, C.E.; Pavel-Dinu, M.; Saxena, N.; Wilkens, A.B.; Mantri, S.; Uchida, N.; Hendel, A.; Narla, A.; Majeti, R.; Weinberg, K.I.; Porteus, M.H. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature, 2016, 539(7629), 384-389.
[http://dx.doi.org/10.1038/nature20134] [PMID: 27820943]
[161]
Park, S.H.; Lee, C.M.; Dever, D.P.; Davis, T.H.; Camarena, J.; Srifa, W.; Zhang, Y.; Paikari, A.; Chang, A.K.; Porteus, M.H.; Sheehan, V.A.; Bao, G. Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res., 2019, 47(15), 7955-7972.
[http://dx.doi.org/10.1093/nar/gkz475] [PMID: 31147717]
[162]
Khosravi, M.A.; Abbasalipour, M.; Concordet, J.P.; Berg, J.V.; Zeinali, S.; Arashkia, A.; Azadmanesh, K.; Buch, T.; Karimipoor, M. Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: a promising approach for gene therapy of beta thalassemia disease. Eur. J. Pharmacol., 2019, 854, 398-405.
[http://dx.doi.org/10.1016/j.ejphar.2019.04.042] [PMID: 31039344]
[163]
Shenoy, S.; Eapen, M.; Panepinto, J.A.; Logan, B.R.; Wu, J.; Abraham, A.; Brochstein, J.; Chaudhury, S.; Godder, K.; Haight, A.E.; Kasow, K.A.; Leung, K.; Andreansky, M.; Bhatia, M.; Dalal, J.; Haines, H.; Jaroscak, J.; Lazarus, H.M.; Levine, J.E.; Krishnamurti, L.; Margolis, D.; Megason, G.C.; Yu, L.C.; Pulsipher, M.A.; Gersten, I.; DiFronzo, N.; Horowitz, M.M.; Walters, M.C.; Kamani, N. A trial of unrelated donor marrow transplantation for children with severe sickle cell disease. Blood, 2016, 128(21), 2561-2567.
[http://dx.doi.org/10.1182/blood-2016-05-715870] [PMID: 27625358]
[164]
Schwartz, J.; Winters, J.L.; Padmanabhan, A.; Balogun, R.A.; Delaney, M.; Linenberger, M.L.; Szczepiorkowski, Z.M.; Williams, M.E.; Wu, Y.; Shaz, B.H. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the Writing Committee of the American Society for Apheresis: the sixth special issue. J. Clin. Apher., 2013, 28(3), 145-284.
[http://dx.doi.org/10.1002/jca.21276] [PMID: 23868759]
[165]
Fort, R. Recommendations for the use of red blood cell exchange in sickle cell disease. Transfus. Apheresis Sci., 2019, 58(2), 128-131.
[http://dx.doi.org/10.1016/j.transci.2019.03.004] [PMID: 30879904]
[166]
Tsitsikas, D.A.; Sirigireddy, B.; Nzouakou, R.; Calvey, A.; Quinn, J.; Collins, J.; Orebayo, F.; Lewis, N.; Todd, S.; Amos, R.J. Safety, tolerability, and outcomes of regular automated red cell exchange transfusion in the management of sickle cell disease. J. Clin. Apher., 2016, 31(6), 545-550.
[http://dx.doi.org/10.1002/jca.21447] [PMID: 26878828]
[167]
Weatherall, D.J. The slow road to gene therapy. Nature, 1988, 331(6151), 13-14.
[http://dx.doi.org/10.1038/331013a0] [PMID: 3422340]
[168]
Cavazzana-Calvo, M.; Payen, E.; Negre, O.; Wang, G.; Hehir, K.; Fusil, F.; Down, J.; Denaro, M.; Brady, T.; Westerman, K.; Cavallesco, R.; Gillet-Legrand, B.; Caccavelli, L.; Sgarra, R.; Maouche-Chrétien, L.; Bernaudin, F.; Girot, R.; Dorazio, R.; Mulder, G-J.; Polack, A.; Bank, A.; Soulier, J.; Larghero, J.; Kabbara, N.; Dalle, B.; Gourmel, B.; Socie, G.; Chrétien, S.; Cartier, N.; Aubourg, P.; Fischer, A.; Cornetta, K.; Galacteros, F.; Beuzard, Y.; Gluckman, E.; Bushman, F.; Hacein-Bey-Abina, S.; Leboulch, P. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature, 2010, 467(7313), 318-322.
[http://dx.doi.org/10.1038/nature09328] [PMID: 20844535]
[169]
Pawliuk, R.; Westerman, K.A.; Fabry, M.E.; Payen, E.; Tighe, R.; Bouhassira, E.E.; Acharya, S.A.; Ellis, J.; London, I.M.; Eaves, C.J.; Humphries, R.K.; Beuzard, Y.; Nagel, R.L.; Leboulch, P. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science, 2001, 294(5550), 2368-2371.
[http://dx.doi.org/10.1126/science.1065806] [PMID: 11743206]
[170]
Levasseur, D.N.; Ryan, T.M.; Reilly, M.P.; McCune, S.L.; Asakura, T.; Townes, T.M. A recombinant human hemoglobin with anti-sickling properties greater than fetal hemoglobin. J. Biol. Chem., 2004, 279(26), 27518-27524.
[http://dx.doi.org/10.1074/jbc.M402578200] [PMID: 15084588]
[171]
Demirci, S.; Uchida, N.; Tisdale, J.F. Gene therapy for sickle cell disease: an update. Cytotherapy, 2018, 20(7), 899-910.
[http://dx.doi.org/10.1016/j.jcyt.2018.04.003] [PMID: 29859773]
[172]
Lux, C.T.; Pattabhi, S.; Berger, M.; Nourigat, C.; Flowers, D.A.; Negre, O.; Humbert, O.; Yang, J.G.; Lee, C.; Jacoby, K.; Bernstein, I.; Kiem, H.P.; Scharenberg, A.; Rawlings, D.J. TALEN-mediated gene editing of HBG in human hematopoietic stem cells leads to therapeutic fetal hemoglobin induction. Mol. Ther. Methods Clin. Dev., 2018, 12, 175-183.
[http://dx.doi.org/10.1016/j.omtm.2018.12.008] [PMID: 30705922]
[173]
Gluckman, E.; Cappelli, B.; Bernaudin, F.; Labopin, M.; Volt, F.; Carreras, J.; Pinto Simões, B.; Ferster, A.; Dupont, S.; de la Fuente, J.; Dalle, J.H.; Zecca, M.; Walters, M.C.; Krishnamurti, L.; Bhatia, M.; Leung, K.; Yanik, G.; Kurtzberg, J.; Dhedin, N.; Kuentz, M.; Michel, G.; Apperley, J.; Lutz, P.; Neven, B.; Bertrand, Y.; Vannier, J.P.; Ayas, M.; Cavazzana, M.; Matthes-Martin, S.; Rocha, V.; Elayoubi, H.; Kenzey, C.; Bader, P.; Locatelli, F.; Ruggeri, A.; Eapen, M. Sickle cell disease: an International survey of results of HLA-identical sibling hematopoietic stem cell transplantation. Blood, 2017, 129(11), 1548-1556.
[http://dx.doi.org/10.1182/blood-2016-10-745711] [PMID: 27965196]
[174]
Walters, M.C.; Patience, M.; Leisenring, W.; Eckman, J.R.; Scott, J.P.; Mentzer, W.C.; Davies, S.C.; Ohene-Frempong, K.; Bernaudin, F.; Matthews, D.C.; Storb, R.; Sullivan, K.M. Bone marrow transplantation for sickle cell disease. N. Engl. J. Med., 1996, 335(6), 369-376.
[http://dx.doi.org/10.1056/NEJM199608083350601] [PMID: 8663884]
[175]
Khemani, K.; Katoch, D.; Krishnamurti, L. Curative therapies for sickle cell disease. Ochsner J., 2019, 19(2), 131-137.
[http://dx.doi.org/10.31486/toj.18.0044] [PMID: 31258425]
[176]
Angelucci, E.; Matthes-Martin, S.; Baronciani, D.; Bernaudin, F.; Bonanomi, S.; Cappellini, M.D.; Dalle, J.H.; Di Bartolomeo, P.; de Heredia, C.D.; Dickerhoff, R.; Giardini, C.; Gluckman, E.; Hussein, A.A.; Kamani, N.; Minkov, M.; Locatelli, F.; Rocha, V.; Sedlacek, P.; Smiers, F.; Thuret, I.; Yaniv, I.; Cavazzana, M.; Peters, C. Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: indications and management recommendations from an International expert panel. Haematologica, 2014, 99(5), 811-820.
[http://dx.doi.org/10.3324/haematol.2013.099747] [PMID: 24790059]
[177]
Bernaudin, F.; Pondarré, C.; Galambrun, C.; Thuret, I. Allogeneic/matched related transplantation for β-thalassemia and sickle cell anemia. Adv. Exp. Med. Biol., 2017, 1013, 89-122.
[http://dx.doi.org/10.1007/978-1-4939-7299-9_4] [PMID: 29127678]
[178]
Bolaños-Meade, J.; Fuchs, E.J.; Luznik, L.; Lanzkron, S.M.; Gamper, C.J.; Jones, R.J.; Brodsky, R.A. HLA-haploidentical bone marrow transplantation with posttransplant cyclophosphamide expands the donor pool for patients with sickle cell disease. Blood, 2012, 120(22), 4285-4291.
[http://dx.doi.org/10.1182/blood-2012-07-438408] [PMID: 22955919]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy