Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Current Frontiers

Interactions of Fish Proteins and Volatile Flavor Compounds: Mechanisms, Affecting Factors and Analytical Methods

Author(s): Jianyou Zhang, Zhiming Chen, Zhen Wang, Lifan Chen, Yuting Ding, Fei Lyu* and Xuxia Zhou*

Volume 18, Issue 2, 2021

Published on: 29 May, 2020

Page: [259 - 269] Pages: 11

DOI: 10.2174/1570193X17999200529100029

Price: $65

Abstract

The removal of volatile compounds with unfavorable fishy odor from fish has attracted considerable research attention especially in surimi production industry. The binding of these volatile compounds by fish proteins are reported to affect the deodorization of fishy odor. To remove the protein- bound fishy substances effectively, the mechanisms underlying the interaction between proteins and flavor substances and methods that can extract and analyze the aromatic substances have been extensively studied. This paper briefly reviews the typical fishy compounds and the combination modes and mechanisms of fish proteins with these compounds. Moreover, factors affecting the interactions including protein conformation and solution conditions are discussed in detail.

Keywords: Analytical method, factor, fish proteins, mechanism, volatile flavor compounds.

« Previous
Graphical Abstract

[1]
Kaewudom, P.; Benjakul, S.; Kijroongrojana, K. Properties of surimi gel as influenced by fish gelatin and microbial transglutaminase. Food Biosci., 2013, 1, 39-47.
[http://dx.doi.org/10.1016/j.fbio.2013.03.001]
[2]
Han, L.; Patil, S.; Keener, K.M.; Cullen, P.J.; Bourke, P. Bacterial inactivation by high-voltage atmospheric cold plasma: Influence of process parameters and effects on cell leakage and DNA. J. Appl. Microbiol., 2014, 116(4), 784-794.
[http://dx.doi.org/10.1111/jam.12426] [PMID: 24372804]
[3]
Bao, Y.; Boeren, S.; Ertbjerg, P. Myofibrillar protein oxidation affects filament charges, aggregation and water-holding. Meat Sci., 2018, 135, 102-108.
[http://dx.doi.org/10.1016/j.meatsci.2017.09.011] [PMID: 28968552]
[4]
Utrera, M.; Estévez, M. Oxidation of myofibrillar proteins and impaired functionality: Underlying mechanisms of the carbonylation pathway. J. Agric. Food Chem., 2012, 60(32), 8002-8011.
[http://dx.doi.org/10.1021/jf302111j] [PMID: 22838408]
[5]
Bai, Z.; Pilote, A.; Sarker, P.K.; Vandenberg, G.; Pawliszyn, J. In vivo solid-phase microextraction with in vitro calibration: Determination of off-flavor components in live fish. Anal. Chem., 2013, 85(4), 2328-2332.
[http://dx.doi.org/10.1021/ac3033245] [PMID: 23330671]
[6]
Bortnowska, G. Influence of thermodynamic and kinetic factors on the retention and release of aroma compounds in liquid food systems - A review. Pol. J. Food Nutr. Sci., 2010, 60(4), 301-307.
[7]
Adams, R.L.; Mottram, D.S.; Parker, J.K.; Brown, H.M. Flavor-protein binding: disulfide interchange reactions between ovalbumin and volatile disulfides. J. Agric. Food Chem., 2001, 49(9), 4333-4336.
[http://dx.doi.org/10.1021/jf0100797] [PMID: 11559133]
[8]
Vilanova, M.; Genisheva, Z.; Masa, A.; Oliveira, J.M. Correlation between volatile composition and sensory properties in Spanish Albariño wines. Microchem. J., 2010, 95(2), 240-246.
[http://dx.doi.org/10.1016/j.microc.2009.12.007]
[9]
Beta, T. Chemical and functional properties of food components. Trends Food Sci. Technol., 2009, 20(11), 595-597.
[http://dx.doi.org/10.1016/j.tifs.2009.10.001]
[10]
Mitsubayashi, K.; Kubotera, Y.; Yano, K.; Hashimoto, Y.; Kon, T.; Nakakura, S. Trimethylamine biosensor with flavin-containing monooxygenase type 3 (FMO3) for fish-freshness analysis. Sens. Actuators B Chem., 2004, 103(1-2), 463-467.
[http://dx.doi.org/10.1016/j.snb.2004.05.006]
[11]
Kim, Y.H.; Kim, K.H. An accurate and reliable analysis of trimethylamine using thermal desorption and gas chromatography-time of flight mass spectrometry. Anal. Chim. Acta, 2013, 780, 46-54.
[http://dx.doi.org/10.1016/j.aca.2013.03.069] [PMID: 23680550]
[12]
Bourigua, S.; El Ichi, S.; Korri-Youssoufi, H.; Maaref, A.; Dzyadevych, S.; Jaffrezic Renault, N. Electrochemical sensing of trimethylamine based on polypyrrole-flavin-containing monooxygenase (FMO3) and ferrocene as redox probe for evaluation of fish freshness. Biosens. Bioelectron., 2011, 28(1), 105-111.
[http://dx.doi.org/10.1016/j.bios.2011.07.005] [PMID: 21802279]
[13]
Leduc, F.; Tournayre, P.; Kondjoyan, N.; Mercier, F.; Malle, P.; Kol, O. Evolution of volatile odorous compounds during the storage of European seabass (Dicentrarchus labrax). Food Chem., 2012, 131(4), 1304-1311.
[http://dx.doi.org/10.1016/j.foodchem.2011.09.123]
[14]
Montefiori, M.; Jørgensen, F.S.; Olsen, L. Aldehyde oxidase: Reaction mechanism and prediction of site of metabolism. ACS Omega, 2017, 2(8), 4237-4244.
[http://dx.doi.org/10.1021/acsomega.7b00658] [PMID: 30023718]
[15]
van Nieuwenburg, D.; de Groot, J.H.B.; Smeets, M.A.M. The subtle signaling strength of smells: A masked odor enhances interpersonal trust. Front. Psychol., 2019, 10, 1890.
[http://dx.doi.org/10.3389/fpsyg.2019.01890] [PMID: 31481913]
[16]
Morito, K.; Shimizu, R.; Kitamura, N.; Park, S.; Kishino, S.; Ogawa, J. Gut microbial metabolites of linoleic acid are metabolized by accelerated peroxisomal β-oxidation in mammalian cells. BBA – Mol. Cell Biol. Lipids., 2019, 1864(11), 1619-1628.
[http://dx.doi.org/10.1016/j.bbalip.2019.07.010]
[17]
Fratini, G.; Lois, S.; Pazos, M.; Parisi, G.; Medina, I. Volatile profile of Atlantic shellfish species by HS-SPME GC/MS. Food Res. Int., 2012, 48(2), 856-865.
[http://dx.doi.org/10.1016/j.foodres.2012.06.033]
[18]
Shibata, A.; Uemura, M.; Hosokawa, M.; Miyashita, K. Acrolein as a major volatile in the early stages of fish oil TAG oxidation. J. Oleo Sci., 2018, 67(5), 515-524.
[http://dx.doi.org/10.5650/jos.ess17235] [PMID: 29710039]
[19]
Kazuo, M. Prevention of fish oil oxidation. J. Oleo Sci., 2019, 68(1), 1-11.
[http://dx.doi.org/10.5650/jos.ess18144] [PMID: 30542006]
[20]
Schrader, K.K.; Davidson, J.W.; Rimando, A.M.; Summerfelt, S.T. Evaluation of ozonation on levels of the off-flavor compounds geosmin and 2-methylisoborneol in water and rainbow trout Oncorhynchus mykiss from recirculating aquaculture systems. Aquacult. Eng., 2010, 43(2), 46-50.
[http://dx.doi.org/10.1016/j.aquaeng.2010.05.003]
[21]
Braga, G.S.; Paterno, L.G.; Fonseca, F.J. Performance of an electronic tongue during monitoring 2-methylisoborneol and geosmin in water samples. Sens. Actuators B Chem., 2012, 171-172, 181-189.
[http://dx.doi.org/10.1016/j.snb.2012.02.092]
[22]
Ruan, E.D.; Aalhus, J.L.; Summerfelt, S.T.; Davidson, J.; Swift, B.; Juárez, M. Determination of off-flavor compounds, 2-methylisoborneol and geosmin, in salmon fillets using stir bar sorptive extraction-thermal desorption coupled with gas chromatography-mass spectrometry. J. Chromatogr. A, 2013, 1321, 133-136.
[http://dx.doi.org/10.1016/j.chroma.2013.10.038] [PMID: 24252650]
[23]
Shevkani, K.; Singh, N.; Rana, J.C.; Kaur, A. Relationship between physicochemical and functional properties of amaranth (Amaranthus hypochondriacus) protein isolates. Int. J. Food Sci. Technol., 2014, 49(2), 541-550.
[http://dx.doi.org/10.1111/ijfs.12335]
[24]
Lund, M.N.; Heinonen, M.; Baron, C.P.; Estévez, M. Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res., 2011, 55(1), 83-95.
[http://dx.doi.org/10.1002/mnfr.201000453] [PMID: 21207515]
[25]
Bourtoom, T.; Chinnan, M.S.; Jantawat, P.; Sanguandeekul, R. Recovery and characterization of proteins precipitated from surimi wash-water. Lebensm. Wiss. Technol., 2009, 42(2), 599-605.
[http://dx.doi.org/10.1016/j.lwt.2008.09.001]
[26]
Reiners, J.; Nicklaus, S.; Guichard, E. Interactions between β-lactoglobulin and flavour compounds of different chemical classes. Impact of the protein on the odour perception of vanillin and eugenol. Lait, 2000, 80(3), 347-360.
[http://dx.doi.org/10.1051/lait:2000130]
[27]
Levitsky, D.I. Actomyosin systems of biological motility. Biochemistry (Mosc.), 2004, 69(11), 1177-1189.
[http://dx.doi.org/10.1007/s10541-005-0063-x] [PMID: 15627371]
[28]
Jung, W.; Murrell, M.P.; Kim, T. F-actin cross-linking enhances the stability of force generation in disordered actomyosin networks. Comput. Part. Mech., 2015, 2(4), 317-327.
[http://dx.doi.org/10.1007/s40571-015-0052-9]
[29]
Gu, S.; Dai, W.; Chong, Y.; Lyu, F.; Zhou, X.; Ding, Y. The binding of key fishy off-flavor compounds to silver carp proteins: a thermodynamic analysis. RSC Advances, 2020, 10(19), 11292-11299.
[http://dx.doi.org/10.1039/D0RA01365J]
[30]
Ding, Y.; Liu, R.; Rong, J.; Xiong, S. Heat-induced denaturation and aggregation of actomyosin and myosin from yellowcheek carp during setting. Food Chem., 2014, 149, 237-243.
[http://dx.doi.org/10.1016/j.foodchem.2013.10.123] [PMID: 24295702]
[31]
Gomibuchi, Y.; Uyeda, T.Q.P.; Wakabayashi, T. Bulkiness or aromatic nature of tyrosine-143 of actin is important for the weak binding between F-actin and myosin-ADP-phosphate. Biochem. Biophys. Res. Commun., 2013, 441(4), 844-848.
[http://dx.doi.org/10.1016/j.bbrc.2013.10.144] [PMID: 24211213]
[32]
Pérez-Juan, M.; Flores, M.; Toldrá, F. Binding of aroma compounds by isolated myofibrillar proteins: Effect of protein concentration and conformation. Food Chem., 2007, 105(3), 932-939.
[http://dx.doi.org/10.1016/j.foodchem.2007.04.051]
[33]
Hemung, B.; Chin, K.B. Effects of fish sarcoplasmic proteins on the properties of myofibrillar protein gels mediated by microbial transglutaminase. Lebensm. Wiss. Technol., 2013, 53(1), 184-190.
[http://dx.doi.org/10.1016/j.lwt.2013.02.008]
[34]
Piyadhammaviboon, P.; Yongsawatdigul, J. Protein cross-linking ability of sarcoplasmic proteins extracted from threadfin bream. Lebensm. Wiss. Technol., 2009, 42(1), 37-43.
[http://dx.doi.org/10.1016/j.lwt.2008.06.011]
[35]
Tadpitchayangkoon, P.; Park, J.W.; Yongsawatdigul, J. Conformational changes and dynamic rheological properties of fish sarcoplasmic proteins treated at various pHs. Food Chem., 2010, 121(4), 1046-1052.
[http://dx.doi.org/10.1016/j.foodchem.2010.01.046]
[36]
Marcos, B.; Kerry, J.P.; Mullen, A.M. High pressure induced changes on sarcoplasmic protein fraction and quality indicators. Meat Sci., 2010, 85(1), 115-120.
[http://dx.doi.org/10.1016/j.meatsci.2009.12.014] [PMID: 20374874]
[37]
Innocente, N.; Marchesini, G.; Biasutti, M. Feasibility of the SPME method for the determination of the aroma retention capacity of proteose-peptone milk protein fraction at different pH values. Food Chem., 2011, 124(3), 1249-1257.
[http://dx.doi.org/10.1016/j.foodchem.2010.07.056] [PMID: 25214122]
[38]
Limpan, N.; Prodpran, T.; Benjakul, S.; Prasarpran, S. Properties of biodegradable blend films based on fish myofibrillar protein and polyvinyl alcohol as influenced by blend composition and pH level. J. Food Eng., 2010, 100(1), 85-92.
[http://dx.doi.org/10.1016/j.jfoodeng.2010.03.031]
[39]
Jouenne, E.; Crouzet, J. Effect of pH on retention of aroma compounds by β-lactoglobulin. J. Agric. Food Chem., 2000, 48(4), 1273-1277.
[http://dx.doi.org/10.1021/jf990215w] [PMID: 10775385]
[40]
Solo-de-Zaldívar, B.; Herranz, B.; Borderías, A.J.; Tovar, C.A. Effect of freezing and frozen storage on restructured FISH prototypes made with glucomannan and FISH mince. Food Hydrocoll., 2014, 41, 233-240.
[http://dx.doi.org/10.1016/j.foodhyd.2014.04.019]
[41]
Li, Y.H.; Wang, W.J.; Zhang, F.; Shao, Z.P.; Guo, L. Formation of the oxidized flavor compounds at different heat treatment and changes in the oxidation stability of milk. Food Sci. Nutr., 2018, 7(1), 238-246.
[http://dx.doi.org/10.1002/fsn3.874] [PMID: 30680177]
[42]
Kühn, J.; Considine, T.; Singh, H. Binding of flavor compounds and whey protein isolate as affected by heat and high pressure treatments. J. Agric. Food Chem., 2008, 56(21), 10218-10224.
[http://dx.doi.org/10.1021/jf801810b] [PMID: 18937489]
[43]
Promeyrat, A.; Sayd, T.; Laville, E.; Chambon, C.; Lebret, B.; Gatellier, P. Early post-mortem sarcoplasmic proteome of porcine muscle related to protein oxidation. Food Chem., 2011, 127(3), 1097-1104.
[http://dx.doi.org/10.1016/j.foodchem.2011.01.108] [PMID: 25214101]
[44]
Wang, K.; Arntfield, S.D. Binding of selected volatile flavour mixture to salt-extracted canola and pea proteins and effect of heat treatment on flavour binding. Food Hydrocoll., 2015, 43, 410-417.
[http://dx.doi.org/10.1016/j.foodhyd.2014.06.011]
[45]
Xu, Y.; Zhao, J.; Wang, R.; Li, X.; Mi, H.; Li, J. Effect of heat treatment on the binding of selected flavor compounds to myofibrillar proteins. J. Sci. Food Agric., 2019, 99(11), 5028-5034.
[http://dx.doi.org/10.1002/jsfa.9744] [PMID: 30989657]
[46]
Guo, T.; Xue, S.; Zou, Y.; Han, M.; Xu, X.; Zhou, G. Effect of sodium chloride on the properties of ready-to-eat pressure-induced gel-type chicken meat products: Low-sodium chloride ready-to-eat pressure-induced meat food. J. Food Process Eng., 2017, 40(1), 12299.
[http://dx.doi.org/10.1111/jfpe.12299]
[47]
Szerman, N.; Gonzalez, C.B.; Sancho, A.M.; Grigioni, G.; Carduza, F.; Vaudagna, S.R. Effect of whey protein concentrate and sodium chloride addition plus tumbling procedures on technological parameters, physical properties and visual appearance of sous vide cooked beef. Meat Sci., 2007, 76(3), 463-473.
[http://dx.doi.org/10.1016/j.meatsci.2007.01.001] [PMID: 22060988]
[48]
Pighin, D.G.; Sancho, A.M.; Gonzalez, C.B. Effect of salt addition on the thermal behavior of proteins of bovine meat from Argentina. Meat Sci., 2008, 79(3), 549-556.
[http://dx.doi.org/10.1016/j.meatsci.2007.12.011] [PMID: 22062916]
[49]
Taha, A.; Ahmed, E.; Hu, T.; Xu, X.; Pan, S.; Hu, H. Effects of different ionic strengths on the physicochemical properties of plant and animal proteins-stabilized emulsions fabricated using ultrasound emulsification. Ultrason. Sonochem., 2019, •••58104627
[http://dx.doi.org/10.1016/j.ultsonch.2019.104627] [PMID: 31450289]
[50]
Diao, X.; Guan, H.; Zhao, X.; Diao, X.; Kong, B. Physicochemical and structural properties of composite gels prepared with myofibrillar protein and lard diacylglycerols. Meat Sci., 2016, 121, 333-341.
[http://dx.doi.org/10.1016/j.meatsci.2016.07.002] [PMID: 27420798]
[51]
Arora, A.; Damodaran, S. Competitive binding of off-flavor compounds with soy protein and β-cyclodextrin in a ternary system: A model study. J. Am. Oil Chem. Soc., 2010, 87(6), 673-679.
[http://dx.doi.org/10.1007/s11746-009-1535-8]
[52]
Croissant, A.E.; Kang, E.J.; Campbell, R.E.; Bastian, E.; Drake, M.A. The effect of bleaching agent on the flavor of liquid whey and whey protein concentrate. J. Dairy Sci., 2009, 92(12), 5917-5927.
[http://dx.doi.org/10.3168/jds.2009-2535] [PMID: 19923595]
[53]
Moon, S.Y.; Li-Chan, E.C.Y. Changes in aroma characteristics of simulated beef flavour by soy protein isolate assessed by descriptive sensory analysis and gas chromatography. Food Res. Int., 2007, 40(10), 1239-1248.
[http://dx.doi.org/10.1016/j.foodres.2007.08.003]
[54]
Augusto, F.; Leite e Lopes, A.; Zini, C.A. Sampling and sample preparation for analysis of aromas and fragrances. Trends Analyt. Chem., 2003, 22(3), 160-169.
[http://dx.doi.org/10.1016/S0165-9936(03)00304-2]
[55]
Sides, A.; Robards, K.; Helliwell, S. Developments in extraction techniques and their application to analysis of volatiles in foods. Trends Analyt. Chem., 2000, 19(5), 322-329.
[http://dx.doi.org/10.1016/S0165-9936(99)00225-3]
[56]
Alasalvar, C.; Taylor, K.D.A.; Öksüz, A.; Garthwaite, T.; Alexis, M.N.; Grigorakis, K. Freshness assessment of cultured sea bream (Sparus aurata) by chemical, physical and sensory methods. Food Chem., 2001, 72(1), 33-40.
[http://dx.doi.org/10.1016/S0308-8146(00)00196-5]
[57]
Careri, M.; Manini, P.; Spagnoli, S.; Barbieri, G.; Bolzoni, L. Simultaneous distillation-extraction and dynamic headspace methods in the gas chromatographic analysis of Parmesan cheese volatiles. Chromatographia, 1994, 38(5-6), 386-394.
[http://dx.doi.org/10.1007/BF02269785]
[58]
Selli, S.; Cayhan, G.G. Analysis of volatile compounds of wild gilthead sea bream (Sparus aurata) by Simultaneous Distillation-Extraction (SDE) and GC-MS. Microchem. J., 2009, 93(2), 232-235.
[http://dx.doi.org/10.1016/j.microc.2009.07.010]
[59]
Lecanu, L.; Ducruet, V.; Jouquand, C.; Gratadoux, J.J.; Feigenbaum, A. Optimization of headspace solid-phase microextraction (SPME) for the odor analysis of surface-ripened cheese. J. Agric. Food Chem., 2002, 50(13), 3810-3817.
[http://dx.doi.org/10.1021/jf0117107] [PMID: 12059164]
[60]
Fontanals, N.; Marcé, R.M.; Borrull, F. New materials in sorptive extraction techniques for polar compounds. J. Chromatogr. A, 2007, 1152(1-2), 14-31.
[http://dx.doi.org/10.1016/j.chroma.2006.11.077] [PMID: 17187808]
[61]
Zhu, M.; Aviles, F.J.; Conte, E.D.; Miller, D.W.; Perschbacher, P.W. Microwave mediated distillation with solid-phase microextraction: determination of off-flavors, geosmin and methylisoborneol, in catfish tissue. J. Chromatogr. A, 1999, 833(2), 223-230.
[http://dx.doi.org/10.1016/S0021-9673(98)01010-3] [PMID: 10218268]
[62]
Reboredo-Rodríguez, P.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Dynamic headspace/GC-MS to control the aroma fingerprint of extra-virgin olive oil from the same and different olive varieties. Food Control, 2012, 25(2), 684-695.
[http://dx.doi.org/10.1016/j.foodcont.2011.12.005]
[63]
Paraskevopoulou, A.; Chrysanthou, A.; Koutidou, M. Characterisation of volatile compounds of lupin protein isolate‐enriched wheat flour bread. Food Res. Int., 2012, 48(2), 568-577.
[http://dx.doi.org/10.1016/j.foodres.2012.05.028]
[64]
Cho, D.H.; Kong, S.H.; Oh, S.G. Analysis of trihalomethanes in drinking water using headspace-SPME technique with gas chromatography. Water Res., 2003, 37(2), 402-408.
[http://dx.doi.org/10.1016/S0043-1354(02)00285-3] [PMID: 12502068]
[65]
Sánchez-Palomo, E.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Rapid determination of volatile compounds in grapes by HS-SPME coupled with GC-MS. Talanta, 2005, 66(5), 1152-1157.
[http://dx.doi.org/10.1016/j.talanta.2005.01.015] [PMID: 18970103]
[66]
Díaz-Maroto, M.C.; Sánchez-Palomo, E.; Pérez-Coello, M.S. Fast screening method for volatile compounds of oak wood used for aging wines by headspace SPME-GC-MS (SIM). J. Agric. Food Chem., 2004, 52(23), 6857-6861.
[http://dx.doi.org/10.1021/jf049032m] [PMID: 15537286]
[67]
Garcia-Esteban, M.; Ansorena, D.; Astiasarán, I.; Ruiz, J. Study of the effect of different fiber coatings and extraction conditions on dry cured ham volatile compounds extracted by solid-phase microextraction (SPME). Talanta, 2004, 64(2), 458-466.
[http://dx.doi.org/10.1016/j.talanta.2004.03.007] [PMID: 18969626]
[68]
Risticevic, S.; Niri, V.H.; Vuckovic, D.; Pawliszyn, J.; Vuckovic, D.; Vuckovic, D. Recent developments in solid-phase microextraction. Anal. Bioanal. Chem., 2009, 393(3), 781-795.
[http://dx.doi.org/10.1007/s00216-008-2375-3] [PMID: 18836706]
[69]
Baranauskienė, R.; Venskutonis, P.R.; Dewettinck, K.; Verhé, R. Properties of oregano (Origanum vulgare L.), citronella (Cymbopogon nardus G.) and marjoram (Majorana hortensis L.) flavors encapsulated into milk protein-based matrices. Food Res. Int., 2006, 39(4), 413-425.
[http://dx.doi.org/10.1016/j.foodres.2005.09.005]
[70]
Wang, J.H.; Ge, M.M. Changes of volatile matter in penaeus vannamei during storage at room temperature. Food Sci. Technol. (Campinas), 2019, 44(01), 187-193. [J
[71]
Vidal, N.P.; Manzanos, M.J.; Goicoechea, E.; Guillén, M.D. Farmed and wild sea bass (Dicentrarchus labrax) volatile metabolites: A comparative study by SPME-GC/MS. J. Sci. Food Agric., 2016, 96(4), 1181-1193.
[http://dx.doi.org/10.1002/jsfa.7201] [PMID: 25851130]
[72]
Gilart, N.; Cormack, P.A.G.; Marcé, R.M.; Borrull, F.; Fontanals, N. Preparation of a polar monolithic coating for stir bar sorptive extraction of emerging contaminants from wastewaters. J. Chromatogr. A, 2013, 1295, 42-47.
[http://dx.doi.org/10.1016/j.chroma.2013.04.067] [PMID: 23683399]
[73]
Zhou, X.; Chong, Y.; Ding, Y.; Gu, S.; Liu, L. Determination of the effects of different washing processes on aroma characteristics in silver carp mince by MMSE-GC-MS, e-nose and sensory evaluation. Food Chem., 2016, 207, 205-213.
[http://dx.doi.org/10.1016/j.foodchem.2016.03.026] [PMID: 27080898]
[74]
Lu, Q.; Liu, F.; Bao, J. Volatile components of American silver carp analyzed by electronic nose and MMSE-GC-MS-O. J. Food Biochem., 2019, 43(11)e13006
[http://dx.doi.org/10.1111/jfbc.13006] [PMID: 31418891]
[75]
Hayakawa, F.; Kazami, Y.; Ishihara, S.; Nakao, S.; Nakauma, M.; Funami, T. Characterization of eating difficulty by sensory evaluation of hydrocolloid gels. Food Hydrocoll., 2014, 38, 95-103.
[http://dx.doi.org/10.1016/j.foodhyd.2013.11.007]
[76]
Straadt, I.K.; Aaslyng, M.D.; Bertram, H.C. Sensory and consumer evaluation of pork loins from crossbreeds between Danish Landrace, Yorkshire, Duroc, Iberian and Mangalitza. Meat Sci., 2013, 95(1), 27-35.
[http://dx.doi.org/10.1016/j.meatsci.2013.04.026] [PMID: 23644050]
[77]
Braghieri, A.; Piazzolla, N.; Carlucci, A. Development and validation of a quantitative frame of reference for meat sensory evaluation. Food Qual. Prefer., 2012, 25(1), 63-68.
[http://dx.doi.org/10.1016/j.foodqual.2012.01.007]
[78]
Erdilal, R.; Ikiz, R.; Ünlüsayin, M.; Gülyavuz, H. Assessment of caramote prawn (Penaeus kerathurus) proximate value and freshness under ice storage. Acta Aliment., 2014, 43(1), 88-95.
[http://dx.doi.org/10.1556/AAlim.43.2014.1.9]
[79]
Morita, K.; Kubota, K.; Aishima, T. Comparison of aroma characteristics of 16 fish species by sensory evaluation and gas chromatographic analysis. J. Sci. Food Agric., 2003, 83(4), 289-297.
[http://dx.doi.org/10.1002/jsfa.1311]
[80]
Dong, J.J.; Li, Q.L.; Yin, H.; Zhong, C.; Hao, J.G.; Yang, P.F.; Tian, Y.H.; Jia, S.R. Predictive analysis of beer quality by correlating sensory evaluation with higher alcohol and ester production using multivariate statistics methods. Food Chem., 2014, 161, 376-382.
[http://dx.doi.org/10.1016/j.foodchem.2014.04.006] [PMID: 24837965]
[81]
Opstaele, F.; Rouck, G.; Clippeleer, J.; Aerts, G.; Cooman, L. Analytical and sensory assessment of hoppy aroma and bitterness of conventionally hopped and advanced hopped Pilsner Beers. J. Inst. Brew., 2010, 116(4), 445-458.
[http://dx.doi.org/10.1002/j.2050-0416.2010.tb00796.x]
[82]
Goebel, S.; Gaye-Siessegger, J.; Baer, J.; Geist, J. Comparison of body composition and sensory quality of wildand farmed whitefish (Coregonus macrophthalmus [Nusslin,1882]). J. Appl. Ichthyology, 2017, 33(3), 366-373.
[http://dx.doi.org/10.1111/jai.13318]
[83]
Zheng, R.; Xu, X.; Xing, J.; Cheng, H.; Zhang, S.; Shen, J.; Li, H. Quality evaluation and characterization of specific spoilage organisms of Spanish Mackerel by high-throughput sequencing during 0°C cold chain logistics. Foods, 2020, 9(3), 312.
[http://dx.doi.org/10.3390/foods9030312] [PMID: 32182816]
[84]
Gardner, J.W.; Yinon, J. SpringerLink (Online service). Electronic Noses and Sensors for the Detection of Explosives; Kluwer Academic Publishers: Dordrecht, 2004.
[85]
Ampuero, S.; Bosset, J.O. The electronic nose applied to dairy products: A review. Sens. Actuators B Chem., 2003, 94(1), 1-12.
[http://dx.doi.org/10.1016/S0925-4005(03)00321-6]
[86]
Ragazzo-Sanchez, J.A.; Chalier, P.; Chevalier-Lucia, D.; Calderon-Santoyo, M.; Ghommidh, C. Off-flavours detection in alcoholic beverages by electronic nose coupled to GC. Sens. Actuators B Chem., 2009, 140(1), 29-34.
[http://dx.doi.org/10.1016/j.snb.2009.02.061]
[87]
Bhattacharya, N.; Tudu, B.; Jana, A.; Ghosh, D.; Bandhopadhyaya, R.; Bhuyan, M. Preemptive identification of optimum fermentation time for black tea using electronic nose. Sens. Actuators B Chem., 2008, 131(1), 110-116.
[http://dx.doi.org/10.1016/j.snb.2007.12.032]
[88]
O’Connell, M.; Valdora, G.; Peltzer, G.; Martín Negri, R. A practical approach for fish freshness determinations using a portable electronic nose. Sens. Actuators B Chem., 2001, 80(2), 149-154.
[http://dx.doi.org/10.1016/S0925-4005(01)00904-2]
[89]
Haugen, J.E.; Chanie, E.; Westad, F.; Jonsdottir, R.; Bazzo, S.; Labreche, S. Rapid control of smoked Atlantic salmon (Salmo salar) quality by electronic nose: Correlation with classical evaluation methods. Sens. Actuators B Chem., 2006, 116(1), 72-77.
[http://dx.doi.org/10.1016/j.snb.2005.12.064]
[90]
Zhang, M.; Wang, X.; Liu, Y.; Xu, X.; Zhou, G. Species discrimination among three kinds of puffer fish using an electronic nose combined with olfactory sensory evaluation. Sensors (Basel), 2012, 12(9), 12562-12571.
[http://dx.doi.org/10.3390/s120912562] [PMID: 23112731]
[91]
Zheng, H.; Ying, X.; Wang, W.; Chen, Z.; Shao, C.; Zhou, H. Study of sensitivity evaluation on ridgetail white prawn (Exopalaemon carinicauda) quality examination methods. Int. J. Food Prop., 2019, 22(1), 942-951.
[http://dx.doi.org/10.1080/10942912.2019.1617304]
[92]
Braga, G.; Prado, A.; Pinto, J.; de Alencar, S. Volatile profile of yellow passion fruit juice by static headspace and solid phase microextraction techniques. Cienc. Rural, 2015, 45(2), 356-363.
[http://dx.doi.org/10.1590/0103-8478cr20130777]
[93]
Nie, S.; Huang, J.; Zhang, Y.; Hu, J.; Wang, S.; Shen, M. Analysis of furan in heat-processed foods in China by automated headspace Gas Chromatography-Mass Spectrometry (HS-GC-MS). Food Control, 2013, 30(1), 62-68.
[http://dx.doi.org/10.1016/j.foodcont.2012.07.020]
[94]
Mana Kialengila, D.; Wolfs, K.; Bugalama, J.; Van Schepdael, A.; Adams, E. Full evaporation headspace gas chromatography for sensitive determination of high boiling point volatile organic compounds in low boiling matrices. J. Chromatogr. A, 2013, 1315, 167-175.
[http://dx.doi.org/10.1016/j.chroma.2013.09.058] [PMID: 24103808]
[95]
Serrano, M.; Gallego, M.; Silva, M. Static headspace gas chromatography-mass spectrometry for the one-step derivatisation and extraction of eleven aldehydes in drinking water. J. Chromatogr. A, 2013, 1307, 158-165.
[http://dx.doi.org/10.1016/j.chroma.2013.07.065] [PMID: 23910604]
[96]
Oliveira, L.G.; Kurz, M.H.S.; Guimarães, M.C.M.; Martins, M.L.; Prestes, O.D.; Zanella, R.; Ribeiro, J.N.D.S.; Gonçalves, F.F. Development and validation of a method for the analysis of pyrethroid residues in fish using GC-MS. Food Chem., 2019, 297124944
[http://dx.doi.org/10.1016/j.foodchem.2019.06.011] [PMID: 31253283]
[97]
Azzouz, A.; Colón, L.P.; Souhail, B.; Ballesteros, E. A multi-residue method for GC-MS determination of selected endocrine disrupting chemicals in fish and seafood from European and North African markets. Environ. Res., 2019, 178108727
[http://dx.doi.org/10.1016/j.envres.2019.108727] [PMID: 31520833]
[98]
Sasaki, T.; Koshi, E.; Take, H.; Michihata, T.; Maruya, M.; Enomoto, T. Characterisation of odorants in roasted stem tea using gas chromatography-mass spectrometry and gas chromatography-olfactometry analysis. Food Chem., 2017, 220, 177-183.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.208] [PMID: 27855886]
[99]
Paravisini, L.; Septier, C.; Moretton, C.; Nigay, H.; Arvisenet, G.; Guichard, E. Caramel odor: Contribution of volatile compounds according to their odor qualities to caramel typicality. Food Res. Int., 2014, 57, 79-88.
[http://dx.doi.org/10.1016/j.foodres.2014.01.009]
[100]
Martí, M.P.; Mestres, M.; Sala, C.; Busto, O.; Guasch, J. Solid-phase microextraction and gas chromatography olfactometry analysis of successively diluted samples. A new approach of the aroma extract dilution analysis applied to the characterization of wine aroma. J. Agric. Food Chem., 2003, 51(27), 7861-7865.
[http://dx.doi.org/10.1021/jf0345604] [PMID: 14690365]
[101]
Song, H.; Xia, L. Aroma extract dilution analysis of a beef flavouring prepared from flavour precursors and enzymatically hydrolysed beef. Flavour Fragrance J., 2008, 23(3), 185-193.
[http://dx.doi.org/10.1002/ffj.1873]
[102]
Huang, X.H.; Zheng, X.; Chen, Z.H.; Zhang, Y.Y.; Du, M.; Dong, X.P.; Qin, L.; Zhu, B.W. Fresh and grilled eel volatile fingerprinting by e-Nose, GC-O, GC-MS and GCGC-QTOF combined with purge and trap and solvent-assisted flavor evaporation. Food Res. Int., 2019, 115, 32-43.
[http://dx.doi.org/10.1016/j.foodres.2018.07.056] [PMID: 30599949]
[103]
Pino, J.A.; Febles, Y. Odour-active compounds in banana fruit cv. Giant Cavendish. Food Chem., 2013, 141(2), 795-801.
[http://dx.doi.org/10.1016/j.foodchem.2013.03.064] [PMID: 23790849]
[104]
Kim, K.; Kim, Y. Composition of key offensive odorants released from fresh food materials. Atmos. Environ., 2014, 89, 443-452.
[http://dx.doi.org/10.1016/j.atmosenv.2014.02.032]
[105]
Selli, S.; Kelebek, H. Aromatic profile and odour-activity value of blood orange juices obtained from Moro and Sanguinello (Citrus sinensis L. Osbeck). Ind. Crops Prod., 2011, 33(3), 727-733.
[http://dx.doi.org/10.1016/j.indcrop.2011.01.016]
[106]
Welke, J.E.; Zanus, M.; Lazzarotto, M.; Alcaraz Zini, C. Quantitative analysis of headspace volatile compounds using comprehensive two-dimensional gas chromatography and their contribution to the aroma of Chardonnay wine. Food Res. Int., 2014, 59, 85-99.
[http://dx.doi.org/10.1016/j.foodres.2014.02.002]
[107]
Mario Turchini, G.; Giani, I.; Caprino, F.; Maria Moretti, V.; Valfrè, F. Discrimination of origin of farmed trout by means of biometrical parameters, fillet composition and flavor volatile compounds. Ital. J. Anim. Sci., 2010, 3(2), 123-140.
[108]
Ayseli, M.T.; Filik, G.; Selli, S. Evaluation of volatile compounds in chicken breast meat using simultaneous distillation and extraction with odour activity value. J. Food Nutr. Res., 2014, 53(2), 137-142.
[109]
Giri, A.; Osako, K.; Ohshima, T. Identification and characterisation of headspace volatiles of fish miso, a Japanese fish meat based fermented paste, with special emphasis on effect of fish species and meat washing.Food Chem.,, 2010, 120(2), 621-631.
[http://dx.doi.org/10.1016/j.foodchem.2009.10.036]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy