Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Synergistic Antioxidant and Antibacterial Activity of Curcumin-C3 Encapsulated Chitosan Nanoparticles

Author(s): Desu N.K. Reddy*, Fu-Yung Huang*, Shao-Pin Wang and Ramya Kumar

Volume 26, Issue 39, 2020

Page: [5021 - 5029] Pages: 9

DOI: 10.2174/1381612826666200609164830

Price: $65

Abstract

Background: Recent studies have focused on the nanoformulations of curcumin to enhance its solubility and bioavailability. The medicinal properties of curcumin-C3 complex, which is a combination of three curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) is less explored.

Objective: The aim of this study was to prepare curcumin-C3 encapsulated in chitosan nanoparticles, characterize and evaluate their antioxidant and antibacterial potential.

Methods: Ionic gelation method was used to prepare curcumin-C3 nanoparticles and was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy and nanoparticle tracking analysis. In vitro assays were performed to assess drug release, antioxidant and antibacterial activities.

Results: Curcumin-C3-chitosan nanoparticle showed an increased entrapment efficiency of >90%, drug release and improved antioxidant potential. Moreover, curcumin-C3-chitosan nanoparticle showed stronger inhibition of Escherichia coli and Staphylococcus aureus.

Conclusion: Chitosan is a suitable carrier for curcumin-C3 nanoparticle and can be used as a drug delivery system in the treatment of inflammatory and bacterial diseases.

Keywords: Curcumin-C3, curcumin, chitosan, nanoparticle, antioxidant, E. coli, S. aureus.

[1]
Stanić Z. Curcumin, a compound from natural sources, a true scientific challenge - A review. Plant Foods Hum Nutr 2017; 72(1): 1-12.
[http://dx.doi.org/10.1007/s11130-016-0590-1] [PMID: 27995378]
[2]
Tanvir EM, Sakib Hossen M, Fuad Hossain M, et al. Antioxidant properties of popular turmeric (Curcuma longa) varieties from Bangladesh. J Food Qual 2017.
[http://dx.doi.org/10.1155/2017/8471785]
[3]
Tomeh MA, Hadianamrei R, Zhao X. A review of curcumin and its derivatives as anticancer agents. Int J Mol Sci 2019; 20(5): 1033.
[http://dx.doi.org/10.3390/ijms20051033] [PMID: 30818786]
[4]
Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 2014; 35(10): 3365-83.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.090] [PMID: 24439402]
[5]
da Silva AC, Santos PDF, Silva JTP, Leimann FV, Bracht L, Gonçalves OH. Impact of curcumin nanoformulation on its antimicrobial activity. Trends Food Sci Technol 2018; 72: 74-82.
[http://dx.doi.org/10.1016/j.tifs.2017.12.004]
[6]
Sun M, Su X, Ding B, et al. Advances in nanotechnology-based delivery systems for curcumin. Nanomedicine (Lond) 2012; 7(7): 1085-100.
[http://dx.doi.org/10.2217/nnm.12.80] [PMID: 22846093]
[7]
Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 1998; 64(4): 353-6.
[http://dx.doi.org/10.1055/s-2006-957450] [PMID: 9619120]
[8]
Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 2010; 144(1): 51-63.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.09.012] [PMID: 20951455]
[9]
Singh RP, Jain DA. Evaluation of antimicrobial activity of curcuminoids isolated from turmeric. Int J of Pharm & Life Sci 2012; 3(1): 1368-76.
[10]
Rahmani AH, Alsahli MA, Aly SM, Khan MA, Aldebasi YH. Role of curcumin in disease prevention and treatment. Adv Biomed Res 2018; 7(38): 38.
[http://dx.doi.org/10.4103/abr.abr_147_16] [PMID: 29629341]
[11]
Tyagi P, Singh M, Kumari H, Kumari A, Mukhopadhyay K. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One 2015; 10(3)e0121313
[http://dx.doi.org/10.1371/journal.pone.0121313] [PMID: 25811596]
[12]
Tyagi S, Farooqi JA. Curcumin nanoformulations as potential antimicrobial agent. J Bacteriol Mycol 2017; 5(5): 378-9.
[13]
Jahromi MAM, Al-Musawi S, Pirestani M, et al. Curcumin-loaded chitosan tripolyphosphate nanoparticles as a safe, natural and effective antibiotic inhibits the infection of Staphylococcus aureus and Pseudomonas aeruginosa in vivo Iran. J Biotechnol 2014; 12(3)
[14]
Luo J, Yang M. Demethoxycurcumin: a potential antimicrobial agent. J Therm Anal Calorim 2013; 115(3): 2331-8.
[http://dx.doi.org/10.1007/s10973-013-3103-6]
[15]
Bhawana, Basniwal RK, Buttar HS, Jain VK, Jain N. Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J Agric Food Chem 2011; 59: 2056-61.
[http://dx.doi.org/10.1021/jf104402t]
[16]
Popat A, Karmakar S, Jambhrunkar S, Xu C, Yu C. Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Colloids Surf B Biointerfaces 2014; 117(117): 520-7.
[http://dx.doi.org/10.1016/j.colsurfb.2014.03.005] [PMID: 24698148]
[17]
Hussain MR, Iman M, Maji TK. Determination of degree of deacetylation of chitosan and their effect on the release behavior of essential oil from chitosan and chitosan gelatin complex microcapsules. Rev. Téc. Ing Univ Zulia 2014; 37(2): 69-77.
[18]
Azandeh SS, Abbaspour M, Khodadadi A, Khorsandi L, Orazizadeh M, Heidari-Moghadam A. Anticancer activity of curcumin-loaded PLGA nanoparticles on PC3 prostate cancer cells. Iran J Pharm Res 2017; 16(3): 868-79.
[19]
Rajan M, Raj V. Encapsulation, characterisation and in-vitro release of anti-tuberculosis drug using chitosan - poly ethylene glycol nanoparticles. Int J Pharm Pharm Sci 2012; 4: 255-9.
[PMID: 29201078]
[20]
Das RK, Kasoju N, Bora U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine (Lond) 2010; 6(1): 153-60.
[http://dx.doi.org/10.1016/j.nano.2009.05.009] [PMID: 19616123]
[21]
Mazzarino L, Travelet C, Ortega-Murillo S, et al. Elaboration of chitosan-coated nanoparticles loaded with curcumin for mucoadhesive applications. J Colloid Interface Sci 2012; 370(1): 58-66.
[http://dx.doi.org/10.1016/j.jcis.2011.12.063] [PMID: 22284577]
[22]
Pathak L, Kanwal A, Agrawal Y. Curcumin loaded self assembled lipid-biopolymer nanoparticles for functional food applications. J Food Sci Technol 2015; 52(10): 6143-56.
[http://dx.doi.org/10.1007/s13197-015-1742-2] [PMID: 26396362]
[23]
Bomdyal RS, Shah MU, Doshi YS, Shah VA, Khirade SP. Antibacterial activity of curcumin (turmeric) against periopathogens - An in vitro evaluation. J Adv Clin Res Insights 2017; 4: 175-80.
[http://dx.doi.org/10.15713/ins.jcri.188]
[24]
Yadav VR, Prasad S, Kannappan R, et al. Cyclodextrin-complexed curcumin exhibits anti-inflammatory and antiproliferative activities superior to those of curcumin through higher cellular uptake. Biochem Pharmacol 2010; 80(7): 1021-32.
[http://dx.doi.org/10.1016/j.bcp.2010.06.022] [PMID: 20599780]
[25]
Nguyen MH, Yu H, Kiew TY, Hadinoto K. Cost-effective alternative to nano-encapsulation: Amorphous curcumin-chitosan nanoparticle complex exhibiting high payload and supersaturation generation. Eur J Pharm Biopharm 2015; 96: 1-10.
[http://dx.doi.org/10.1016/j.ejpb.2015.07.007] [PMID: 26170159]
[26]
Singh PK, Wani K, Kaul-Ghanekar R, Prabhune A, Ogale S. From micron to nano-curcumin by sophorolipid co-processing: highly enhanced bioavailability, fluorescence, and anti-cancer efficacy. RSC Advances 2014; 4: 60334.
[http://dx.doi.org/10.1039/C4RA07300B]
[27]
Nair RS, Morris A, Billa N, Leong CO. An evaluation of curcumin-encapsulated chitosan nanoparticles for transdermal delivery. AAPS PharmSciTech 2019; 20(2): 69.
[http://dx.doi.org/10.1208/s12249-018-1279-6] [PMID: 30631984]
[28]
El-Rahman SNA, Al-Jameel SS. Protection of curcumin and curcumin nanoparticles against cisplatin induced nephrotoxicity in male rats. Sch Acad J Biosci 2014; 2(3): 214-23.
[29]
Kumari S, Rath PK. Extraction and characterization of chitin and chitosan from (Labe rohit) fish scales. Procedia Materials Science 2014; 6: 482-9.
[http://dx.doi.org/10.1016/j.mspro.2014.07.062]
[30]
Fernandes Queiroz M, Melo KR, Sabry DA, Sassaki GL, Rocha HAO. Does the use of chitosan contribute to oxalate kidney stone formation? Mar Drugs 2014; 13(1): 141-58.
[http://dx.doi.org/10.3390/md13010141] [PMID: 25551781]
[31]
Khan MA, Zafaryab M, Mehdi SH, Ahmad I, Rizvi MM. Characterization and anti-proliferative activity of curcumin loaded chitosan nanoparticles in cervical cancer. Int J Biol Macromol 2016; 93(Pt A): 242-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.08.050] [PMID: 27565296]
[32]
Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018; 10(2)E57
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[33]
Wang QZ, Chen XG, Liu N, et al. Protonation constants of chitosan with different molecular weight and degree of deacetylation. Carbohydr Polym 2006; 65: 194-201.
[http://dx.doi.org/10.1016/j.carbpol.2006.01.001]
[34]
Chuah LH, Billa N, Roberts CJ, Burley JC, Manickam S. Curcumin-containing chitosan nanoparticles as a potential mucoadhesive delivery system to the colon. Pharm Dev Technol 2013; 18(3): 591-9.
[http://dx.doi.org/10.3109/10837450.2011.640688] [PMID: 22149945]
[35]
Debnath SK, Saisivam S, Debanth M, Omri A. Development and evaluation of Chitosan nanoparticles based dry powder inhalation formulations of Prothionamide. PLoS One 2018; 13(1)e0190976
[http://dx.doi.org/10.1371/journal.pone.0190976] [PMID: 29370192]
[36]
Jiang H, Li Z-P, Tian G-X, et al. Liver-targeted liposomes for codelivery of curcumin and combretastatin A4 phosphate: preparation, characterization, and antitumor effects. Int J Nanomedicine 2019; 14: 1789-804.
[http://dx.doi.org/10.2147/IJN.S188971] [PMID: 30880980]
[37]
O’Toole MG, Soucy PA, Chauhan R, et al. Release-modulated antioxidant activity of a composite curcumin-chitosan polymer. Biomacromolecules 2016; 17(4): 1253-60.
[http://dx.doi.org/10.1021/acs.biomac.5b01019] [PMID: 26908114]
[38]
Zemljič L, Julija V, Tijana R, Matej B, Olivera S, Tatjana K. Antimicrobial and antioxidant functionalization of viscose fabric using chitosan-curcumin formulations. Text Res J 2014; 84(3)
[http://dx.doi.org/10.1177/0040517513512396]
[39]
Feuangthit NS, Chawanphat M, Wuttinont T, Pornchai R, Pranee R. Enhanced cytotoxic, antioxidant and anti-inflammatory activities of curcumin diethyl disuccinate using chitosan-tripolyphosphate nanoparticles. J Drug Deliv Sci Technol 2019; 53.
[40]
González-Reyes S, Guzmán-Beltrán S, Medina-Campos ON, Pedraza-Chaverri J. Curcumin pretreatment induces Nrf2 and an antioxidant response and prevents hemin-induced toxicity in primary cultures of cerebellar granule neurons of rats. Oxid Med Cell Longev 2013.
[http://dx.doi.org/10.1155/2013/801418]
[41]
Reddy DNK, Kumar R, Wang SP, Huang FY. Curcumin-C3 Complexed with α-, β-cyclodextrin Exhibits Antibacterial and Antioxidant Properties Suitable for Cancer Treatments. Curr Drug Metab 2019; 20(12): 988-1001.
[http://dx.doi.org/10.2174/1389200220666191001104834] [PMID: 31573881]
[42]
Pandit RS, Gaikwad SC, Agarkar GA, Gade AK, Rai M. Curcumin nanoparticles: physico-chemical fabrication and its in vitro efficacy against human pathogens. 3 Biotech 2015; 5: 991-7.
[43]
Goy RC, Morais STB, Assis OBG. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Rev Bras Farmacogn 2016; 26: 122-7.
[http://dx.doi.org/10.1016/j.bjp.2015.09.010]
[44]
Gonil PP, Warayuth Sajomsang W, Ruktanonchai UR, et al. Novel quaternized chitosan containing β-cyclodextrin moiety: Synthesis, characterization and antimicrobial activity. Carbohydr Polym 2011; 83(2): 905-13.
[http://dx.doi.org/10.1016/j.carbpol.2010.08.080]
[45]
De R, Kundu P, Swarnakar S, et al. Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicrob Agents Chemother 2009; 53(4): 1592-7.
[http://dx.doi.org/10.1128/AAC.01242-08] [PMID: 19204190]
[46]
Bansal S, Chhibber S. Curcumin alone and in combination with augmentin protects against pulmonary inflammation and acute lung injury generated during Klebsiella pneumoniae B5055-induced lung infection in BALB/c mice. J Med Microbiol 2010; 59(Pt 4): 429-37.
[http://dx.doi.org/10.1099/jmm.0.016873-0] [PMID: 20056776]
[47]
Wang Y, Lu Z, Wu H, Lv F. Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens. Int J Food Microbiol 2009; 136(1): 71-4.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.09.001] [PMID: 19775769]
[48]
Singh RK, Rai D, Yadav D, Bhargava A, Balzarini J, De Clercq E. Synthesis, antibacterial and antiviral properties of curcumin bioconjugates bearing dipeptide, fatty acids and folic acid. Eur J Med Chem 2010; 45(3): 1078-86.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.002] [PMID: 20034711]
[49]
Gottenbos B, Grijpma DW, van der Mei HC, Feijen J, Busscher HJ. Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria. J Antimicrob Chemother 2001; 48(1): 7-13.
[http://dx.doi.org/10.1093/jac/48.1.7] [PMID: 11418507]
[50]
Kiuchi F, Goto Y, Sugimoto N, Akao N, Kondo K, Tsuda Y. Nematocidal activity of turmeric: synergistic action of curcuminoids Chem Pharm Bull 1993; 41: 1640e3.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy