Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

Metagenomic Exploration of Plastic Degrading Microbes for Biotechnological Application

Author(s): Jyotika Purohit, Anirudha Chattopadhyay* and Basavaraj Teli

Volume 21, Issue 4, 2020

Page: [253 - 270] Pages: 18

DOI: 10.2174/1389202921999200525155711

Price: $65

Abstract

Since the last few decades, the promiscuous and uncontrolled use of plastics led to the accumulation of millions of tons of plastic waste in the terrestrial and marine environment. It elevated the risk of environmental pollution and climate change. The concern arises more due to the reckless and unscientific disposal of plastics containing high molecular weight polymers, viz., polystyrene, polyamide, polyvinylchloride, polypropylene, polyurethane, and polyethylene, etc. which are very difficult to degrade. Thus, the focus is now paid to search for efficient, eco-friendly, low-cost waste management technology. Of them, degradation of non-degradable synthetic polymer using diverse microbial agents, viz., bacteria, fungi, and other extremophiles become an emerging option. So far, very few microbial agents and their secreted enzymes have been identified and characterized for plastic degradation, but with low efficiency. It might be due to the predominance of uncultured microbial species, which consequently remain unexplored from the respective plastic degrading milieu. To overcome this problem, metagenomic analysis of microbial population engaged in the plastic biodegradation is advisable to decipher the microbial community structure and to predict their biodegradation potential in situ. Advancements in sequencing technologies and bioinformatics analysis allow the rapid metagenome screening that helps in the identification of total microbial community and also opens up the scope for mining genes or enzymes (hydrolases, laccase, etc.) engaged in polymer degradation. Further, the extraction of the core microbial population and their adaptation, fitness, and survivability can also be deciphered through comparative metagenomic study. It will help to engineer the microbial community and their metabolic activity to speed up the degradation process.

Keywords: Metagenomics, microbial community, plastic degrading microbes, microbiome engineering, prebiotics, probiotics, genetic engineering.

Graphical Abstract

[1]
Ritchie, H.; Roser, M. Plastic pollution., 2020. Available from:. https://ourworldin data.org/plastic-pollution
[2]
World Economic Forum. Ellen MacArthur Foundation and McKinsey Company, The new plastics economy-rethinking the future of plastics, 2016.
[3]
Chalmers University of Technology. All plastic waste could become new, high-quality plastic through advanced steam cracking; ScienceDaily, 2019.
[4]
Kershaw, P.J.; Turra, A.; Galgani, F. Guidelines or the monitoring and assessment of plastic litter and microplastics in the ocean (IMO/FAO/UNESCOIOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP/ISA-Joint group of experts on the scientific aspects of marine environmental protection). Rep. Stud. GESAMP, 2019, 99, 130.
[5]
Parker, L. The world's plastic pollution crisis explained., 2019. Available from:. geographic.com/environment/habitats/plastic pollution
[6]
Reddy, S. Plastic pollution affects sea life throughout the ocean., 2018. Available from:. https://www.pewtrusts.org/en/research-and analysis/articles/2018/09/24/plastic-pollution-affects-sea-life throughout-the-ocean
[7]
Webb, H.K.; Arnott, J.; Crawford, R.J.; Ivanova, E.P. Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers (Basel), 2013, 5(1), 1-18.
[http://dx.doi.org/10.3390/polym5010001]
[8]
Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: challenges and opportunities. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009, 364(1526), 2115-2126.
[http://dx.doi.org/10.1098/rstb.2008.0311] [PMID: 19528059]
[9]
Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv., 2017, 3(7) e1700782
[http://dx.doi.org/10.1126/sciadv.1700782] [PMID: 28776036]
[10]
Jayasekara, R.; Harding, I.; Bowater, I.; Lonergan, G. Biodegradability of a selected range of polymers and polymer blends and standard methods for assessment of biodegradation. J. Polym. Environ., 2005, 13, 231-251.
[http://dx.doi.org/10.1007/s10924-005-4758-2]
[11]
Crowley, D.; Staines, A.; Collins, C.; Bracken, J.; Bruen, M.; Fry, J. Hrymak, Victor; Malone, D.; Magette, B.; Ryan, M.; Thunhurst, C. Health and environmental effects of landfilling and incineration of waste-a literature review; Reports, 2003, p. 3.
[12]
Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Marine pollution. Plastic waste inputs from land into the ocean. Science, 2015, 347(6223), 768-771.
[http://dx.doi.org/10.1126/science.1260352] [PMID: 25678662]
[13]
Garcia de Oliveira, B.; Fang, M.M.; Lin, J. Marine plastic pollution in Asia: all hands on deck! Chinese J. Env. Law, 2019, 3(1), 11-46.
[http://dx.doi.org/10.1163/24686042-12340034]
[14]
Ghosh, S.K.; Pal, S.; Ray, S. Study of microbes having potentiality for biodegradation of plastics. Environ. Sci. Pollut. Res. Int., 2013, 20(7), 4339-4355.
[http://dx.doi.org/10.1007/s11356-013-1706-x] [PMID: 23613206]
[15]
El-Morsy, E.M.; Hassan, H.M.; Ahmed, E. Biodegradative activities of fungal isolates from plastic contaminated soils. Mycosphere, 2017, 8(8), 1071-1087.
[http://dx.doi.org/10.5943/mycosphere/8/8/13]
[16]
Alshehrei, F. Biodegradation of synthetic and natural plastic by microorganisms. J. Appl. Envion. Microbiol., 2017, 5(1), 8-19.
[17]
Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: a comprehensive review. Biotechnol. Adv., 2008, 26(3), 246-265.
[http://dx.doi.org/10.1016/j.biotechadv.2007.12.005] [PMID: 18337047]
[18]
Puglisi, E.; Romaniello, F.; Galletti, S.; Boccaleri, E.; Frache, A.; Cocconcelli, P.S. Selective bacterial colonization processes on polyethylene waste samples in an abandoned landfill site. Sci. Rep., 2019, 9(1), 14138.
[http://dx.doi.org/10.1038/s41598-019-50740-w] [PMID: 31578444]
[19]
Lamar, R.T.; White, R.B. Mycoremediation: commercial status and recent developments. Proceedings sixth international symposium on in situ and on-site bioremediation, San Diego, USA2001, pp. 263-278.
[20]
Lawton, J.H.; Jones, C.G. Linking species and ecosystems: organisms as ecosystem engineers. Linking species, ecosystems; Jones, C.G.; Lawton, J.H., Eds.; Chapman & Hall: New York, 1995, pp. 141-150.
[http://dx.doi.org/10.1007/978-1-4615-1773-3_14]
[21]
Purohit, J.; Chattopadhyay, A.; Biswas, M.K.; Singh, N.K. Mycoremediation of agricultural soil: bioprospection for sustainable development.Mycoremediation and environmental sustainability, Fungal Biology; Prasad, R., Ed.; Springer Nature, 2018, pp. 91-120.
[http://dx.doi.org/10.1007/978-3-319-77386-5_4]
[22]
Carpenter, E.J.; Smith, K.L., Jr Plastics on the Sargasso sea surface. Science, 1972, 175(4027), 1240-1241.
[http://dx.doi.org/10.1126/science.175.4027.1240] [PMID: 5061243]
[23]
Colton, J.B., Jr; Burns, B.R.; Knapp, F.D. Plastic particles in surface waters of the northwestern atlantic. Science, 1974, 185(4150), 491-497.
[http://dx.doi.org/10.1126/science.185.4150.491] [PMID: 17830390]
[24]
Shimao, M. Biodegradation of plastics. Curr. Opin. Biotechnol., 2001, 12(3), 242-247.
[http://dx.doi.org/10.1016/S0958-1669(00)00206-8] [PMID: 11404101]
[25]
Kirstein, I.V.; Wichels, A.; Gullans, E.; Krohne, G.; Gerdts, G. The Plastisphere - Uncovering tightly attached plastic “specific” microorganisms. PLoS One, 2019, 14(4) e0215859
[http://dx.doi.org/10.1371/journal.pone.0215859] [PMID: 31013334]
[26]
Zettler, E.R.; Mincer, T.J.; Amaral-Zettler, L.A. Life in the “plastisphere”: microbial communities on plastic marine debris. Environ. Sci. Technol., 2013, 47(13), 7137-7146.
[http://dx.doi.org/10.1021/es401288x] [PMID: 23745679]
[27]
Louca, S.; Polz, M.F.; Mazel, F.; Albright, M.B.N.; Huber, J.A.; O’Connor, M.I.; Ackermann, M.; Hahn, A.S.; Srivastava, D.S.; Crowe, S.A.; Doebeli, M.; Parfrey, L.W. Function and functional redundancy in microbial systems. Nat. Ecol. Evol., 2018, 2(6), 936-943.
[http://dx.doi.org/10.1038/s41559-018-0519-1] [PMID: 29662222]
[28]
Glaser, J.A. Biological degradation of polymers in the environment. Plastics in the environment. Intech open; Gomiero, A., Ed.; , 2019, pp. 1-22.
[http://dx.doi.org/10.5772/intechopen.85124]
[29]
Lugauskas, A.; Levinskait, L.; Peciulyte, D. Micromycetes as deterioration agents of polymeric materials. Int. Biodeter. Biodegr., 2003, 52(4), 233-242.
[http://dx.doi.org/10.1016/S0964-8305(03)00110-0]
[30]
Dussud, C.; Ghiglione, J.F. Bacterial degradation of synthetic plastics. Proceedings of the CIESM workshop monograph, monaco city, 2014, pp. 43-48.
[31]
Gewert, B.; Plassmann, M.M.; MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process. Impacts, 2015, 17(9), 1513-1521.
[http://dx.doi.org/10.1039/C5EM00207A] [PMID: 26216708]
[32]
Pathak, V.M.N. Review on the current status of polymer degradation: a microbial approach. Bioresour. Bioprocess., 2017, 4, 15.
[http://dx.doi.org/10.1186/s40643-017-0145-9]
[33]
Swapnil, K.K.; Deshmukh, A.G.; Dudhare, M.S.; Patil, V.B. Microbial degradation of plastic: a review. J. Biochem. Technol., 2015, 6(2), 952-961.
[34]
Mooney, A.; Ward, P.G.; O’Connor, K.E. Microbial degradation of styrene: biochemistry, molecular genetics, and perspectives for biotechnological applications. Appl. Microbiol. Biotechnol., 2006, 72(1), 1-10.
[http://dx.doi.org/10.1007/s00253-006-0443-1] [PMID: 16823552]
[35]
Sharma, M.; Dhingra, H.K. Poly-β-hydroxybutyrate: a biodegradable polyester, biosynthesis and biodegradation. Br. Microbiol. Res. J., 2016, 14(3), 1-11.
[http://dx.doi.org/10.9734/BMRJ/2016/25430]
[36]
Raziyafathima, M.; Praseetha, P.K.; Rimal Isaac, R.S. Microbial degradation of plastic waste: a review. J. Pharm. Chem. Biol. Sci., 2016, 4(2), 231-242.
[37]
Hugenholtz, P.; Goebel, B.M.; Pace, N.R. Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol., 1998, 180(18), 4765-4774.
[http://dx.doi.org/10.1128/JB.180.18.4765-4774.1998] [PMID: 9733676]
[38]
Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 2016, 351(6278), 1196-1199.
[http://dx.doi.org/10.1126/science.aad6359] [PMID: 26965627]
[39]
Danso, D.; Chow, J.; Streit, W.R. Plastics: environmental and biotechnological perspectives on microbial degradation. Appl. Environ. Microbiol., 2019, 85(19), e01095-e19.
[http://dx.doi.org/10.1128/AEM.01095-19] [PMID: 31324632]
[40]
Jaiswal, S.; Sharma, B.; Shukla, P. Integrated approaches in microbial degradation of plastics. Environ. Technol. Inno., 2020, 17, 100567
[http://dx.doi.org/10.1016/j.eti.2019.100567]
[41]
Jeffries, T.C.; Rayu, S.; Nielsen, U.N.; Lai, K.; Ijaz, A.; Nazaries, L.; Singh, B.K. Metagenomic functional potential predicts degradation rates of a model organophosphorus xenobiotic in pesticide contaminated soils. Front. Microbiol., 2018, 9, 147.
[http://dx.doi.org/10.3389/fmicb.2018.00147] [PMID: 29515526]
[42]
Alves, L.F.; Westmann, C.A.; Lovate, G.L.; de Siqueira, G.M.V.; Borelli, T.C.; Guazzaroni, M.E. Metagenomic approaches for understanding new concepts in microbial science. Int. J. Genomics, 2018, 2018, 2312987
[http://dx.doi.org/10.1155/2018/2312987] [PMID: 30211213]
[43]
Pinnell, L.J.; Turner, J.W. Shotgun metagenomics reveals the benthic microbial community response to plastic and bioplastic in a coastal marine environment. Front. Microbiol., 2019, 10, 1252.
[http://dx.doi.org/10.3389/fmicb.2019.01252] [PMID: 31231339]
[44]
Lam, K.N.; Cheng, J.; Engel, K.; Neufeld, J.D.; Charles, T.C. Current and future resources for functional metagenomics. Front. Microbiol., 2015, 6, 1196.
[http://dx.doi.org/10.3389/fmicb.2015.01196] [PMID: 26579102]
[45]
Amaral-Zettler, L.A.; Zettler, E.R.; Slikas, B.; Boyd, G.D.; Melvin, D.W.; Morrall, C.E.; Proskurowski, G.; Mincer, T.J. The biogeography of the Plastisphere: implications for policy. Front. Ecol. Environ., 2015, 13(10), 541-546.
[http://dx.doi.org/10.1890/150017]
[46]
Quero, G.M.; Luna, G.M. Surfing and dining on the “plastisphere”: Microbial life on plastic marine debris. Adv. Oceanol. Limnol., 2017, 8(2), 199-207.
[http://dx.doi.org/10.4081/aiol.2017.7211]
[47]
Jacquin, J.; Cheng, J.; Odobel, C.; Pandin, C.; Conan, P.; Pujo-Pay, M.; Barbe, V.; Meistertzheim, A.L.; Ghiglione, J.F. Microbial ecotoxicology of marine plastic debris: a review on colonization and biodegradation by the “plastisphere”. Front. Microbiol., 2019, 10, 865.
[http://dx.doi.org/10.3389/fmicb.2019.00865] [PMID: 31073297]
[48]
Roager, L.; Sonnenschein, E.C. Bacterial candidates for colonization and degradation of marine plastic debris. Environ. Sci. Technol., 2019, 53(20), 11636-11643.
[http://dx.doi.org/10.1021/acs.est.9b02212] [PMID: 31557003]
[49]
Oberbeckmann, S.; Loeder, M.G.; Gerdts, G.; Osborn, A.M. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol. Ecol., 2014, 90(2), 478-492.
[http://dx.doi.org/10.1111/1574-6941.12409] [PMID: 25109340]
[50]
Oberbeckmann, S.; Osborn, A.M.; Duhaime, M.B. Microbes on a Bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS One, 2016, 11(8) e0159289
[http://dx.doi.org/10.1371/journal.pone.0159289] [PMID: 27487037]
[51]
Kirstein, I.V.; Wichels, A.; Krohne, G.; Gerdts, G. Mature biofilm communities on synthetic polymers in seawater - Specific or general? Mar. Environ. Res., 2018, 142, 147-154.
[http://dx.doi.org/10.1016/j.marenvres.2018.09.028] [PMID: 30337052]
[52]
Martin, O. Viktoria, Wenman.; Andreas, Barth.; Evelyne, H.B.; Sara D.; Elena, G. Microplastic intake, its biotic drivers, and hydrophobic organic contaminant levels in the baltic herring. Front. Environ. Sci., 2019, 7, 134.
[http://dx.doi.org/10.3389/fenvs.2019.00134]
[53]
Pinto, M.; Langer, T.M.; Hüffer, T.; Hofmann, T.; Herndl, G.J. The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession. PLoS One, 2019, 14(6) e0217165
[http://dx.doi.org/10.1371/journal.pone.0217165] [PMID: 31166981]
[54]
Oberbeckmann, S.; Kreikemeyer, B.; Labrenz, M. Environmental factors support the formation of specific bacterial assemblages on microplastics. Front. Microbiol., 2018, 8, 2709.
[http://dx.doi.org/10.3389/fmicb.2017.02709] [PMID: 29403454]
[55]
Dang, H.; Lovell, C.R. Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl. Environ. Microbiol., 2000, 66(2), 467-475.
[http://dx.doi.org/10.1128/AEM.66.2.467-475.2000] [PMID: 10653705]
[56]
Lee, J.W.; Nam, J.H.; Kim, Y.H.; Lee, K.H.; Lee, D.H. Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces. J. Microbiol., 2008, 46(2), 174-182.
[http://dx.doi.org/10.1007/s12275-008-0032-3] [PMID: 18545967]
[57]
Salta, M.; Wharton, J.A.; Blache, Y.; Stokes, K.R.; Briand, J.F. Marine biofilms on artificial surfaces: structure and dynamics. Environ. Microbiol., 2013, 15(11), 2879-2893.
[http://dx.doi.org/10.1111/1462-2920.12186] [PMID: 23869714]
[58]
De Tender, C.; Devriese, L.I.; Haegeman, A.; Maes, S.; Vangeyte, J.; Cattrijsse, A.; Dawyndt, P.; Ruttink, T. Temporal dynamics of bacterial and fungal colonization on plastic debris in the North Sea. Environ. Sci. Technol., 2017, 51(13), 7350-7360.
[http://dx.doi.org/10.1021/acs.est.7b00697] [PMID: 28562015]
[59]
Golyshin, P.N.; Chernikova, T.N.; Abraham, W.R.; Lünsdorf, H.; Timmis, K.N.; Yakimov, M.M. Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int. J. Syst. Evol. Microbiol., 2002, 52(Pt 3), 901-911.
[PMID: 12054256]
[60]
Khanna, N.D.; Kaur, I.; Bhalla, T.C.; Gautam, N. Effect of biodegradation on thermal and crystalline behavior of polypropylene gelatin based copolymers. J. Appl. Polym. Sci., 2010, 118(3), 1476-1488.
[http://dx.doi.org/10.1002/app.32434]
[61]
Kettner, M.T.; Rojas-Jimenez, K.; Oberbeckmann, S.; Labrenz, M.; Grossart, H.P. Microplastics alter composition of fungal communities in aquatic ecosystems. Environ. Microbiol., 2017, 19(11), 4447-4459.
[http://dx.doi.org/10.1111/1462-2920.13891] [PMID: 28805294]
[62]
Brunner, I.; Fischer, M.; Rüthi, J.; Stierli, B.; Frey, B. Ability of fungi isolated from plastic debris floating in the shoreline of a lake to degrade plastics. PLoS One, 2018, 13(8) e0202047
[http://dx.doi.org/10.1371/journal.pone.0202047] [PMID: 30133489]
[63]
Sangale, M.K.; Shahnawaz, M.; Ade, A.B. Potential of fungi isolated from the dumping sites mangrove rhizosphere soil to degrade polythene. Sci. Rep., 2019, 9(1), 5390.
[http://dx.doi.org/10.1038/s41598-019-41448-y] [PMID: 30926843]
[64]
Bryant, J.A.; Clemente, T.M.; Viviani, D.A.; Fong, A.A.; Thomas, K.A.; Kemp, P.; Karl, D.M.; White, A.E.; DeLong, E.F. Diversity and activity of communities inhabiting plastic debris in the North Pacific Gyre. mSystems, 2016, 1(3), e00024-16.
[http://dx.doi.org/10.1128/mSystems.00024-16] [PMID: 27822538]
[65]
Dussud, C.; Hudec, C.; George, M.; Fabre, P.; Higgs, P.; Bruzaud, S.; Delort, A.M.; Eyheraguibel, B.; Meistertzheim, A.L.; Jacquin, J.; Cheng, J.; Callac, N.; Odobel, C.; Rabouille, S.; Ghiglione, J.F. Colonization of non-biodegradable and biodegradable plastics by marine microorganisms. Front. Microbiol., 2018, 9, 1571.
[http://dx.doi.org/10.3389/fmicb.2018.01571] [PMID: 30072962]
[66]
Kumar, R.V.; Kanna, G.R.; Elumalai, S. Biodegradation of polyethylene by green photosynthetic microalgae. J. Bioremediat. Biodegrad., 2017, 8, 381.
[67]
Cooksey, K.E.; Wigglesworth-Cooksey, B. Adhesion of bacteria and diatoms to surfaces in the sea: a review. Aquat. Microb. Ecol., 1995, 9, 87-96.
[http://dx.doi.org/10.3354/ame009087]
[68]
Abell, G.C.; Bowman, J.P. Colonization and community dynamics of class Flavobacteria on diatom detritus in experimental mesocosms based on Southern Ocean seawater. FEMS Microbiol. Ecol., 2005, 53(3), 379-391.
[http://dx.doi.org/10.1016/j.femsec.2005.01.008] [PMID: 16329957]
[69]
Amin, S.A.; Parker, M.S.; Armbrust, E.V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev., 2012, 76(3), 667-684.
[http://dx.doi.org/10.1128/MMBR.00007-12] [PMID: 22933565]
[70]
Eich, A.; Mildenberger, T.; Laforsch, C.; Weber, M. Biofilm and Diatom succession on polyethylene (pe) and biodegradable plastic bags in two marine habitats: early signs of degradation in the pelagic and benthic zone? PLoS One, 2015, 10(9) e0137201
[http://dx.doi.org/10.1371/journal.pone.0137201] [PMID: 26394047]
[71]
Cassone, B.J.; Grove, H.C.; Elebute, O.; Villanueva, S.M.P.; LeMoine, C.M.R. Role of the intestinal microbiome in low-density polyethylene degradation by caterpillar larvae of the greater wax moth, Galleria mellonella. Proc. Biol. Sci., 2020, 287(1922) 20200112
[http://dx.doi.org/10.1098/rspb.2020.0112] [PMID: 32126962]
[72]
Lou, Y.; Ekaterina, P.; Yang, S.-S.; Lu, B.; Liu, B.; Ren, N.; Corvini, P.F.-X.; Xing, D. Biodegradation of polyethylene and polystyrene by greater wax moth larvae (Galleria mellonella L.) and the effect of co-diet supplementation on the core gut microbiome. Environ. Sci. Technol., 2020, 54(5), 2821-2831.
[http://dx.doi.org/10.1021/acs.est.9b07044] [PMID: 32013402]
[73]
Delgado-Baquerizo, M.; Oliverio, A.M.; Brewer, T.E.; Benavent-González, A.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K.; Fierer, N. A global atlas of the dominant bacteria found in soil. Science, 2018, 359(6373), 320-325.
[http://dx.doi.org/10.1126/science.aap9516] [PMID: 29348236]
[74]
Syranidou, E.; Karkanorachaki, K.; Amorotti, F.; Franchini, M.; Repouskou, E.; Kaliva, M.; Vamvakaki, M.; Kolvenbach, B.; Fava, F.; Corvini, P.F.; Kalogerakis, N. Biodegradation of weathered polystyrene films in seawater microcosms. Sci. Rep., 2017, 7(1), 17991.
[http://dx.doi.org/10.1038/s41598-017-18366-y] [PMID: 29269847]
[75]
De Tender, C.; Schlundt, C.; Devriese, L.I.; Mincer, T.J.; Zettler, E.R.; Amaral-Zettler, L.A. A review of microscopy and comparative molecular-based methods to characterize “Plastisphere” communities. Anal. Methods, 2017, 9, 2132-2143.
[http://dx.doi.org/10.1039/C7AY00260B]
[76]
Jiao, S.; Xu, Y.; Zhang, J.; Hao, X.; Lu, Y. Core microbiota in agricultural soils and their potential associations with nutrient cycling. mSystems, 2019, 4(2), e00313-e00318.
[http://dx.doi.org/10.1128/mSystems.00313-18] [PMID: 30944882]
[77]
Delacuvellerie, A.; Cyriaque, V.; Gobert, S.; Benali, S.; Wattiez, R. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation. J. Hazard. Mater., 2019, 380, 120899
[http://dx.doi.org/10.1016/j.jhazmat.2019.120899] [PMID: 31326835]
[78]
Muhonja, C.N.; Makonde, H.; Magoma, G.; Imbuga, M. Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS One, 2018, 13(7) e0198446
[http://dx.doi.org/10.1371/journal.pone.0198446] [PMID: 29979708]
[79]
Sulaiman, S.; Yamato, S.; Kanaya, E.; Kim, J.J.; Koga, Y.; Takano, K.; Kanaya, S. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl. Environ. Microbiol., 2012, 78(5), 1556-1562.
[http://dx.doi.org/10.1128/AEM.06725-11] [PMID: 22194294]
[80]
Danso, D.; Schmeisser, C.; Chow, J.; Zimmermann, W.; Wei, R.; Leggewie, C.; Li, X.; Hazen, T.; Streit, W.R. New insights into the function and global distribution of polyethylene terephthalate (PET)- degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl. Environ. Microbiol., 2018, 84(8), e02773-e17.
[http://dx.doi.org/10.1128/AEM.02773-17] [PMID: 29427431]
[81]
Hajighasemi, M.; Tchigvintsev, A.; Nocek, B.; Flick, R.; Popovic, A.; Hai, T.; Khusnutdinova, A.N.; Brown, G.; Xu, X.; Cui, H.; Anstett, J.; Chernikova, T.N.; Brüls, T.; Le Paslier, D.; Yakimov, M.M.; Joachimiak, A.; Golyshina, O.V.; Savchenko, A.; Golyshin, P.N.; Edwards, E.A.; Yakunin, A.F. Screening and characterization of novel polyesterases from environmental metagenomes with high hydrolytic activity against synthetic polyesters. Environ. Sci. Technol., 2018, 52(21), 12388-12401.
[http://dx.doi.org/10.1021/acs.est.8b04252] [PMID: 30284819]
[82]
Yao, J.; Fan, X.J.; Lu, Y.; Liu, Y.H. Isolation and characterization of a novel tannase from a metagenomic library. J. Agric. Food Chem., 2011, 59(8), 3812-3818.
[http://dx.doi.org/10.1021/jf104394m] [PMID: 21388130]
[83]
Tirawongsaroj, P.; Sriprang, R.; Harnpicharnchai, P.; Thongaram, T.; Champreda, V.; Tanapongpipat, S.; Pootanakit, K.; Eurwilaichitr, L. Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library. J. Biotechnol., 2008, 133(1), 42-49.
[http://dx.doi.org/10.1016/j.jbiotec.2007.08.046] [PMID: 17983680]
[84]
Meier, M.J.; Paterson, E.S.; Lambert, I.B. Use of substrate-induced gene expression in metagenomic analysis of an aromatic hydrocarbon- contaminated soil. Appl. Environ. Microbiol., 2015, 82(3), 897-909.
[http://dx.doi.org/10.1128/AEM.03306-15] [PMID: 26590287]
[85]
Lewin, A.; Strand, T.; Haugen, T.; Klinkenberg, G.; Kotlar, H.; Valla, S.; Drablos, F.; Wentzel, A. Discovery and characterization of a thermostable esterase from an oil reservoir metagenome. Adv. Enzyme Res., 2016, 4(2), 68-86.
[http://dx.doi.org/10.4236/aer.2016.42008]
[86]
Ronda, C.; Chen, S.P.; Cabral, V.; Yaung, S.J.; Wang, H.H. Metagenomic engineering of the mammalian gut microbiome in situ. Nat. Methods, 2019, 16(2), 167-170.
[http://dx.doi.org/10.1038/s41592-018-0301-y] [PMID: 30643213]
[87]
Foo, J.L.; Ling, H.; Lee, Y.S.; Chang, M.W. Microbiome engineering: Current applications and its future. Biotechnol. J., 2017, 12(3)
[http://dx.doi.org/10.1002/biot.201600099] [PMID: 28133942]
[88]
Sheth, R.U.; Cabral, V.; Chen, S.P.; Wang, H.H. Manipulating bacterial communities by in situ microbiome engineering. Trends Genet., 2016, 32(4), 189-200.
[http://dx.doi.org/10.1016/j.tig.2016.01.005] [PMID: 26916078]
[89]
Kaczorek, E.; Pacholak, A.; Zdarta, A.; Smułek, W. The impact of biosurfactants on microbial cell properties leading to hydrocarbon bioavailability increase. Colloids Interfaces, 2018, 2(3), 35.
[http://dx.doi.org/10.3390/colloids2030035]
[90]
Arkatkar, A.; Juwarkar, A.A.; Bhaduri, S.; Uppara, P.V.; Doble, M. Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. Int. Biodeter. Biodegr., 2016, 4(6), 530-536.
[http://dx.doi.org/10.1016/j.ibiod.2010.06.002]
[91]
Ding, T.; Lin, K.; Yang, M.; Bao, L.; Li, J.; Yang, B.; Gan, J. Biodegradation of triclosan in diatom Navicula sp.: Kinetics, transformation products, toxicity evaluation and the effects of pH and potassium permanganate. J. Hazard. Mater., 2018, 344, 200-209.
[http://dx.doi.org/10.1016/j.jhazmat.2017.09.033] [PMID: 29035714]
[92]
Fritz, J.; Sandhofer, M.; Stacher, C.; Braun, R. Strategies for detecting ecotoxicological effects of biodegradable polymers in agricultural applications. Macromol. Symp., 2003, 197, 397-410.
[http://dx.doi.org/10.1002/masy.200350734]
[93]
Haider, T.P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F.R. Plastics of the future? the impact of biodegradable polymers on the environment and on society. Angew. Chem. Int. Ed. Engl., 2019, 58(1), 50-62.
[http://dx.doi.org/10.1002/anie.201805766] [PMID: 29972726]
[94]
Thompson, I.P.; van der Gast, C.J.; Ciric, L.; Singer, A.C. Bioaugmentation for bioremediation: the challenge of strain selection. Environ. Microbiol., 2005, 7(7), 909-915.
[http://dx.doi.org/10.1111/j.1462-2920.2005.00804.x] [PMID: 15946288]
[95]
Mrozik, A.; Piotrowska-Seget, Z. Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol. Res., 2010, 165(5), 363-375.
[http://dx.doi.org/10.1016/j.micres.2009.08.001] [PMID: 19735995]
[96]
Bhatnagar, S.; Kumari, R. Bioremediation: a sustainable tool for environmental management-a review. Ann. Rev. Res. Biol., 2013, 3(4), 974-993.
[97]
Trosset, J.Y.; Carbonell, P. Synthetic biology for pharmaceutical drug discovery. Drug Des. Devel. Ther., 2015, 9, 6285-6302.
[http://dx.doi.org/10.2147/DDDT.S58049] [PMID: 26673570]
[98]
Ghosh, S.; Qureshi, A.; Purohit, H.J. Microbial degradation of plastics: Biofilms and degradation pathways.Contaminants in agriculture and environment: health risks and remediation; Kumar, V.; Kumar, R.; Singh, J.; Kumar, P., Eds.; Agro Environ Media: Haridwar, India, 2019, pp. 184-199.
[http://dx.doi.org/10.26832/AESA-2019-CAE-0153-014]
[99]
Huang, X.; Cao, L.; Qin, Z.; Li, S.; Kong, W.; Liu, Y. Tat-independent secretion of polyethylene terephthalate hydrolase PETase in Bacillus subtilis 168 mediated by its native signal peptide. J. Agric. Food Chem., 2018, 66(50), 13217-13227.
[http://dx.doi.org/10.1021/acs.jafc.8b05038] [PMID: 30465427]
[100]
Seo, H.; Kim, S.; Son, H.F.; Sagong, H.Y.; Joo, S.; Kim, K.J. Production of extracellular PETase from Ideonella sakaiensis using sec-dependent signal peptides in E. coli. Biochem. Biophys. Res. Commun., 2019, 508(1), 250-255.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.087] [PMID: 30477746]
[101]
Moog, D.; Schmitt, J.; Senger, J.; Zarzycki, J.; Rexer, K.H.; Linne, U.; Erb, T.; Maier, U.G. Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation. Microb. Cell Fact., 2019, 18(1), 171.
[http://dx.doi.org/10.1186/s12934-019-1220-z] [PMID: 31601227]
[102]
Kawai, F.; Kawabata, T.; Oda, M. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Appl. Microbiol. Biotechnol., 2019, 103(11), 4253-4268.
[http://dx.doi.org/10.1007/s00253-019-09717-y] [PMID: 30957199]
[103]
Son, H.F.; Cho, I.J.; Joo, S.; Seo, H.; Sagong, H.Y.; Choi, S.Y.; Lee, S.Y.; Kim, K.J. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient pet degradation. ACS Catal., 2019, 9(4), 3519-3526.
[http://dx.doi.org/10.1021/acscatal.9b00568]
[104]
Austin, H.P.; Allen, M.D.; Donohoe, B.S.; Rorrer, N.A.; Kearns, F.L.; Silveira, R.L.; Pollard, B.C.; Dominick, G.; Duman, R.; El Omari, K.; Mykhaylyk, V.; Wagner, A.; Michener, W.E.; Amore, A.; Skaf, M.S.; Crowley, M.F.; Thorne, A.W.; Johnson, C.W.; Woodcock, H.L.; McGeehan, J.E.; Beckham, G.T. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl. Acad. Sci. USA, 2018, 115(19), E4350-E4357.
[http://dx.doi.org/10.1073/pnas.1718804115] [PMID: 29666242]
[105]
Herrero Acero, E.; Ribitsch, D.; Steinkellner, G.; Gruber, K.; Greimel, K.; Eiteljoerg, I.; Trotscha, E.; Wei, R.; Zimmermann, W.; Zinn, M.; Cavaco-Paulo, A.; Freddi, G.; Schwab, H.; Guebitz, G. Enzymatic surface hydrolysis of PET: Effect of structural diversity on kinetic properties of cutinases from Thermobifida. Macromolecules, 2011, 44(12), 4632-4640.
[http://dx.doi.org/10.1021/ma200949p]
[106]
Wei, R.; Zimmermann, W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb. Biotechnol., 2017, 10(6), 1308-1322.
[http://dx.doi.org/10.1111/1751-7915.12710] [PMID: 28371373]
[107]
Furukawa, M.; Kawakami, N.; Tomizawa, A.; Miyamoto, K. Efficient degradation of poly(ethylene terephthalate) with Thermobifida fusca cutinase exhibiting improved catalytic activity generated using mutagenesis and additive-based approaches. Sci. Rep., 2019, 9(1), 16038.
[http://dx.doi.org/10.1038/s41598-019-52379-z] [PMID: 31690819]
[108]
Ma, Y.; Yao, M.; Li, B.; Ding, M.; He, B.; Chen, S.; Zhou, X.; Yuan, Y. Enhanced poly (ethylene terephthalate) hydrolase activity by protein engineering. Engineering, 2018, 4(6), 888-893.
[http://dx.doi.org/10.1016/j.eng.2018.09.007]
[109]
Cui, Y.; Chen, Y.; Liu, X.; Dong, S.; Tian, Y.; Qiao, Y.; Han, J.; Li, C.; Han, X.; Liu, W.; Chen, Q.; Du, W.; Tang, S.; Xiang, H.; Liu, H. Computational redesign of PETase for plastic biodegradation by GRAPE strategy. bioRxiv, 2019,. 787069
[http://dx.doi.org/10.1101/787069]
[110]
de Lipthay, J.R.; Barkay, T.; Sørensen, S.J. Enhanced degradation of phenoxyacetic acid in soil by horizontal transfer of the tfdA gene encoding a 2,4-dichlorophenoxyacetic acid dioxygenase. FEMS Microbiol. Ecol., 2001, 35(1), 75-84.
[http://dx.doi.org/10.1111/j.1574-6941.2001.tb00790.x] [PMID: 11248392]
[111]
Ikuma, K.; Gunsch, C.K. Genetic bioaugmentation as an effective method for in situ bioremediation: functionality of catabolic plasmids following conjugal transfers. Bioengineered, 2012, 3(4), 236-241.
[http://dx.doi.org/10.4161/bioe.20551] [PMID: 22705839]
[112]
Cosgrove, L.; McGeechan, P.L.; Handley, P.S.; Robson, G.D. Effect of biostimulation and bioaugmentation on degradation of polyurethane buried in soil. Appl. Environ. Microbiol., 2010, 76(3), 810-819.
[http://dx.doi.org/10.1128/AEM.00534-09] [PMID: 19948849]
[113]
Seow, Y.; Wood, M.J. Biological gene delivery vehicles: beyond viral vectors. Mol. Ther., 2009, 17(5), 767-777.
[http://dx.doi.org/10.1038/mt.2009.41] [PMID: 19277019]
[114]
Chaudhary, K.; Chattopadhyay, A.; Pratap, D. The evolution of CRISPR/Cas9 and their cousins: hope or hype? Biotechnol. Lett., 2018, 40(3), 465-477.
[http://dx.doi.org/10.1007/s10529-018-2506-7] [PMID: 29344851]
[115]
Chattopadhyay, A.; Purohit, J.; Tiwari, K.K.; Deshmukh, R. Targeting transcription factors for plant disease resistance: shifting paradigm. Curr. Sci., 2019, 117(1), 1598-1607.
[http://dx.doi.org/10.18520/cs/v117/i10/1598-1607]
[116]
Otoupal, P.B.; Chatterjee, A. CRISPR gene perturbations provide insights for improving bacterial biofuel tolerance. Front. Bioeng. Biotechnol., 2018, 6, 122.
[http://dx.doi.org/10.3389/fbioe.2018.00122] [PMID: 30234107]
[117]
Mohammad, T.; Hassan, M.I. Modern approaches in synthetic biology: genome editing, quorum sensing, and microbiome engineering. Synthetic biology; Singh, S., Ed.; Springer: Singapore, 2018, pp. 189-205.
[http://dx.doi.org/10.1007/978-981-10-8693-9_10]
[118]
Jusiak, B.; Cleto, S.; Perez-Piñera, P.; Lu, T.K. Engineering synthetic gene circuits in living cells with CRISPR technology. Trends Biotechnol., 2016, 34(7), 535-547.
[http://dx.doi.org/10.1016/j.tibtech.2015.12.014] [PMID: 26809780]
[119]
Rolf, J.; Rosenthal, K.; Lütz, S. Application of cell-free protein synthesis for faster biocatalyst development. Catalysts, 2019, 9(2), 190.
[http://dx.doi.org/10.3390/catal9020190]
[120]
Oberbeckmann, S.; Labrenz, M. Marine microbial assemblages on microplastics: diversity, adaptation, and role in degradation. Annu. Rev. Mar. Sci., 2020, 12(12), 209-232.
[http://dx.doi.org/10.1146/annurev-marine-010419-010633] [PMID: 31226027]
[121]
Paço, A.; Duarte, K.; da Costa, J.P.; Santos, P.S.M.; Pereira, R.; Pereira, M.E.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A.P. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci. Total Environ., 2017, 586, 10-15.
[http://dx.doi.org/10.1016/j.scitotenv.2017.02.017] [PMID: 28199874]
[122]
Dussud, C.; Meistertzheim, A.L.; Conan, P.; Pujo-Pay, M.; George, M.; Fabre, P.; Coudane, J.; Higgs, P.; Elineau, A.; Pedrotti, M.L.; Gorsky, G.; Ghiglione, J.F. Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environ. Pollut., 2018, 236, 807-816.
[http://dx.doi.org/10.1016/j.envpol.2017.12.027] [PMID: 29459335]
[123]
Sekiguchi, T.; Ebisui, A.; Nomura, K.; Watanabe, T.; Enoki, M.; Kanehiro, H. Biodegradation of several fibers submerged in deep sea waterand isolation of biodegradable plastic degrading bacteria from deep ocean water. Nippon Suisan Gakkaishi, 2009, 75(6), 1011-1018.
[http://dx.doi.org/10.2331/suisan.75.1011]
[124]
Urbanek, A.K.; Rymowicz, W.; Mirończuk, A.M. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl. Microbiol. Biotechnol., 2018, 102(18), 7669-7678.
[http://dx.doi.org/10.1007/s00253-018-9195-y] [PMID: 29992436]
[125]
Sekiguchi, T.; Saika, A.; Nomura, K.; Watanabe, T.; Watanabe, T.; Fujimoto, Y. Biodegradation of aliphatic polyesters soaked in deep seawaters and isolation of poly(ɛ-caprolactone)-degrading bacteria. Polym. Degrad. Stabil., 2011, 96(7), 1397-1403.
[http://dx.doi.org/10.1016/j.polymdegradstab.2011.03.004]
[126]
Kathiresan, K. Polythene and plastic-degrading microbes in an Indian mangrove soil. Rev. Biol. Trop., 2003, 51(3-4), 629-633.
[PMID: 15162769]
[127]
Sheik, S.; Chandrashekar, K.R.; Swaroop, K.; Somashekarappa, H.M. Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int. Biodeter. Biodegr., 2015, 105, 21-29.
[http://dx.doi.org/10.1016/j.ibiod.2015.08.006]
[128]
Suresh, B.; Maruthamuthu, S.; Palanisamy, N.; Ragunathan, R.; Pandiyaraj, K.N.; Muralidharan, V.S. Investigation on biodegradability of polyethylene by Bacillus cereus strain Ma-Su isolated from compost soil. Int. Res. J. Microbiol., 2011, 2(8), 292-302.
[129]
Hadad, D.; Geresh, S.; Sivan, A. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J. Appl. Microbiol., 2005, 98(5), 1093-1100.
[http://dx.doi.org/10.1111/j.1365-2672.2005.02553.x] [PMID: 15836478]
[130]
Yamada, O.K.; Mukumoto, H.; Katsuyaya, Y.; Saiganji, A.; Tani, Y. Degradation of polyethylene by a fungus, Penicillium simplicissmum YK. Polym. Degrad. Stabil., 2001, 72, 323-327.
[http://dx.doi.org/10.1016/S0141-3910(01)00027-1]
[131]
Lee, B.; Pometto, A.L.; Fratzke, A.; Bailey, T.B. Biodegradation of degradable plastic polyethylene by phanerochaete and streptomyces species. Appl. Environ. Microbiol., 1991, 57(3), 678-685.
[http://dx.doi.org/10.1128/AEM.57.3.678-685.1991] [PMID: 16348434]
[132]
Liyoshi, Y.; Tsutsumi, Y.; Nishida, T. Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. J. Wood Sci., 1998, 44, 222-229.
[http://dx.doi.org/10.1007/BF00521967]
[133]
Gilan, I.; Sivan, A. Effect of proteases on biofilm formation of the plastic-degrading actinomycete Rhodococcus ruber C208. FEMS Microbiol. Lett., 2013, 342(1), 18-23.
[http://dx.doi.org/10.1111/1574-6968.12114] [PMID: 23448092]
[134]
Santo, M.; Weitsman, R.; Sivan, A. The role of the copper-binding enzyme laccase in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int. Biodeter. Biodegr., 2013, 84, 204-210.
[http://dx.doi.org/10.1016/j.ibiod.2012.03.001]
[135]
Müller, R-J.; Schrader, H.; Profe, J.; Dresler, K.; Deckwer, W.-D. Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolysis using a hydrolase from T. fusca. Macromol. Rapid Commun., 2005, 26, 1400-1405.
[http://dx.doi.org/10.1002/marc.200500410]
[136]
O’Neill, A.; Araújo, R.; Casal, M.; Guebitz, G.; Cavaco-Paulo, A. Effect of the agitation on the adsorption and hydrolytic efficiency of cutinases on polyethylene terephthalate fibres. Enzyme Microb. Technol., 2007, 40(7), 1801-1805.
[http://dx.doi.org/10.1016/j.enzmictec.2007.02.012]
[137]
Ronqvist, Å.M.; Xie, W.; Lu, W.; Gross, R.A. Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules, 2009, 42, 5128-5138.
[http://dx.doi.org/10.1021/ma9005318]
[138]
Cacciari, I.; Quatrini, P.; Zirletta, G.; Mincione, E.; Vinciguerra, V.; Lupattelli, P.; Giovannozzi Sermanni, G. Isotactic polypropylene biodegradation by a microbial community: physicochemical characterization of metabolites produced. Appl. Environ. Microbiol., 1993, 59(11), 3695-3700.
[http://dx.doi.org/10.1128/AEM.59.11.3695-3700.1993] [PMID: 8285678]
[139]
Arkatkar, A.; Arutchelvi, J.; Bhaduri, S.; Uppara, P.V.; Doble, M. Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. Int. Biodeter. Biodegr., 2009, 63(1), 106-111.
[http://dx.doi.org/10.1016/j.ibiod.2008.06.005]
[140]
Danko, A.S.; Luo, M.; Bagwell, C.E.; Brigmon, R.L.; Freedman, D.L. Involvement of linear plasmids in aerobic biodegradation of vinyl chloride. Appl. Environ. Microbiol., 2004, 70(10), 6092-6097.
[http://dx.doi.org/10.1128/AEM.70.10.6092-6097.2004] [PMID: 15466555]
[141]
O’Leary, N.D.; O’Connor, K.E.; Ward, P.; Goff, M.; Dobson, A.D. Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3. Appl. Environ. Microbiol., 2005, 71(8), 4380-4387.
[http://dx.doi.org/10.1128/AEM.71.8.4380-4387.2005] [PMID: 16085828]
[142]
Russell, J.R.; Huang, J.; Anand, P.; Kucera, K.; Sandoval, A.G.; Dantzler, K.W.; Hickman, D.; Jee, J.; Kimovec, F.M.; Koppstein, D.; Marks, D.H.; Mittermiller, P.A.; Núñez, S.J.; Santiago, M.; Townes, M.A.; Vishnevetsky, M.; Williams, N.E.; Vargas, M.P.; Boulanger, L.A.; Bascom-Slack, C.; Strobel, S.A. Biodegradation of polyester polyurethane by endophytic fungi. Appl. Environ. Microbiol., 2011, 77(17), 6076-6084.
[http://dx.doi.org/10.1128/AEM.00521-11] [PMID: 21764951]
[143]
Peciulyte, D. Microbial colonization and biodeterioration of plasticized polyvinyl chloride plastics. Ekologija (Liet. Moksl. Akad.), 2002, 4, 7-15.
[144]
Zheng, Y.; Yanful, E.K.; Bassi, A.S. A review of plastic waste biodegradation. Crit. Rev. Biotechnol., 2005, 25(4), 243-250.
[http://dx.doi.org/10.1080/07388550500346359] [PMID: 16419620]
[145]
Howard, G.T. Blake, R.C. Growth of Pseudomonas fluorescens on a polyester-polyurethane and the purification and characterization of a polyurethanase-protease enzyme. Int. Biodeter. Biodegr., 1998, 42, 213-220.
[http://dx.doi.org/10.1016/S0964-8305(98)00051-1]
[146]
Hung, C.S.; Zingarelli, S.; Nadeau, L.J.; Biffinger, J.C.; Drake, C.A.; Crouch, A.L. Carbon catabolite repression and impranil polyurethane degradation in Pseudomonas protegens strain Pf-5. Appl. Environ. Microbiol., 2016, 82(20), 6080-6090.
[http://dx.doi.org/10.1128/AEM.01448-16] [PMID: 27496773]
[147]
Kleeberg, I.; Hetz, C.; Kroppenstedt, R.M.; Müller, R.J.; Deckwer, W.D. Biodegradation of aliphatic-aromatic copolyesters by Thermomonospora fusca and other thermophilic compost isolates. Appl. Environ. Microbiol., 1998, 64(5), 1731-1735.
[http://dx.doi.org/10.1128/AEM.64.5.1731-1735.1998] [PMID: 9572944]
[148]
Howard, G.T.; Norton, W.N.; Burks, T. Growth of Acinetobacter gerneri P7 on polyurethane and the purification and characterization of a polyurethanase enzyme. Biodegradation, 2012, 23(4), 561-573.
[http://dx.doi.org/10.1007/s10532-011-9533-6] [PMID: 22228300]
[149]
Devi, R.S.; Kannan, V.R.; Natarajan, K.; Nivas, D.; Kannan, K.; Chandru, S.; Anthony, A.R. The role of microbes in plastic degradation. Environmental waste management; Chandra, R., Ed.; CRC Press: Boca Raton, 2015, pp. 341-370.
[http://dx.doi.org/10.1201/b19243-13]
[150]
Kirbaş, Z.; Keskin, N.; Güner, A. Biodegradation of polyvinylchloride (PVC) by white rot fungi. Bull. Environ. Contam. Toxicol., 1999, 63(3), 335-342.
[http://dx.doi.org/10.1007/s001289900985] [PMID: 10475911]
[151]
Negoro, S.; Shibata, N.; Tanaka, Y.; Yasuhira, K.; Shibata, H.; Hashimoto, H.; Lee, Y.H.; Oshima, S.; Santa, R.; Oshima, S.; Mochiji, K.; Goto, Y.; Ikegami, T.; Nagai, K.; Kato, D.; Takeo, M.; Higuchi, Y. Three-dimensional structure of nylon hydrolase and mechanism of nylon-6 hydrolysis. J. Biol. Chem., 2012, 287(7), 5079-5090.
[http://dx.doi.org/10.1074/jbc.M111.321992] [PMID: 22187439]
[152]
Fujisawa, M.; Hirai, H.; Nishida, T. Degradation of polyethylene and nylon-66 by the Laccase-mediator system. J. Polym. Environ., 2001, 9, 103-108.
[http://dx.doi.org/10.1023/A:1020472426516]
[153]
Deguchi, T.; Kitaoka, Y.; Kakezawa, M.; Nishida, T. Purification and characterization of a nylon-degrading enzyme. Appl. Environ. Microbiol., 1998, 64(4), 1366-1371.
[http://dx.doi.org/10.1128/AEM.64.4.1366-1371.1998] [PMID: 9546174]
[154]
Vijaya, R.; Reddy, M. Impact of soil composting using municipal solid waste on biodegradation of plastics. Indian J. Biotechnol., 2008, 7, 235-239.
[155]
Zadjelovic, V.; Chhun, A.; Quareshy, M.; Silvano, E.; Hernandez-Fernaud, J.R.; Aguilo-Ferretjans, M.M.; Bosch, R.; Dorador, C.; Gibson, M.I.; Christie-Oleza, J.A. Beyond oil degradation: enzymatic potential of Alcanivorax to degrade natural and synthetic polyesters. Environ. Microbiol., 2020, 22(4), 1356-1369.
[http://dx.doi.org/10.1111/1462-2920.14947] [PMID: 32079039]
[156]
Tokiwa, Y.; Calabia, B.P.; Ugwu, C.U.; Aiba, S. Biodegradability of plastics. Int. J. Mol. Sci., 2009, 10(9), 3722-3742.
[http://dx.doi.org/10.3390/ijms10093722] [PMID: 19865515]
[157]
Krueger, M.C.; Harms, H.; Schlosser, D. Prospects for microbiological solutions to environmental pollution with plastics. Appl. Microbiol. Biotechnol., 2015, 99(21), 8857-8874.
[http://dx.doi.org/10.1007/s00253-015-6879-4] [PMID: 26318446]
[158]
Mergaert, J.; Webb, A.; Anderson, C.; Wouters, A.; Swings, J. Microbial degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in soils. Appl. Environ. Microbiol., 1993, 59(10), 3233-3238.
[http://dx.doi.org/10.1128/AEM.59.10.3233-3238.1993] [PMID: 8250550]
[159]
Matavulj, M.; Molitoris, H.P. Fungal degradation of polyhydroxyalkanoates and a semiquantitative assay for screening their degradation by terrestrial fungi. FEMS Microbiol. Rev., 1992, 9(2-4), 323-331.
[http://dx.doi.org/10.1111/j.1574-6968.1992.tb05854.x] [PMID: 1476777]
[160]
Muhamad, W.; Naimatul Asiah, W.; Othman, R.; Shaharuddin, R.I. Microorganism as plastic biodegradation agent towards sustainable environment. Adv. Environ. Biol., 2015, 9(13), 8-13.
[161]
Koutny, M.; Lemaire, J.; Delort, A.M. Biodegradation of polyethylene films with prooxidant additives. Chemosphere, 2006, 64(8), 1243-1252.
[http://dx.doi.org/10.1016/j.chemosphere.2005.12.060] [PMID: 16487569]
[162]
Konduri, M.K.R.; Koteswarareddy, G.; Rohini, K.D.B.; Venkata, R.B.; Lakshmi, N.M. Effect of pro‐oxidants on biodegradation of polyethylene (LDPE) by indigenous fungal isolate, Aspergillus oryzae. J. Appl. Polym. Sci., 2011, 120, 3536-3545.
[http://dx.doi.org/10.1002/app.33517]
[163]
Abrusci, C.; Pablos, J.; Corrales, T.; López-Marín, J.; Marín, I.; Catalina, F. Biodegradation of photo-degraded mulching films based on polyethylenes and stearates of calcium and iron as pro-oxidant additives. Int. Biodeter. Biodegr., 2011, 65(3), 451-459.
[http://dx.doi.org/10.1016/j.ibiod.2010.10.012]
[164]
Parthipan, P.; Preetham, E.; Machuca, L.L.; Rahman, P.K.S.M.; Murugan, K.; Rajasekar, A. Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1. Front. Microbiol., 2017, 8, 193.
[http://dx.doi.org/10.3389/fmicb.2017.00193] [PMID: 28232826]
[165]
Yadav, G.D.; Sontakke, J.B. Methods for separation, recycling and reuse of biodegradation products.Biodegradation-engineering and technology; Chamy, R.; Rosenkranz,, F., Eds.; Intech Open. , 2013, pp. 277-311.
[166]
Rosa, A.P.; Triguis, J.A. Bioremediation process on Brazil shoreline. Laboratory experiments. Environ. Sci. Pollut. Res. Int., 2007, 14(7), 470-476.
[http://dx.doi.org/10.1065/espr2007.02.377] [PMID: 18062478]
[167]
Syranidou, E.; Karkanorachaki, K.; Amorotti, F.; Repouskou, E.; Kroll, K.; Kolvenbach, B.; Corvini, P.F.; Fava, F.; Kalogerakis, N. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films. PLoS One, 2017, 12(8) e0183984
[http://dx.doi.org/10.1371/journal.pone.0183984] [PMID: 28841722]
[168]
McCormick, A.; Hoellein, T.J.; Mason, S.A.; Schluep, J.; Kelly, J.J. Microplastic is an abundant and distinct microbial habitat in an urban river. Environ. Sci. Technol., 2014, 48(20), 11863-11871.
[http://dx.doi.org/10.1021/es503610r] [PMID: 25230146]
[169]
Herlemann, D.P.; Labrenz, M.; Jürgens, K.; Bertilsson, S.; Waniek, J.J.; Andersson, A.F. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J., 2011, 5(10), 1571-1579.
[http://dx.doi.org/10.1038/ismej.2011.41] [PMID: 21472016]
[170]
Garbisu, C.; Garaiyurrebaso, O.; Epelde, L.; Grohmann, E.; Alkorta, I. Plasmid-mediated bioaugmentation for the bioremediation of contaminated soils. Front. Microbiol., 2017, 8, 1966.
[http://dx.doi.org/10.3389/fmicb.2017.01966] [PMID: 29062312]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy