Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Mini-Review Article

Extremophile Microbial Communities and Enzymes for Bioenergetic Application Based on Multi-Omics Tools

Author(s): Gislaine Fongaro, Guilherme Augusto Maia, Paula Rogovski, Rafael Dorighello Cadamuro, Joana Camila Lopes, Renato Simões Moreira, Aline Frumi Camargo, Thamarys Scapini, Fábio Spitza Stefanski, Charline Bonatto, Doris Sobral Marques Souza, Patrícia Hermes Stoco, Rubens Tadeu Delgado Duarte, Ariadne Cristiane Cabral da Cruz, Glauber Wagner and Helen Treichel*

Volume 21, Issue 4, 2020

Page: [240 - 252] Pages: 13

DOI: 10.2174/1389202921999200601144137

Price: $65

Abstract

Genomic and proteomic advances in extremophile microorganism studies are increasingly demonstrating their ability to produce a variety of enzymes capable of converting biomass into bioenergy. Such microorganisms are found in environments with nutritional restrictions, anaerobic environments, high salinity, varying pH conditions and extreme natural environments such as hydrothermal vents, soda lakes, and Antarctic sediments. As extremophile microorganisms and their enzymes are found in widely disparate locations, they generate new possibilities and opportunities to explore biotechnological prospecting, including biofuels (biogas, hydrogen and ethanol) with an aim toward using multi-omics tools that shed light on biotechnological breakthroughs.

Keywords: Biodiversity, microorganisms, enzymes, molecular methods, multi-omics, extremophiles.

Graphical Abstract

[1]
Rothschild, L.J.; Mancinelli, R.L. Life in extreme environments. Nature, 2001, 409(6823), 1092-1101.
[http://dx.doi.org/10.1038/35059215] [PMID: 11234023]
[2]
Durvasula, R.; Rao, D.V.S. Extremophiles: From Biology to Biotechnology; Durvasula, R.V; Rao, D.V.S., Ed.; CRC Press, 2018, pp. 1-18.
[http://dx.doi.org/10.1201/9781315154695-1]
[3]
Duarte, R.T.D.; Nóbrega, F.; Nakayama, C.R.; Pellizari, V.H. Brazilian research on extremophiles in the context of astrobiology. Int. J. Astrobiol., 2012, 11(4), 325-333.
[http://dx.doi.org/10.1017/S1473550412000249]
[4]
Morozkina, E.V.; Slutskaia, E.S.; Fedorova, T.V.; Tugaĭ, T.I.; Golubeva, L.I.; Koroleva, O.V. Extremophilic microorganisms: biochemical adaptation and biotechnological application (review). Prikl. Biokhim. Mikrobiol., 2010, 46(1), 5-20.
[http://dx.doi.org/10.1134/S0003683810010011] [PMID: 20198911]
[5]
Brininger, C.; Spradlin, S.; Cobani, L.; Evilia, C. The more adaptive to change, the more likely you are to survive: Protein adaptation in extremophiles. Semin. Cell Dev. Biol., 2018, 84, 158-169.
[http://dx.doi.org/10.1016/j.semcdb.2017.12.016] [PMID: 29288800]
[6]
Violot, S.; Aghajari, N.; Czjzek, M.; Feller, G.; Sonan, G.K.; Gouet, P.; Gerday, C.; Haser, R.; Receveur-Bréchot, V. Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering. J. Mol. Biol., 2005, 348(5), 1211-1224.
[http://dx.doi.org/10.1016/j.jmb.2005.03.026] [PMID: 15854656]
[7]
Dumorné, K.; Córdova, D.C.; Astorga-Eló, M.; Renganathan, P. Extremozymes: a potential source for industrial applications. J. Microbiol. Biotechnol., 2017, 27(4), 649-659.
[http://dx.doi.org/10.4014/jmb.1611.11006] [PMID: 28104900]
[8]
Stekhanova, T.N.; Mardanov, A.V.; Bezsudnova, E.Y.; Gumerov, V.M.; Ravin, N.V.; Skryabin, K.G.; Popov, V.O. Characterization of a thermostable short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Thermococcus sibiricus. Appl. Environ. Microbiol., 2010, 76(12), 4096-4098.
[http://dx.doi.org/10.1128/AEM.02797-09] [PMID: 20418438]
[9]
Bezsudnova, E.Y.; Boyko, K.M.; Polyakov, K.M.; Dorovatovskiy, P.V.; Stekhanova, T.N.; Gumerov, V.M.; Ravin, N.V.; Skryabin, K.G.; Kovalchuk, M.V.; Popov, V.O. Structural insight into the molecular basis of polyextremophilicity of short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Thermococcus sibiricus. Biochimie, 2012, 94(12), 2628-2638.
[http://dx.doi.org/10.1016/j.biochi.2012.07.024] [PMID: 22885278]
[10]
Rampelotto, P.H. Biotechnology of Extremophiles: Advances and Challenges, Grand Challenges in Biology and Biotechnology; Rampelotto, P.H., Ed.; Springer International Publishing: Cham, 2016, p. 1.
[http://dx.doi.org/10.1007/978-3-319-13521-2]
[11]
Cavicchioli, R.; Amils, R.; Wagner, D.; McGenity, T. Life and applications of extremophiles. Environ. Microbiol., 2011, 13(8), 1903-1907.
[http://dx.doi.org/10.1111/j.1462-2920.2011.02512.x] [PMID: 22236328]
[12]
Jaenicke, R.; Schurig, H.; Beaucamp, N.; Ostendorp, R. Structure and stability of hyperstable proteins: glycolytic enzymes from hyperthermophilic bacterium Thermotoga maritima. Advances in protein chemistry and structural biology: Enzymes and proteins from hyperthermophilic microorganisms; Richards, F.M.; Eisenberg, D.S; Kim, P.S., Ed.; , 1996, pp. 181-269.
[13]
Cavicchioli, R.; Siddiqui, K.S.; Andrews, D.; Sowers, K.R. Low temperature extremophiles and their applications. Curr. Opin. Biotechnol., 2002, 13(3), 253-261.
[http://dx.doi.org/10.1016/S0958-1669(02)00317-8] [PMID: 12180102]
[14]
Joseph, B.; Ramteke, P.W.; Thomas, G. Cold active microbial lipases: some hot issues and recent developments. Biotechnol. Adv., 2008, 26(5), 457-470.
[http://dx.doi.org/10.1016/j.biotechadv.2008.05.003] [PMID: 18571355]
[15]
Sarrouh, B.; Santos, T.M.; Miyoshi, A.; Dias, R.; Azevedo, V. Up-to-date insight on industrial enzymes applications and global market. J. Bioprocess. Biotech., 2012, S4(002), 1-10.
[http://dx.doi.org/10.4172/2155-9821.S4-002]
[16]
Dewan, S.S. Global Markets for Enzymes in Industrial Applications., Available from:. https://www.bccresearch.com/market- research/biotechnology/enzymes-industrial-applications-bio030h.html (Accessed Nov 28, 2019).
[17]
Madhavan, A.; Sindhu, R.; Parameswaran, B.; Sukumaran, R.K.; Pandey, A. Metagenome analysis: a powerful tool for enzyme bioprospecting. Appl. Biochem. Biotechnol., 2017, 183(2), 636-651.
[http://dx.doi.org/10.1007/s12010-017-2568-3] [PMID: 28815469]
[18]
Hassa, J.; Maus, I.; Off, S.; Pühler, A.; Scherer, P.; Klocke, M.; Schlüter, A. Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl. Microbiol. Biotechnol., 2018, 102(12), 5045-5063.
[http://dx.doi.org/10.1007/s00253-018-8976-7] [PMID: 29713790]
[19]
Ngara, T.R.; Zhang, H. Recent advances in function-based metagenomic screening. Genomics Proteomics Bioinformatics, 2018, 16(6), 405-415.
[http://dx.doi.org/10.1016/j.gpb.2018.01.002] [PMID: 30597257]
[20]
Dávila-Ramos, S.; Castelán-Sánchez, H.G.; Martínez-Ávila, L.; Sánchez-Carbente, M.D.R.; Peralta, R.; Hernández-Mendoza, A.; Dobson, A.D.W.; Gonzalez, R.A.; Pastor, N.; Batista-García, R.A. A review on viral metagenomics in extreme environments. Front. Microbiol., 2019, 10, 2403.
[http://dx.doi.org/10.3389/fmicb.2019.02403] [PMID: 31749771]
[21]
Gómez-Silva, B.; Vilo-Muñoz, C.; Galetović, A.; Dong, Q.; Castelán-Sánchez, H.G.; Pérez-Llano, Y.; Sánchez-Carbente, M.D.R.; Dávila-Ramos, S.; Cortés-López, N.G.; Martínez-Ávila, L.; Dobson, A.D.W.; Batista-García, R.A. Metagenomics of Atacama lithobiontic extremophile life unveils highlights on fungal communities, biogeochemical cycles and carbohydrate-active enzymes. Microorganisms, 2019, 7(12), 1-25.
[http://dx.doi.org/10.3390/microorganisms7120619] [PMID: 31783517]
[22]
Macklaim, J.M.; Gloor, G.B. From RNA-seq to biological inference: using compositional data analysis in meta-transcriptomics. In: Microbiome Analysis: Methods in Molecular Biology; R., B., W., H., J., P., Ed.; Humana Press: New York, NY, 2018; pp. 193-213.
[23]
Chignell, J.F.; De Long, S.K.; Reardon, K.F. Meta-proteomic analysis of protein expression distinctive to electricity-generating biofilm communities in air-cathode microbial fuel cells. Biotechnol. Biofuels, 2018, 11(1), 121.
[http://dx.doi.org/10.1186/s13068-018-1111-2] [PMID: 29713380]
[24]
Hart, E.H.; Creevey, C.J.; Hitch, T.; Kingston-Smith, A.H. Meta-proteomics of rumen microbiota indicates niche compartmentalisation and functional dominance in a limited number of metabolic pathways between abundant bacteria. Sci. Rep., 2018, 8(1), 10504.
[http://dx.doi.org/10.1038/s41598-018-28827-7] [PMID: 30002438]
[25]
Chan, C.S.; Chan, K.-G.; Tay, Y.-L.; Chua, Y.-H.; Goh, K.M. Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing. Front. Microbiol., 2015, 6(177), 177.
[http://dx.doi.org/10.3389/fmicb.2015.00177] [PMID: 25798135]
[26]
Mardanov, A.V.; Gumerov, V.M.; Beletsky, A.V.; Ravin, N.V. Microbial diversity in acidic thermal pools in the Uzon Caldera, Kamchatka. Antonie van Leeuwenhoek, 2018, 111(1), 35-43.
[http://dx.doi.org/10.1007/s10482-017-0924-5] [PMID: 28815328]
[27]
López-López, O.; Cerdán, M.E.; González Siso, M.I. New extremophilic lipases and esterases from metagenomics. Curr. Protein Pept. Sci., 2014, 15(5), 445-455.
[http://dx.doi.org/10.2174/1389203715666140228153801] [PMID: 24588890]
[28]
Ferrer, M.; Martínez-Martínez, M.; Bargiela, R.; Streit, W.R.; Golyshina, O.V.; Golyshin, P.N. Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb. Biotechnol., 2016, 9(1), 22-34.
[http://dx.doi.org/10.1111/1751-7915.12309] [PMID: 26275154]
[29]
Schneider, T.; Riedel, K. Environmental proteomics: analysis of structure and function of microbial communities. Proteomics, 2010, 10(4), 785-798.
[http://dx.doi.org/10.1002/pmic.200900450] [PMID: 19953545]
[30]
Wilmes, P.; Bond, P.L. Metaproteomics: studying functional gene expression in microbial ecosystems. Trends Microbiol., 2006, 14(2), 92-97.
[http://dx.doi.org/10.1016/j.tim.2005.12.006] [PMID: 16406790]
[31]
Kleiner, M. Metaproteomics: much more than measuring gene expression in microbial communities. mSystems, 2019, 4(3), 1-6.
[http://dx.doi.org/10.1128/mSystems.00115-19] [PMID: 31117019]
[32]
Shi, Y.; Tyson, G.W.; Eppley, J.M.; DeLong, E.F. Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean. ISME J., 2011, 5(6), 999-1013.
[http://dx.doi.org/10.1038/ismej.2010.189] [PMID: 21151004]
[33]
Pradet-Balade, B.; Boulmé, F.; Beug, H.; Müllner, E.W.; Garcia-Sanz, J.A. Translation control: bridging the gap between genomics and proteomics? Trends Biochem. Sci., 2001, 26(4), 225-229.
[http://dx.doi.org/10.1016/S0968-0004(00)01776-X] [PMID: 11295554]
[34]
Leary, D.H.; Hervey, W.J., IV; Deschamps, J.R.; Kusterbeck, A.W.; Vora, G.J. Which metaproteome? the impact of protein extraction bias on metaproteomic analyses. Mol. Cell. Probes, 2013, 27(5-6), 193-199.
[http://dx.doi.org/10.1016/j.mcp.2013.06.003] [PMID: 23831146]
[35]
Mandelli, F.; Couger, M.B.; Paixão, D.A.A.; Machado, C.B.; Carnielli, C.M.; Aricetti, J.A.; Polikarpov, I.; Prade, R.; Caldana, C.; Paes Leme, A.F.; Mercadante, A.Z.; Riaño-Pachón, D.M.; Squina, F.M. Thermal adaptation strategies of the extremophile bacterium Thermus filiformis based on multi-omics analysis. Extremophiles, 2017, 21(4), 775-788.
[http://dx.doi.org/10.1007/s00792-017-0942-2] [PMID: 28500387]
[36]
Zheng, L.; Pan, L.; Miao, J.; Lin, Y.; Wu, J. Application of a series of biomarkers in Scallop Chlamys farreri to assess the toxic effects after exposure to a priority hazardous and noxious substance (HNS)-Acrylonitrile. Environ. Toxicol. Pharmacol., 2018, 64, 122-130.
[http://dx.doi.org/10.1016/j.etap.2018.10.002] [PMID: 30342373]
[37]
Akram, F.; Haq, I.U.; Imran, W.; Mukhtar, H. Insight perspectives of thermostable endoglucanases for bioethanol production: A Review. Renew. Energy, 2018, 122, 225-238.
[http://dx.doi.org/10.1016/j.renene.2018.01.095]
[38]
Raddadi, N.; Cherif, A.; Daffonchio, D.; Neifar, M.; Fava, F. Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl. Microbiol. Biotechnol., 2015, 99(19), 7907-7913.
[http://dx.doi.org/10.1007/s00253-015-6874-9] [PMID: 26272092]
[39]
Sammond, D.W.; Kastelowitz, N.; Himmel, M.E.; Yin, H.; Crowley, M.F.; Bomble, Y.J. Comparing residue clusters from thermophilic and mesophilic enzymes reveals adaptive mechanisms. PLoS One, 2016, 11(1) e0145848
[http://dx.doi.org/10.1371/journal.pone.0145848] [PMID: 26741367]
[40]
Farnoosh, G.; Latifi, A.M. A review on engineering of Organophosphorus Hydrolase (OPH) enzyme. J. Appl. Biotechnol. Reports, 2014, 1(1), 1-10.
[41]
Rakotoarivonina, H.; Hermant, B.; Aubry, N.; Rémond, C. Engineering the hydrophobic residues of a GH11 xylanase impacts its adsorption onto lignin and its thermostability. Enzyme Microb. Technol., 2015, 81, 47-55.
[http://dx.doi.org/10.1016/j.enzmictec.2015.07.009] [PMID: 26453471]
[42]
Liu, T.; Wang, Y.; Luo, X.; Li, J.; Reed, S.A.; Xiao, H.; Young, T.S.; Schultz, P.G. Enhancing protein stability with extended disulfide bonds. Proc. Natl. Acad. Sci. USA, 2016, 113(21), 5910-5915.
[http://dx.doi.org/10.1073/pnas.1605363113] [PMID: 27162342]
[43]
Wahab, M.K.H. bin A.; Jonet, M.A. bin; Illias, R.M. Thermostability Enhancement of Xylanase Aspergillus Fumigatus RT-1. J. Mol. Catal., B Enzym., 2016, 134, 154-163.
[http://dx.doi.org/10.1016/j.molcatb.2016.09.020]
[44]
Merceron, R.; Foucault, M.; Haser, R.; Mattes, R.; Watzlawick, H.; Gouet, P. The molecular mechanism of thermostable α-galactosidases AgaA and AgaB explained by X-ray crystallography and mutational studies. J. Biol. Chem., 2012, 287(47), 39642-39652.
[http://dx.doi.org/10.1074/jbc.M112.394114] [PMID: 23012371]
[45]
Vieille, C.; Zeikus, G.J. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev., 2001, 65(1), 1-43.
[http://dx.doi.org/10.1128/MMBR.65.1.1-43.2001] [PMID: 11238984]
[46]
Crosby, J.R.; Laemthong, T.; Lewis, A.M.; Straub, C.T.; Adams, M.W.; Kelly, R.M. Extreme thermophiles as emerging metabolic engineering platforms. Curr. Opin. Biotechnol., 2019, 59, 55-64.
[http://dx.doi.org/10.1016/j.copbio.2019.02.006] [PMID: 30875665]
[47]
Sunna, A.; Bergquist, P.L. A gene encoding a novel extremely thermostable 1,4-β-xylanase isolated directly from an environmental DNA sample. Extremophiles, 2003, 7(1), 63-70.
[http://dx.doi.org/10.1007/s00792-002-0296-1] [PMID: 12579381]
[48]
Feller, G.; Gerday, C. Psychrophilic enzymes: hot topics in cold adaptation. Nat. Rev. Microbiol., 2003, 1(3), 200-208.
[http://dx.doi.org/10.1038/nrmicro773] [PMID: 15035024]
[49]
Collins, T.; Roulling, F.; Piette, F.; Marx, J-C.; Feller, G.; Gerday, C.; D’Amico, S. Fundamentals of Cold-Adapted Enzymes. Psychrophiles: from Biodiversity to Biotechnology; Springer Berlin Heidelberg: Berlin, Heidelberg, 2008, pp. 211-227.
[http://dx.doi.org/10.1007/978-3-540-74335-4_13]
[50]
Giordano, D.; Coppola, D.; Russo, R.; Tinajero-Trejo, M.; di Prisco, G.; Lauro, F.; Ascenzi, P.; Verde, C. The Globins of Cold- Adapted Pseudoalteromonas Haloplanktis TAC125: From the Structure to the Physiological Functions. In: Advances in Microbial Physiology; Poole, R. K., Ed.; , 2013; pp. 329-389.
[51]
D’Amico, S.; Collins, T.; Marx, J.-C.; Feller, G.; Gerday, C. Psychrophilic microorganisms: challenges for life. EMBO Rep., 2006, 7(4), 385-389.
[http://dx.doi.org/10.1038/sj.embor.7400662] [PMID: 16585939]
[52]
Latip, M.A.A.; Hamid, A.A.A.; Nordin, N.F.H. Microbial hydrolytic enzymes: in silico studies between polar and tropical regions. Polar Sci., 2019, 20, 9-18.
[http://dx.doi.org/10.1016/j.polar.2019.04.003]
[53]
D’Amico, S.; Claverie, P.; Collins, T.; Georlette, D.; Gratia, E.; Hoyoux, A.; Meuwis, M.-A.; Feller, G.; Gerday, C. Molecular basis of cold adaptation. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2002, 357(1423), 917-925.
[http://dx.doi.org/10.1098/rstb.2002.1105] [PMID: 12171655]
[54]
Leiros, H-K.S.; Pey, A.L.; Innselset, M.; Moe, E.; Leiros, I.; Steen, I.H.; Martinez, A. Structure of phenylalanine hydroxylase from Colwellia psychrerythraea 34H, a monomeric cold active enzyme with local flexibility around the active site and high overall stability. J. Biol. Chem., 2007, 282(30), 21973-21986.
[http://dx.doi.org/10.1074/jbc.M610174200] [PMID: 17537732]
[55]
Sonan, G.K.; Receveur-Brechot, V.; Duez, C.; Aghajari, N.; Czjzek, M.; Haser, R.; Gerday, C. The linker region plays a key role in the adaptation to cold of the cellulase from an Antarctic bacterium. Biochem. J., 2007, 407(2), 293-302.
[http://dx.doi.org/10.1042/BJ20070640] [PMID: 17635108]
[56]
Brandsdal, B.O.; Heimstad, E.S.; Sylte, I.; Smalås, A.O. Comparative molecular dynamics of mesophilic and psychrophilic protein homologues studied by 1.2 ns simulations. J. Biomol. Struct. Dyn., 1999, 17(3), 493-506.
[http://dx.doi.org/10.1080/07391102.1999.10508380] [PMID: 10636084]
[57]
Bruno, S.; Coppola, D.; di Prisco, G.; Giordano, D.; Verde, C. Enzymes from marine polar regions and their biotechnological applications. Mar. Drugs, 2019, 17(10), 1-36.
[http://dx.doi.org/10.3390/md17100544] [PMID: 31547548]
[58]
Sarmiento, F.; Peralta, R.; Blamey, J.M. Cold and hot extremozymes: industrial relevance and current trends. Front. Bioeng. Biotechnol., 2015, 3(148), 148.
[http://dx.doi.org/10.3389/fbioe.2015.00148] [PMID: 26539430]
[59]
Wang, W.; Sun, M.; Liu, W.; Zhang, B. Purification and characterization of a psychrophilic catalase from Antarctic Bacillus. Can. J. Microbiol., 2008, 54(10), 823-828.
[http://dx.doi.org/10.1139/W08-066] [PMID: 18923550]
[60]
Ji, M.; Barnwell, C.V.; Grunden, A.M. Characterization of recombinant glutathione reductase from the psychrophilic Antarctic bacterium Colwellia psychrerythraea. Extremophiles, 2015, 19(4), 863-874.
[http://dx.doi.org/10.1007/s00792-015-0762-1] [PMID: 26101017]
[61]
Birolo, L.; Tutino, M.L.; Fontanella, B.; Gerday, C.; Mainolfi, K.; Pascarella, S.; Sannia, G.; Vinci, F.; Marino, G. Aspartate aminotransferase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125. Cloning, expression, properties, and molecular modelling. Eur. J. Biochem., 2000, 267(9), 2790-2802.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01299.x] [PMID: 10785402]
[62]
Shi, Y.; Wang, Q.; Hou, Y.; Hong, Y.; Han, X.; Yi, J.; Qu, J.; Lu, Y. Molecular cloning, expression and enzymatic characterization of glutathione S-transferase from Antarctic sea-ice bacteria Pseudoalteromonas sp. ANT506. Microbiol. Res., 2014, 169(2-3), 179-184.
[http://dx.doi.org/10.1016/j.micres.2013.06.012] [PMID: 23890723]
[63]
Hou, Y.; Qiao, C.; Wang, Y.; Wang, Y.; Ren, X.; Wei, Q.; Wang, Q. Cold-adapted glutathione S-transferases from antarctic psychrophilic bacterium Halomonas sp. ANT108: heterologous expression, characterization, and oxidative resistance. Mar. Drugs, 2019, 17(3), 1-13.
[http://dx.doi.org/10.3390/md17030147] [PMID: 30832239]
[64]
Cieśliński, H.; Kur, J.; Białkowska, A.; Baran, I.; Makowski, K.; Turkiewicz, M. Cloning, expression, and purification of a recombinant cold-adapted β-galactosidase from antarctic bacterium Pseudoalteromonas sp. 22b. Protein Expr. Purif., 2005, 39(1), 27-34.
[http://dx.doi.org/10.1016/j.pep.2004.09.002] [PMID: 15596357]
[65]
Turkiewicz, M.; Kur, J.; Białkowska, A.; Cieśliński, H.; Kalinowska, H.; Bielecki, S. Antarctic marine bacterium Pseudoalteromonas sp. 22b as a source of cold-adapted β-galactosidase. Biomol. Eng., 2003, 20(4-6), 317-324.
[http://dx.doi.org/10.1016/S1389-0344(03)00039-X] [PMID: 12919815]
[66]
Fan, Y.; Yi, J.; Hua, X.; Zhang, Y.; Yang, R. Preparation and characterization of gellan gum microspheres containing a cold-adapted β-galactosidase from Rahnella sp. R3. Carbohydr. Polym., 2017, 162, 10-15.
[http://dx.doi.org/10.1016/j.carbpol.2017.01.033] [PMID: 28224885]
[67]
Isobe, K.; Yamada, M. β-Galactosidases from an Acidophilic Fungus, Teratosphaeria acidotherma AIU BGA-1. In: Fungi in Extreme Environments: Ecological Role and Biotechnological Significance; Springer International Publishing: Cham, 2019; pp. 419-440.
[68]
Liao, S.-M.; Liang, G.; Zhu, J.; Lu, B.; Peng, L.-X.; Wang, Q.-Y.; Wei, Y.-T.; Zhou, G.-P.; Huang, R.-B. Influence of calcium ions on the thermal characteristics of α-amylase from thermophilic Anoxybacillus sp. GXS-BL. Protein Pept. Lett., 2019, 26(2), 148-157.
[http://dx.doi.org/10.2174/0929866526666190116162958] [PMID: 30652633]
[69]
Wang, X.; Kan, G.; Ren, X.; Yu, G.; Shi, C.; Xie, Q.; Wen, H.; Betenbaugh, M. Molecular cloning and characterization of a novel α-amylase from Antarctic sea ice Bacterium Pseudoalteromonas sp. M175 and its primary application in detergent. BioMed Res. Int., 2018, 2018, 3258383
[http://dx.doi.org/10.1155/2018/3258383] [PMID: 30050926]
[70]
Song, Q.; Wang, Y.; Yin, C.; Zhang, X.-H. Laa A, a novel high active alkalophilic alpha-amylase from deep-sea bacterium Luteimonas abyssi XH031(T). Enzyme Microb. Technol., 2016, 90, 83-92.
[http://dx.doi.org/10.1016/j.enzmictec.2016.05.003] [PMID: 27241296]
[71]
Cannio, R.; Di Prizito, N.; Rossi, M.; Morana, A. A xylan-degrading strain of Sulfolobus solfataricus: isolation and characterization of the xylanase activity. Extremophiles, 2004, 8(2), 117-124.
[http://dx.doi.org/10.1007/s00792-003-0370-3] [PMID: 15064978]
[72]
Humphry, D.R.; George, A.; Black, G.W.; Cummings, S.P. Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int. J. Syst. Evol. Microbiol., 2001, 51(Pt 4), 1235-1243.
[http://dx.doi.org/10.1099/00207713-51-4-1235] [PMID: 11491319]
[73]
Chen, S.; Kaufman, M.G.; Miazgowicz, K.L.; Bagdasarian, M.; Walker, E.D. Molecular characterization of a cold-active recombinant xylanase from Flavobacterium johnsoniae and its applicability in xylan hydrolysis. Bioresour. Technol., 2013, 128, 145-155.
[http://dx.doi.org/10.1016/j.biortech.2012.10.087] [PMID: 23196234]
[74]
Tanaka, H.; Okuno, T.; Moriyama, S.; Muguruma, M.; Ohta, K. Acidophilic xylanase from Aureobasidium pullulans: efficient expression and secretion in Pichia pastoris and mutational analysis. J. Biosci. Bioeng., 2004, 98(5), 338-343.
[http://dx.doi.org/10.1016/S1389-1723(04)00292-0] [PMID: 16233716]
[75]
Kumar, M.; Brar, A.; Vivekanand, V.; Pareek, N. Production of chitinase from thermophilic Humicola grisea and its application in production of bioactive chitooligosaccharides. Int. J. Biol. Macromol., 2017, 104(Pt B), 1641-1647.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.100] [PMID: 28487199]
[76]
Yang, S.; Fu, X.; Yan, Q.; Guo, Y.; Liu, Z.; Jiang, Z. Cloning, expression, purification and application of a novel chitinase from a thermophilic marine bacterium Paenibacillus barengoltzii. Food Chem., 2016, 192, 1041-1048.
[http://dx.doi.org/10.1016/j.foodchem.2015.07.092] [PMID: 26304445]
[77]
Mechri, S.; Bouacem, K.; Zaraî, J.N.; Rekik, H.; Ben Elhoul, M.; Omrane, B.M.; Hacene, H.; Bejar, S.; Bouanane-Darenfed, A.; Jaouadi, B. Identification of a novel protease from the thermophilic Anoxybacillus kamchatkensis M1V and its application as laundry detergent additive. Extremophiles, 2019, 23(6), 687-706.
[http://dx.doi.org/10.1007/s00792-019-01123-6] [PMID: 31407121]
[78]
Wang, Q.-F.; Hou, Y.-H.; Xu, Z.; Miao, J.-L.; Li, G.-Y. Purification and properties of an extracellular cold-active protease from the psychrophilic Bacterium Pseudoalteromonas sp. NJ276. Biochem. Eng. J., 2008, 38(3), 362-368.
[http://dx.doi.org/10.1016/j.bej.2007.07.025]
[79]
Matsui, M.; Kawamata, A.; Kosugi, M.; Imura, S.; Kurosawa, N. Diversity of proteolytic microbes isolated from antarctic freshwater lakes and characteristics of their cold-active proteases. Polar Sci., 2017, 13, 82-90.
[http://dx.doi.org/10.1016/j.polar.2017.02.002]
[80]
Suganthi, C.; Mageswari, A.; Karthikeyan, S.; Anbalagan, M.; Sivakumar, A.; Gothandam, K.M. Screening and optimization of protease production from a halotolerant Bacillus Licheniformis isolated from saltern sediments. J. Genet. Eng. Biotechnol., 2013, 11(1), 47-52.
[http://dx.doi.org/10.1016/j.jgeb.2013.02.002]
[81]
Shirazian, P.; Asad, S.; Amoozegar, M.A. The potential of halophilic and halotolerant bacteria for the production of antineoplastic enzymes: L-asparaginase and L-glutaminase. EXCLI J., 2016, 15, 268-279.
[http://dx.doi.org/10.17179/excli2016-146] [PMID: 27330530]
[82]
Pascale, D.; Giuliani, M.; De Santi, C.; Bergamasco, N.; Amoresano, A.; Carpentieri, A.; Parrilli, E.; Tutino, M.L. PhAP protease from Pseudoalteromonas haloplanktis TAC125: gene cloning, recombinant production in E. Coli and enzyme characterization. Polar Sci., 2010, 4(2), 285-294.
[http://dx.doi.org/10.1016/j.polar.2010.03.009]
[83]
Alquéres, S.M.C.; Branco, R.V.; Freire, D.M.G.; Alves, T.L.M.; Martins, O.B.; Almeida, R.V. Characterization of the recombinant thermostable lipase (Pf2001) from Pyrococcus furiosus: effects of thioredoxin fusion tag and Triton X-100. Enzyme Res., 2011, 2011, 316939.
[http://dx.doi.org/10.4061/2011/316939] [PMID: 21760993]
[84]
Wi, A.R.; Jeon, S-J.; Kim, S.; Park, H.J.; Kim, D.; Han, S.J.; Yim, J.H.; Kim, H-W. Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus pumilus. Biotechnol. Lett., 2014, 36(6), 1295-1302.
[http://dx.doi.org/10.1007/s10529-014-1475-8] [PMID: 24563306]
[85]
Salwoom, L.; Raja Abd Rahman, R.N.Z.; Salleh, A.B.; Mohd, S.F.; Convey, P.; Pearce, D.; Mohamad, A.M.S. Isolation, characterisation, and lipase production of a cold-adapted bacterial strain Pseudomonas sp. LSK25 isolated from Signy Island, Antarctica. Molecules, 2019, 24(4), 1-14.
[http://dx.doi.org/10.3390/molecules24040715] [PMID: 30781467]
[86]
Gupta, G.; Prakash, V. Isolation and identification of a novel, cold active lipase producing Psychrophilic Bacterium Pseudomonas vancouverensi. Trends Biosci., 2014, 7(22), 3708-3711.
[87]
Ranjan, B.; Satyanarayana, T. Recombinant HAP Phytase of the thermophilic mold Sporotrichum thermophile: expression of the codon-optimized phytase gene in Pichia pastoris and applications. Mol. Biotechnol., 2016, 58(2), 137-147.
[http://dx.doi.org/10.1007/s12033-015-9909-7] [PMID: 26758064]
[88]
Yu, P.; Wang, X-T.; Liu, J-W. Purification and characterization of a novel cold-adapted phytase from Rhodotorula mucilaginosa strain JMUY14 isolated from Antarctic. J. Basic Microbiol., 2015, 55(8), 1029-1039.
[http://dx.doi.org/10.1002/jobm.201400865] [PMID: 25727311]
[89]
Borgi, M.A.; Khila, M.; Boudebbouze, S.; Aghajari, N.; Szukala, F.; Pons, N.; Maguin, E.; Rhimi, M. The attractive recombinant phytase from Bacillus licheniformis: biochemical and molecular characterization. Appl. Microbiol. Biotechnol., 2014, 98(13), 5937-5947.
[http://dx.doi.org/10.1007/s00253-013-5421-9] [PMID: 24337251]
[90]
Fuciños, P.; Atanes, E.; López-López, O.; Solaroli, M.; Cerdán, M.E.; González-Siso, M.I.; Pastrana, L.; Rúa, M.L. Cloning, expression, purification and characterization of an oligomeric His tagged thermophilic esterase from Thermus Thermophilus HB27. Process Biochem., 2014, 49(6), 927-935.
[http://dx.doi.org/10.1016/j.procbio.2014.03.006]
[91]
De Santi, C.; Leiros, H.-K.S.; Di Scala, A.; de Pascale, D.; Altermark, B.; Willassen, N.-P. Biochemical characterization and structural analysis of a new cold-active and salt-tolerant esterase from the marine bacterium Thalassospira sp. Extremophiles, 2016, 20(3), 323-336.
[http://dx.doi.org/10.1007/s00792-016-0824-z] [PMID: 27016194]
[92]
Lemak, S.; Tchigvintsev, A.; Petit, P.; Flick, R.; Singer, A.U.; Brown, G.; Evdokimova, E.; Egorova, O.; Gonzalez, C.F.; Chernikova, T.N.; Yakimov, M.M.; Kube, M.; Reinhardt, R.; Golyshin, P.N.; Savchenko, A.; Yakunin, A.F. Structure and activity of the cold-active and anion-activated carboxyl esterase OLEI01171 from the oil-degrading marine bacterium Oleispira antarctica. Biochem. J., 2012, 445(2), 193-203.
[http://dx.doi.org/10.1042/BJ20112113] [PMID: 22519667]
[93]
Dong, J.; Zhao, W.; Gasmalla, M.A.A.; Sun, J.; Hua, X.; Zhang, W.; Han, L.; Fan, Y.; Feng, Y.; Shen, Q. A novel extracellular cold-active esterase of Pseudomonas sp. TB11 from Glacier No.1: differential induction, purification and characterisation. J. Mol. Catal., B Enzym., 2015, 121, 53-63.
[http://dx.doi.org/10.1016/j.molcatb.2015.07.015]
[94]
Golyshina, O.V.; Timmis, K.N. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ. Microbiol., 2005, 7(9), 1277-1288.
[http://dx.doi.org/10.1111/j.1462-2920.2005.00861.x] [PMID: 16104851]
[95]
Miao, L.-L.; Hou, Y.-J.; Fan, H.-X.; Qu, J.; Qi, C.; Liu, Y.; Li, D.-F.; Liu, Z.-P. Molecular structural basis for the cold adaptedness of the Psychrophilic β-glucosidase BglU in Micrococcus antarcticus. Appl. Environ. Microbiol., 2016, 82(7), 2021-2030.
[http://dx.doi.org/10.1128/AEM.03158-15] [PMID: 26801571]
[96]
Wang, J.; Gong, Y.; Zhao, S.; Liu, G. A new regulator of cellulase and xylanase in the thermophilic fungus Myceliophthora thermophila strain ATCC 42464. 3 Biotech, 2018, 8(3), 160.
[97]
Potprommanee, L.; Wang, X.-Q.; Han, Y.-J.; Nyobe, D.; Peng, Y.-P.; Huang, Q.; Liu, J..Y.; Liao, Y.-L.; Chang, K.-L. Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass. PLoS One, 2017, 12(4) e0175004
[http://dx.doi.org/10.1371/journal.pone.0175004] [PMID: 28406925]
[98]
Herrera, L.M.; Braña, V.; Franco Fraguas, L.; Castro-Sowinski, S. Characterization of the cellulase-secretome produced by the Antarctic bacterium Flavobacterium sp. AUG42. Microbiol. Res., 2019, 223-225, 13-21.
[http://dx.doi.org/10.1016/j.micres.2019.03.009] [PMID: 31178046]
[99]
Caf, Y.; Valipour, E.; Arikan, B. Study on cold-active and acidophilic cellulase (CMCase) from a novel psychrotrophic isolate Bacillus sp. K-11. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(5), 16-25.
[100]
Wu, H.; Liu, B.; Ou, X.; Pan, S.; Shao, Y.; Huang, F. Streptomyces thermoalkaliphilus sp. nov., an alkaline cellulase producing thermophilic actinomycete isolated from tropical rainforest soil. Antonie van Leeuwenhoek, 2018, 111(3), 413-422.
[http://dx.doi.org/10.1007/s10482-017-0964-x] [PMID: 29110157]
[101]
Raddadi, N.; Cherif, A.; Daffonchio, D.; Fava, F. Halo-alkalitolerant and thermostable cellulases with improved tolerance to ionic liquids and organic solvents from Paenibacillus tarimensis isolated from the Chott El Fejej, Sahara desert, Tunisia. Bioresour. Technol., 2013, 150, 121-128.
[http://dx.doi.org/10.1016/j.biortech.2013.09.089] [PMID: 24161550]
[102]
Fusi, P.; Grisa, M.; Mombelli, E.; Consonni, R.; Tortora, P.; Vanoni, M. Expression of a synthetic gene encoding P2 ribonuclease from the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus in mesophylic hosts. Gene, 1995, 154(1), 99-103.
[http://dx.doi.org/10.1016/0378-1119(94)00828-G] [PMID: 7867957]
[103]
Wang, Y.; Hou, Y.; Nie, P.; Wang, Y.; Ren, X.; Wei, Q.; Wang, Q. A novel cold-adapted and salt-tolerant RNase R from Antarctic sea-ice Bacterium Psychrobacter sp. ANT206. Molecules, 2019, 24(12), 1-12.
[http://dx.doi.org/10.3390/molecules24122229] [PMID: 31207974]
[104]
Golotin, V.; Balabanova, L.; Likhatskaya, G.; Rasskazov, V. Recombinant production and characterization of a highly active alkaline phosphatase from marine bacterium Cobetia marina. Mar. Biotechnol. (NY), 2015, 17(2), 130-143.
[http://dx.doi.org/10.1007/s10126-014-9601-0] [PMID: 25260971]
[105]
Inoue, A.; Anraku, M.; Nakagawa, S.; Ojima, T. Discovery of a novel alginate lyase from Nitratiruptor sp. SB155-2 thriving at deep-sea hydrothermal vents and identification of the residues responsible for its heat stability. J. Biol. Chem., 2016, 291(30), 15551-15563.
[http://dx.doi.org/10.1074/jbc.M115.713230] [PMID: 27231344]
[106]
De Luca, V.; Vullo, D.; Del Prete, S.; Carginale, V.; Osman, S.M.; Al-Othman, Z.; Supuran, C.T.; Capasso, C. Cloning, characterization and anion inhibition studies of a γ-carbonic anhydrase from the Antarctic bacterium Colwellia psychrerythraea. Bioorg. Med. Chem., 2016, 24(4), 835-840.
[http://dx.doi.org/10.1016/j.bmc.2016.01.005] [PMID: 26778292]
[107]
Do, H.; Kim, S.J.; Lee, C.W.; Kim, H.-W.; Park, H.H.; Kim, H.M.; Park, H.; Park, H.; Lee, J.H. Crystal structure of UbiX, an aromatic acid decarboxylase from the psychrophilic bacterium Colwellia psychrerythraea that undergoes FMN-induced conformational changes. Sci. Rep., 2015, 5(1), 8196.
[http://dx.doi.org/10.1038/srep08196] [PMID: 25645665]
[108]
Do, H.; Yun, J.S.; Lee, C.W.; Choi, Y.J.; Kim, H.Y.; Kim, Y.J.; Park, H.; Chang, J.H.; Lee, J.H. Crystal structure and comparative sequence analysis of GmhA from Colwellia psychrerythraea strain 34H provides insight into functional similarity with DiaA. Mol. Cells, 2015, 38(12), 1086-1095.
[http://dx.doi.org/10.14348/molcells.2015.0191] [PMID: 26612680]
[109]
Tang, Y.; Wu, P.; Jiang, S.; Selvaraj, J.N.; Yang, S.; Zhang, G. A new cold-active and alkaline pectate lyase from Antarctic bacterium with high catalytic efficiency. Appl. Microbiol. Biotechnol., 2019, 103(13), 5231-5241.
[http://dx.doi.org/10.1007/s00253-019-09803-1] [PMID: 31028436]
[110]
Bekli, S.; Aktas, B.; Gencer, D.; Aslim, B. Biochemical and molecular characterizations of a novel pH- and temperature-stable Pectate Lyase from Bacillus amyloliquefaciens S6 for Industrial application. Mol. Biotechnol., 2019, 61(9), 681-693.
[http://dx.doi.org/10.1007/s12033-019-00194-2] [PMID: 31218650]
[111]
See Too, W.C.; Few, L.L. Cloning of triose phosphate isomerase gene from an antarctic psychrophilic Pseudomonas sp. by degenerate and splinkerette PCR. World J. Microbiol. Biotechnol., 2010, 26(7), 1251-1259.
[http://dx.doi.org/10.1007/s11274-009-0295-9] [PMID: 24026930]
[112]
Albino, A.; Marco, S.; Di Maro, A.; Chambery, A.; Masullo, M.; De Vendittis, E. Characterization of a cold-adapted glutathione synthetase from the psychrophile Pseudoalteromonas haloplanktis. Mol. Biosyst., 2012, 8(9), 2405-2414.
[http://dx.doi.org/10.1039/c2mb25116g] [PMID: 22777241]
[113]
Georlette, D.; Jónsson, Z.O.; Van Petegem, F.; Chessa, J.; Van Beeumen, J.; Hübscher, U.; Gerday, C. A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins to low temperatures. Eur. J. Biochem., 2000, 267(12), 3502-3512.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01377.x] [PMID: 10848966]
[114]
Jackson, B.R.; Noble, C.; Lavesa-Curto, M.; Bond, P.L.; Bowater, R.P. Characterization of an ATP-dependent DNA ligase from the acidophilic archaeon “Ferroplasma acidarmanus” Fer1. Extremophiles, 2007, 11(2), 315-327.
[http://dx.doi.org/10.1007/s00792-006-0041-2] [PMID: 17136487]
[115]
Oh, H.N.; Park, D.; Seong, H.J.; Kim, D.; Sul, W.J. Antarctic tundra soil metagenome as useful natural resources of cold-active lignocelluolytic enzymes. J. Microbiol., 2019, 57(10), 865-873.
[http://dx.doi.org/10.1007/s12275-019-9217-1] [PMID: 31571125]
[116]
Prieur, D.; Marteinsson, V.T. Prokaryotes Living under Elevated Hydrostatic Pressure. Biotechnology of Extremophiles.Advances in Biochemical Engineering/ Biotechnology; Antranikian, G., Ed.; Springer: Berlin, Heidelberg, 1998, pp. 23-35.
[http://dx.doi.org/10.1007/BFb0102288]
[117]
Kato, C.; Nogi, Y.; Arakawa, S. Isolation, cultivation, and diversity of deep-sea piezophiles. High-Pressure Microbiology; Michiels, C.; Bartlett, D.H.; Aersten, A., Eds.; American Society of Microbiology, 2008, pp. 203-217.
[http://dx.doi.org/10.1128/9781555815646.ch12]
[118]
Lauro, F.M.; Chastain, R.A.; Blankenship, L.E.; Yayanos, A.A.; Bartlett, D.H. The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl. Environ. Microbiol., 2007, 73(3), 838-845.
[http://dx.doi.org/10.1128/AEM.01726-06] [PMID: 17158629]
[119]
Fang, J.; Zhang, L.; Bazylinski, D.A. Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol., 2010, 18(9), 413-422.
[http://dx.doi.org/10.1016/j.tim.2010.06.006] [PMID: 20663673]
[120]
Daniel, I.; Oger, P.; Winter, R. Origins of life and biochemistry under high-pressure conditions. Chem. Soc. Rev., 2006, 35(10), 858-875.
[http://dx.doi.org/10.1039/b517766a] [PMID: 17003893]
[121]
Yayanos, A.A. Microbiology to 10,500 meters in the deep sea. Annu. Rev. Microbiol., 1995, 49(1), 777-805.
[http://dx.doi.org/10.1146/annurev.mi.49.100195.004021] [PMID: 8561479]
[122]
Zobell, C.E.; Johnson, F.H. The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J. Bacteriol., 1949, 57(2), 179-189.
[http://dx.doi.org/10.1128/JB.57.2.179-189.1949] [PMID: 16561663]
[123]
Horikoshi, K. Barophiles: deep-sea microorganisms adapted to an extreme environment. Curr. Opin. Microbiol., 1998, 1(3), 291-295.
[http://dx.doi.org/10.1016/S1369-5274(98)80032-5] [PMID: 10066496]
[124]
Jaenicke, R.; Závodszky, P. Proteins under extreme physical conditions. FEBS Lett., 1990, 268(2), 344-349.
[http://dx.doi.org/10.1016/0014-5793(90)81283-T] [PMID: 2200715]
[125]
Gomes, J.; Gomes, I.; Terler, K.; Gubala, N.; Ditzelmüller, G.; Steiner, W. Optimisation of culture medium and conditions for α-l-Arabinofuranosidase production by the extreme thermophilic eubacterium Rhodothermus marinus. Enzyme Microb. Technol., 2000, 27(6), 414-422.
[http://dx.doi.org/10.1016/S0141-0229(00)00229-5] [PMID: 10938421]
[126]
Gomes, J.; Steiner, W. Production of a high activity of an extremely thermostable B-Mannanase by the Thermophilic Eubacterium Rhodothermus marinus, grown on locust bean gum. Biotechnol. Lett., 1998, 20(8), 729-733.
[http://dx.doi.org/10.1023/A:1005330618613]
[127]
Fukuda, M.; Kunugi, S. Pressure dependence of thermolysin catalysis. Eur. J. Biochem., 1984, 142(3), 565-570.
[http://dx.doi.org/10.1111/j.1432-1033.1984.tb08323.x] [PMID: 6432533]
[128]
Konisky, J.; Michels, P.C.; Clark, D.S. Pressure stabilization is not a general property of thermophilic enzymes: the adenylate kinases of Methanococcus voltae, Methanococcus maripaludis, Methanococcus thermolithotrophicus, and Methanococcus jannaschii. Appl. Environ. Microbiol., 1995, 61(7), 2762-2764.
[http://dx.doi.org/10.1128/AEM.61.7.2762-2764.1995] [PMID: 7618889]
[129]
Giuliano, M.; Schiraldi, C.; Marotta, M.R.; Hugenholtz, J.; De Rosa, M. Expression of Sulfolobus solfataricus α-glucosidase in Lactococcus lactis. Appl. Microbiol. Biotechnol., 2004, 64(6), 829-832.
[http://dx.doi.org/10.1007/s00253-003-1493-2] [PMID: 15168096]
[130]
Mombelli, E.; Shehi, E.; Fusi, P.; Tortora, P. Exploring hyperthermophilic proteins under pressure: theoretical aspects and experimental findings. Biochim. Biophys. Acta, 2002, 1595(1-2), 392-396.
[http://dx.doi.org/10.1016/S0167-4838(01)00361-2] [PMID: 11983413]
[131]
Schneider, S.C.; Fosholt, M.T.; Hessen, D.O.; Kaste, Ø. Juncus bulbosus nuisance growth in oligotrophic freshwater ecosystems: different triggers for the same phenomenon in rivers and lakes? Aquat. Bot., 2013, 104, 15-24.
[http://dx.doi.org/10.1016/j.aquabot.2012.10.001]
[132]
Johnson, D.B. Physiology and ecology of acidophilic microorganisms. Physiology and biochemistry of extremophiles; Gerday, C.; Glansdorff, N., Eds.; ASM Press: Washington, D.C., 2007, pp. 257-271.
[133]
Poole, R.K. Introduction.Novartis Foundation Symposium 221 - Bacterial Responses to pH; John Wiley and Sons, 2007, pp. 1-3.
[134]
Rawlings, D.E. Heavy metal mining using microbes. Annu. Rev. Microbiol., 2002, 56(1), 65-91.
[http://dx.doi.org/10.1146/annurev.micro.56.012302.161052] [PMID: 12142493]
[135]
Rohwerder, T.; Gehrke, T.; Kinzler, K.; Sand, W. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol., 2003, 63(3), 239-248.
[http://dx.doi.org/10.1007/s00253-003-1448-7] [PMID: 14566432]
[136]
Konishi, Y.; Tokushige, M.; Asai, S. Bioleaching of chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi. In: Biohydrometallurgy and the Environment Toward the Mining of the 21st Century - Proceedings of the International Biohydrometallurgy Symposium; San Lorenzo de El Escorial, Madrid, Spain, 1999; pp. 367-376.
[http://dx.doi.org/10.1016/S1572-4409(99)80037-6]
[137]
Mullakhanbhai, M.F.; Larsen, H. Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement. Arch. Microbiol., 1975, 104(3), 207-214.
[http://dx.doi.org/10.1007/BF00447326] [PMID: 1190944]
[138]
Pikuta, E.V.; Hoover, R.B.; Tang, J. Microbial extremophiles at the limits of life. Crit. Rev. Microbiol., 2007, 33(3), 183-209.
[http://dx.doi.org/10.1080/10408410701451948] [PMID: 17653987]
[139]
Leigh, J.A.; Albers, S-V.; Atomi, H.; Allers, T. Model organisms for genetics in the domain Archaea: methanogens, halophiles. Thermococcales and Sulfolobales. FEMS Microbiol. Rev., 2011, 35(4), 577-608.
[http://dx.doi.org/10.1111/j.1574-6976.2011.00265.x] [PMID: 21265868]
[140]
Christian, J.H.B.; Waltho, J.A. Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim. Biophys. Acta, 1962, 65(3), 506-508.
[http://dx.doi.org/10.1016/0006-3002(62)90453-5] [PMID: 14021131]
[141]
Oren, A. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst., 2008, 4(2), 2.
[http://dx.doi.org/10.1186/1746-1448-4-2] [PMID: 18412960]
[142]
Falb, M.; Müller, K.; Königsmaier, L.; Oberwinkler, T.; Horn, P.; von Gronau, S.; Gonzalez, O.; Pfeiffer, F.; Bornberg-Bauer, E.; Oesterhelt, D. Metabolism of halophilic archaea. Extremophiles, 2008, 12(2), 177-196.
[http://dx.doi.org/10.1007/s00792-008-0138-x] [PMID: 18278431]
[143]
Sutrisno, A.; Ueda, M.; Abe, Y.; Nakazawa, M.; Miyatake, K. A chitinase with high activity toward partially N-acetylated chitosan from a new, moderately thermophilic, chitin-degrading bacterium, Ralstonia sp. A-471. Appl. Microbiol. Biotechnol., 2004, 63(4), 398-406.
[http://dx.doi.org/10.1007/s00253-003-1351-2] [PMID: 12802528]
[144]
Taylor, I.N.; Brown, R.C.; Bycroft, M.; King, G.; Littlechild, J.A.; Lloyd, M.C.; Praquin, C.; Toogood, H.S.; Taylor, S.J.C. Application of thermophilic enzymes in commercial biotransformation processes. Biochem. Soc. Trans., 2004, 32(Pt 2), 290-292.
[http://dx.doi.org/10.1042/bst0320290] [PMID: 15046591]
[145]
Wołosowska, S.; Synowiecki, J. Thermostable β-glucosidase with a broad substrate specifity suitable for processing of lactose containing products. Food Chem., 2004, 85(2), 181-187.
[http://dx.doi.org/10.1016/S0308-8146(03)00104-3]
[146]
Zaccai, G. The effect of water on protein dynamics. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2004, 359(1448), 1269-1275.
[http://dx.doi.org/10.1098/rstb.2004.1503] [PMID: 15306381]
[147]
Lanyi, J.K. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol. Rev., 1974, 38(3), 272-290.
[http://dx.doi.org/10.1128/MMBR.38.3.272-290.1974] [PMID: 4607500]
[148]
Mevarech, M.; Frolow, F.; Gloss, L.M. Halophilic enzymes: proteins with a grain of salt. Biophys. Chem., 2000, 86(2-3), 155-164.
[http://dx.doi.org/10.1016/S0301-4622(00)00126-5] [PMID: 11026680]
[149]
Suzuki, T.; Nakayama, T.; Kurihara, T.; Nishino, T.; Esaki, N. Cold-active lipolytic activity of psychrotrophic Acinetobacter sp. strain no. 6. J. Biosci. Bioeng., 2001, 92(2), 144-148.
[http://dx.doi.org/10.1016/S1389-1723(01)80215-2] [PMID: 16233074]
[150]
Serour, E.; Antranikian, G. Novel thermoactive glucoamylases from the thermoacidophilic Archaea Thermoplasma acidophilum, Picrophilus torridus and Picrophilus oshimae. Antonie van Leeuwenhoek, 2002, 81(1-4), 73-83.
[http://dx.doi.org/10.1023/A:1020525525490] [PMID: 12448707]
[151]
Rozzell, J.D. Commercial scale biocatalysis: myths and realities. Bioorg. Med. Chem., 1999, 7(10), 2253-2261.
[http://dx.doi.org/10.1016/S0968-0896(99)00159-5] [PMID: 10579534]
[152]
Gurung, N.; Ray, S.; Bose, S.; Rai, V. A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res. Int., 2013, 2013, 329121
[http://dx.doi.org/10.1155/2013/329121] [PMID: 24106701]
[153]
Litchfield, C.D. Potential for industrial products from the halophilic Archaea. J. Ind. Microbiol. Biotechnol., 2011, 38(10), 1635-1647.
[http://dx.doi.org/10.1007/s10295-011-1021-9] [PMID: 21853327]
[154]
Pei, J.; Pang, Q.; Zhao, L.; Fan, S.; Shi, H. Thermoanaerobacterium thermosaccharolyticum β-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnol. Biofuels, 2012, 5(1), 31.
[http://dx.doi.org/10.1186/1754-6834-5-31] [PMID: 22571470]
[155]
Schreck, S.D.; Grunden, A.M. Biotechnological applications of halophilic lipases and thioesterases. Appl. Microbiol. Biotechnol., 2014, 98(3), 1011-1021.
[http://dx.doi.org/10.1007/s00253-013-5417-5] [PMID: 24318008]
[156]
Wyman, C.E.; Dale, B.E.; Elander, R.T.; Holtzapple, M.; Ladisch, M.R.; Lee, Y.Y. Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol., 2005, 96(18), 1959-1966.
[http://dx.doi.org/10.1016/j.biortech.2005.01.010] [PMID: 16112483]
[157]
Romero, S.; Merino, E.; Bolívar, F.; Gosset, G.; Martinez, A. Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism. Appl. Environ. Microbiol., 2007, 73(16), 5190-5198.
[http://dx.doi.org/10.1128/AEM.00625-07] [PMID: 17586670]
[158]
Chang, T.; Yao, S. Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives. Appl. Microbiol. Biotechnol., 2011, 92(1), 13-27.
[http://dx.doi.org/10.1007/s00253-011-3456-3] [PMID: 21800031]
[159]
Jarboe, L.R.; Liu, P.; Kautharapu, K.B.; Ingram, L.O. Optimization of enzyme parameters for fermentative production of biorenewable fuels and chemicals. Comput. Struct. Biotechnol. J., 2012, 3(4) e201210005
[http://dx.doi.org/10.5936/csbj.201210005] [PMID: 24688665]
[160]
Tripetchkul, S.; Tonokawa, M.; Ishizaki, A. Ethanol production by Zymomonas mobilis using natural rubber waste as a nutritional source. J. Ferment. Bioeng., 1992, 74(6), 384-388.
[http://dx.doi.org/10.1016/0922-338X(92)90036-T]
[161]
Zverlov, V.V.; Velikodvorskaya, G.A.; Schwarz, W.H. A newly described cellulosomal cellobiohydrolase, CelO, from Clostridium thermocellum: investigation of the exo-mode of hydrolysis, and binding capacity to crystalline cellulose. Microbiology, 2002, 148(Pt 1), 247-255.
[http://dx.doi.org/10.1099/00221287-148-1-247] [PMID: 11782517]
[162]
Cripps, R.E.; Eley, K.; Leak, D.J.; Rudd, B.; Taylor, M.; Todd, M.; Boakes, S.; Martin, S.; Atkinson, T. Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab. Eng., 2009, 11(6), 398-408.
[http://dx.doi.org/10.1016/j.ymben.2009.08.005] [PMID: 19703579]
[163]
Yao, S.; Mikkelsen, M.J. Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii. Appl. Microbiol. Biotechnol., 2010, 88(1), 199-208.
[http://dx.doi.org/10.1007/s00253-010-2703-3] [PMID: 20552355]
[164]
Otohinoyi, D.A.; Omodele, I. Prospecting microbial extremophiles as valuable resources of biomolecules for biotechnological applications. Int. J. Sci. Res. (Ahmedabad), 2015, 4(1), 1042-1059.
[165]
Rogers, P.L.; Lee, K.J.; Skotnicki, M.L.; Tribe, D.E. Ethanol production by Zymomonas mobilis. Advances in Biochemical Engineering; Fiechter, A., Ed.; Springer-Verlag, 1982, pp. 37-84.
[166]
Demain, A.L.; Newcomb, M.; Wu, J.H.D. Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev., 2005, 69(1), 124-154.
[http://dx.doi.org/10.1128/MMBR.69.1.124-154.2005] [PMID: 15755956]
[167]
Lacoste, F.; Dejean, F.; Griffon, H.; Rouquette, C. Quantification of free and esterified steryl glucosides in vegetable oils and biodiesel. Eur. J. Lipid Sci. Technol., 2009, 111(8), 822-828.
[http://dx.doi.org/10.1002/ejlt.200800297]
[168]
Aguirre, A.; Eberhardt, F.; Hails, G.; Cerminati, S.; Castelli, M.E.; Rasia, R.M.; Paoletti, L.; Menzella, H.G.; Peiru, S. The production, properties, and applications of thermostable steryl glucosidases. World J. Microbiol. Biotechnol., 2018, 34(3), 40.
[http://dx.doi.org/10.1007/s11274-018-2423-x] [PMID: 29468428]
[169]
Menzella, H.; Peiru, S.; Vetcher, L. Enzymatic Removal of Steryl Glycosides. WO, 2012, 2013/138671, A1.
[170]
Soe, J. Method. WO, 2010, 2010004423, A2.
[171]
Elleuche, S.; Schröder, C.; Sahm, K.; Antranikian, G. Extremozymes--biocatalysts with unique properties from extremophilic microorganisms. Curr. Opin. Biotechnol., 2014, 29, 116-123.
[http://dx.doi.org/10.1016/j.copbio.2014.04.003] [PMID: 24780224]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy