Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Chemical Composition and Antibacterial, Anti-biofilm and Anti-virulence Activities of Plant Extracts Against Human Pathogenic Bacteria

Author(s): Mulugeta Mulat, Fazlurrahman Khan* and Archana Pandita*

Volume 12, Issue 1, 2022

Published on: 27 May, 2020

Article ID: e160921182315 Pages: 15

DOI: 10.2174/2210315510999200527142244

Price: $65

Abstract

Background: Bacterial multi-drug resistance is one of the serious issues worldwide. The majority of drug resistance developed by bacteria is derived from the formation of biofilm and the production of several virulence factors.

Objective: To combat the emerging drug resistance nature of bacteria, we have used some medicinal plants such as Stevia rebaudiana, Cymbopogon flexuosus, Matricaria chamomilla, Ocimum sanctum, Phyllanthus amarus and Thymus vulgaris for the extraction of active molecules that can inhibit the biofilm formation and bacterial growth.

Materials & Methods: Each extracted compounds were checked for anti-bacterial, anti-biofilm, and anti-virulence activities against Gram-positive and Gram-negative pathogenic bacteria. Soxhlet method of extraction was used for obtaining crude extracts. Agar disc diffusion and 96-wells microplate spectroscopic reading were used to detect the antibacterial and antibiofilm properties of the extracts. Crystal violet staining was used for the detection of biofilm cells. GC-MS analysis was carried out to identify the chemical constituents present in the extracts.

Results: At a concentration of 25 mg mL-1, the highest antibacterial activities were obtained in M. chamomilla acetone extract (CHAAC) against E. coli (17.66±1.15 mm), S. Typhimurium (13.66±1.52 mm) and S. sonnei (14±1.73 mm). M. chamomilla chloroform extracted (CHACE) was shown to be effective against S. aureus (30±2 mm) and P. aeruginosa(13.66±1.52 mm). The minimum inhibitory concentration of crude extracts derived from M. chamomilla was 0. 781mg.mL-1 against S. aureus. Furthermore, the oil extract from C. flexuosus (LEGO) exhibited significant antibacterial activity against S. aureus (at 0.781 μg mL-1). The potent anti-biofilm activity was observed in G. superba (KALO) against E. coli (78.6%) and S. Typhimurium (79.1%), and V. negundo (VNO) against S. Typhimurium (87.3%). Furthermore, the GC-MS analysis showed the presence of active chemical constituents in the extracts which might have effective anti-bacterial, anti-biofilm, and antivirulence properties.

Conclusion: The extracts from the medicinal plant showed antibiofilm, anti-virulence (attenuation of pyocyanin, LasA, violacein, and swarming motility) activity towards the pathogenic bacteria. GCMS analysis confirms the presence of an active component in the extracts. Future study is required to purify the bioactive molecules and elucidate the molecular mechanism of antibiofilm and antivirulence properties.

Keywords: Antibiofilm, anti-virulence, crude extracts, essential oil, pathogenic bacteria, bioactive molecules.

Graphical Abstract

[1]
Ahmed, A.A.; Salih, F.A. Quercus infectoria gall extracts reduce quorum sensing-controlled virulence factors production and biofilm formation in Pseudomonas aeruginosa recovered from burn wounds. BMC Complement. Altern. Med., 2019, 19(1), 177.
[http://dx.doi.org/10.1186/s12906-019-2594-5] [PMID: 31319827]
[2]
Wei, Q.; Bhasme, P.; Wang, Z.; Wang, L.; Wang, S.; Zeng, Y.; Wang, Y.; Ma, L.Z.; Li, Y. Chinese medicinal herb extract inhibits PQS-mediated quorum sensing system in Pseudomonas aeruginosa. J. Ethnopharmacol., 2020, 248, 112272.
[http://dx.doi.org/10.1016/j.jep.2019.112272] [PMID: 31586695]
[3]
Verderosa, A.D.; Totsika, M.; Fairfull-Smith, K.E. Bacterial biofilm eradication agents: A current review. Front Chem., 2019, 7, 824-824.
[http://dx.doi.org/10.3389/fchem.2019.00824] [PMID: 31850313]
[4]
Singh, S.; Singh, S.K.; Chowdhury, I.; Singh, R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol. J., 2017, 11, 53-62.
[http://dx.doi.org/10.2174/1874285801711010053] [PMID: 28553416]
[5]
Stewart, P.S. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol., 2002, 292(2), 107-113.
[http://dx.doi.org/10.1078/1438-4221-00196] [PMID: 12195733]
[6]
Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents, 2010, 35(4), 322-332.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.12.011] [PMID: 20149602]
[7]
Khan, F.; Lee, J.; Pham, D.T.N.; Kim, Y.M. Fucoidan-stabilized gold nanoparticle-mediated 3 biofilm inhibition, attenuation of virulence and 4 motility properties in Pseudomonas aeruginosa 5 PAO1. Mar. Drugs, 2018, 17(4), 1-19.
[8]
Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr., 2016, 4(2), 8.
[http://dx.doi.org/10.1128/microbiolspec.VMBF-0016-2015] [PMID: 27227291]
[9]
Newman, J.W.; Floyd, R.V.; Fothergill, J.L. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiol. Lett., 2017, 364(15), 1093.
[http://dx.doi.org/10.1093/femsle/fnx124] [PMID: 28605563]
[10]
Bien, J.; Sokolova, O.; Bozko, P. Characterization of virulence factors of staphylococcus aureus: novel function of known virulence factors that are implicated in activation of airway epithelial proinflammatory response. J. Pathogens, 2011, 2011, 601905-601905.
[http://dx.doi.org/10.4061/2011/601905] [PMID: 22567334]
[11]
Johnson, J.R. Virulence factors in Escherichia coli urinary tract infection. Clin. Microbiol. Rev., 1991, 4(1), 80-128.
[http://dx.doi.org/10.1128/CMR.4.1.80] [PMID: 1672263]
[12]
Ibarra, J.A.; Steele-Mortimer, O. Salmonella--the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell. Microbiol., 2009, 11(11), 1579-1586.
[http://dx.doi.org/10.1111/j.1462-5822.2009.01368.x] [PMID: 19775254]
[13]
Baloyi, I.T.; Cosa, S.; Combrinck, S.; Leonard, C.M.; Viljoen, A.M. Anti-quorum sensing and antimicrobial activities of South African medicinal plants against uropathogens. S. Afr. J. Bot., 2019, 122, 484-491.
[http://dx.doi.org/10.1016/j.sajb.2019.01.010]
[14]
Vasavi, H.S.; Arun, A.B.; Rekha, P.D. Anti-quorum sensing activity of Psidium guajava L. flavonoids against Chromobacterium violaceum and Pseudomonas aeruginosa PAO1. Microbiol. Immunol., 2014, 58(5), 286-293.
[http://dx.doi.org/10.1111/1348-0421.12150] [PMID: 24698116]
[15]
Sankar Ganesh, P.; Ravishankar Rai, V. Attenuation of quorum-sensing-dependent virulence factors and biofilm formation by medicinal plants against antibiotic resistant Pseudomonas aeruginosa. J. Tradit. Complement. Med., 2017, 8(1), 170-177.
[http://dx.doi.org/10.1016/j.jtcme.2017.05.008] [PMID: 29322006]
[16]
Khan, F.; Javaid, A.; Kim, Y.M. Functional diversity of quorum sensing receptors in pathogenic bacteria: Interspecies, intraspecies and interkingdom level. Curr. Drug Targets, 2019, 20(6), 655-667.
[http://dx.doi.org/10.2174/1389450120666181123123333] [PMID: 30468123]
[17]
Haque, S.; Yadav, D.K.; Bisht, S.C.; Yadav, N.; Singh, V.; Dubey, K.K.; Jawed, A.; Wahid, M.; Dar, S.A. Quorum sensing pathways in Gram-positive and -negative bacteria: potential of their interruption in abating drug resistance. J. Chemother., 2019, 31(4), 161-187.
[http://dx.doi.org/10.1080/1120009X.2019.1599175] [PMID: 31007147]
[18]
Philippon, A.; Jacquier, H.; Ruppé, E.; Labia, R. Structure-based classification of class A beta-lactamases, an update. Curr. Res. Transl. Med., 2019, 67(4), 115-122.
[http://dx.doi.org/10.1016/j.retram.2019.05.003] [PMID: 31155436]
[19]
Yap, G.C.; Chee, K.K.; Hong, P.Y.; Lay, C.; Satria, C.D. Sumadiono; Soenarto, Y.; Haksari, E.L.; Aw, M.; Shek, L.P.; Chua, K.Y.; Zhao, Y.; Leow, D.; Lee, B.W. Evaluation of stool microbiota signatures in two cohorts of Asian (Singapore and Indonesia) newborns at risk of atopy. BMC Microbiol., 2011, 11, 193.
[http://dx.doi.org/10.1186/1471-2180-11-193] [PMID: 21875444]
[20]
Alonso, V.P.P.; Queiroz, M.M.; Gualberto, M.L.; Nascimento, M.S. Klebsiella pneumonia carbapenemase (KPC), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus spp. (VRE) in the food production chain and biofilm formation on abiotic surfaces. Curr. Opin. Food Sci., 2019, 26, 79-86.
[http://dx.doi.org/10.1016/j.cofs.2019.04.002]
[21]
Zwe, Y.H.; Tang, V.C.Y.; Aung, K.T.; Gutiérrez, R.A.; Ng, L.C.; Yuk, H-G. Prevalence, sequence types, antibiotic resistance and, gyrA mutations of Salmonella isolated from retail fresh chicken meat in Singapore. Food Control, 2018, 90, 233-240.
[http://dx.doi.org/10.1016/j.foodcont.2018.03.004]
[22]
Frye, J.G.; Jackson, C.R. Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. Front. Microbiol., 2013, 4, 135.
[http://dx.doi.org/10.3389/fmicb.2013.00135] [PMID: 23734150]
[23]
Bacha, K.; Tariku, Y.; Gebreyesus, F.; Zerihun, S.; Mohammed, A.; Weiland-Bräuer, N.; Schmitz, R.A.; Mulat, M. Antimicrobial and anti-Quorum Sensing activities of selected medicinal plants of Ethiopia: Implication for development of potent antimicrobial agents. BMC Microbiol., 2016, 16(1), 139.
[http://dx.doi.org/10.1186/s12866-016-0765-9] [PMID: 27400878]
[24]
Pham, D.T.N.; Khan, F.; Phan, T.T.V.; Park, S.K.; Manivasagan, P.; Oh, J.; Kim, Y.M. Biofilm inhibition, modulation of virulence and motility properties by FeOOH nanoparticle in Pseudomonas aeruginosa. Braz. J. Microbiol., 2019, 50(3), 791-805.
[http://dx.doi.org/10.1007/s42770-019-00108-z] [PMID: 31250405]
[25]
Khan, F.; Lee, J.W.; Pham, D.T.N.; Lee, J.H.; Kim, H.W.; Kim, Y.K.; Kim, Y.M. Streptomycin mediated biofilm inhibition and suppression of virulence properties in Pseudomonas aeruginosa PAO1. Appl. Microbiol. Biotechnol., 2020, 104(2), 799-816.
[http://dx.doi.org/10.1007/s00253-019-10190-w] [PMID: 31820066]
[26]
Parasuraman, P.; Devadatha, B.; Sarma, V.V.; Ranganathan, S.; Ampasala, D.R.; Siddhardha, B. Anti-quorum sensing and antibiofilm activities of Blastobotrys parvus PPR3 against Pseudomonas aeruginosa PAO1. Microb. Pathog., 2020, 138, 103811.
[http://dx.doi.org/10.1016/j.micpath.2019.103811] [PMID: 31644930]
[27]
Khan, F.; Pham, D.T.N.; Oloketuyi, S.F.; Kim, Y.M. Regulation and controlling the motility properties of Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol., 2020, 104(1), 33-49.
[http://dx.doi.org/10.1007/s00253-019-10201-w] [PMID: 31768614]
[28]
Mulat, M.; Pandita, A.; Khan, F. Medicinal plant compounds for combating the multi-drug resistant pathogenic bacteria: A review. Curr. Pharm. Biotechnol., 2019, 20(3), 183-196.
[http://dx.doi.org/10.2174/1872210513666190308133429] [PMID: 30854956]
[29]
Barba, F.J.; Criado, M.N.; Belda-Galbis, C.M.; Esteve, M.J.; Rodrigo, D. Stevia rebaudiana Bertoni as a natural antioxidant/antimicrobial for high pressure processed fruit extract: Processing parameter optimization. Food Chem., 2014, 148, 261-267.
[http://dx.doi.org/10.1016/j.foodchem.2013.10.048] [PMID: 24262555]
[30]
Metrouh-Amir, H.; Duarte, C.M.M.; Maiza, F. Solvent effect on total phenolic contents, antioxidant, and antibacterial activities of Matricaria pubescens. Ind. Crops Prod., 2015, 67, 249-256.
[http://dx.doi.org/10.1016/j.indcrop.2015.01.049]
[31]
Romero, C.D.; Chopin, S.F.; Buck, G.; Martinez, E.; Garcia, M.; Bixby, L. Antibacterial properties of common herbal remedies of the southwest. J. Ethnopharmacol., 2005, 99(2), 253-257.
[http://dx.doi.org/10.1016/j.jep.2005.02.028] [PMID: 15894135]
[32]
Ilanko, P.; McDonnell, P.A.; van Vuuren, S.; Cock, I.E. Interactive antibacterial profile of Moringa oleifera Lam. extracts and conventional antibiotics against bacterial triggers of some autoimmune inflammatory diseases. S. Afr. J. Bot., 2019, 124, 420-435.
[http://dx.doi.org/10.1016/j.sajb.2019.04.008]
[33]
Abdelwahab, S.I.; Zaman, F.Q.; Mariod, A.A.; Yaacob, M.; Abdelmageed, A.H.; Khamis, S. Chemical composition, antioxidant and antibacterial properties of the essential oils of Etlingera elatior and Cinnamomum pubescens Kochummen. J. Sci. Food Agric., 2010, 90(15), 2682-2688.
[http://dx.doi.org/10.1002/jsfa.4140] [PMID: 20945508]
[34]
Tolouee, M.; Alinezhad, S.; Saberi, R.; Eslamifar, A.; Zad, S.J.; Jaimand, K.; Taeb, J.; Rezaee, M-B.; Kawachi, M.; Shams-Ghahfarokhi, M.; Razzaghi-Abyaneh, M. Effect of Matricaria chamomilla L. flower essential oil on the growth and ultrastructure of Aspergillus niger van Tieghem. Int. J. Food Microbiol., 2010, 139(3), 127-133.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.03.032] [PMID: 20385420]
[35]
Xie, X-Y.; Chen, F.F.; Shi, Y-P. Simultaneous determination of eight flavonoids in the flowers of Matricaria chamomilla by high performance liquid chromatography. J. AOAC Int., 2014, 97(3), 778-783.
[http://dx.doi.org/10.5740/jaoacint.13-029] [PMID: 25051625]
[36]
Shakeri, A.; Masullo, M.; Bottone, A.; Asili, J.; Emami, S.A.; Piacente, S.; Iranshahi, M. Sesquiterpene lactones from Centaurea rhizantha C.A. Meyer. Nat. Prod. Res., 2019, 33(14), 2016-2023.
[http://dx.doi.org/10.1080/14786419.2018.1483926] [PMID: 29911884]
[37]
Carvalho, R.J.; de Souza, G.T.; Honório, V.G.; Sousa, J.P.; Conceição, M.L.; Maganani, M.; Souza, E.L. Comparative inhibitory effects of Thymus vulgaris L. essential oil against Staphylococcus aureus, Listeria monocytogenes and mesophilic starter co-culture in cheese-mimicking models. Food Microbiol., 2015, 52, 59-65.
[http://dx.doi.org/10.1016/j.fm.2015.07.003] [PMID: 26338117]
[38]
Deepak Ganjewalaa, R.M. Guptaa;A.K.; Premlathab,M.; Dawarc, R. Antibacterial properties of lemongrass (Cymbopogon flexuosus steud) wats essential oils in single form and combination of honey against drug resistant pathogenic bacteria. J. Bio. Active. Prod. Nat., 2014, 4(4), 278-285.
[http://dx.doi.org/10.1080/22311866.2014.933083]
[39]
Fernández-López, J.; Zhi, N.; Aleson-Carbonell, L.; Pérez-Alvarez, J.A.; Kuri, V. Antioxidant and antibacterial activities of natural extracts: application in beef meatballs. Meat Sci., 2005, 69(3), 371-380.
[http://dx.doi.org/10.1016/j.meatsci.2004.08.004] [PMID: 22062974]
[40]
Roby, M.H.H.; Sarhan, M.A.; Selim, K.A-H.; Khalel, K.I. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). Ind. Crops Prod., 2013, 44, 437-445.
[http://dx.doi.org/10.1016/j.indcrop.2012.10.012]
[41]
Boulaaba, M.; Medini, F.; Hajlaoui, H.; Mkadmini, K.; Falleh, H.; Ksouri, R.; Isoda, H.; Smaoui, A.; Abdelly, C. Biological activities and phytochemical analysis of phenolic extracts from Salsola kali L. Role of endogenous factors in the selection of the best plant extracts. S. Afr. J. Bot., 2019, 123, 193-199.
[http://dx.doi.org/10.1016/j.sajb.2019.03.003]
[42]
Lu, L.; Hu, W.; Tian, Z.; Yuan, D.; Yi, G.; Zhou, Y.; Cheng, Q.; Zhu, J.; Li, M. Developing natural products as potential anti-biofilm agents. Chin. Med., 2019, 14, 11-11.
[http://dx.doi.org/10.1186/s13020-019-0232-2] [PMID: 30936939]
[43]
Greenwell, M.; Rahman, P.K.S.M. Medicinal plants: Their use in anticancer treatment. Int. J. Pharm. Sci. Res., 2015, 6(10), 4103-4112.
[PMID: 26594645]
[44]
Sahal, G.; Woerdenbag, H.J.; Hinrichs, W.L.J.; Visser, A.; Tepper, P.G.; Quax, W.J.; van der Mei, H.C.; Bilkay, I.S. Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. J. Ethnopharmacol., 2020, 246, 112188.
[http://dx.doi.org/10.1016/j.jep.2019.112188] [PMID: 31470085]
[45]
Teanpaisan, R.; Kawsud, P.; Pahumunto, N.; Puripattanavong, J. Screening for antibacterial and antibiofilm activity in Thai medicinal plant extracts against oral microorganisms. J. Tradit. Complement. Med., 2016, 7(2), 172-177.
[http://dx.doi.org/10.1016/j.jtcme.2016.06.007] [PMID: 28417087]
[46]
Adukwu, E.C.; Allen, S.C.; Phillips, C.A. The anti-biofilm activity of lemongrass (Cymbopogon flexuosus) and grapefruit (Citrus paradisi) essential oils against five strains of Staphylococcus aureus. J. Appl. Microbiol., 2012, 113(5), 1217-1227.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05418.x] [PMID: 22862808]
[47]
Piras, A.; Gonçalves, M.J.; Alves, J.; Falconieri, D.; Porcedda, S.; Maxia, A.; Salgueiro, L. Ocimum tenuiflorum L. and Ocimum basilicum L., two spices of Lamiaceae family with bioactive essential oils. Ind. Crops Prod., 2018, 113, 89-97.
[http://dx.doi.org/10.1016/j.indcrop.2018.01.024]
[48]
Vale, J.P.C.D.; Ribeiro, L.H.F.; Vasconcelos, M.A.; Sá-Firmino, N.C.; Pereira, A.L.; Nascimento, M.F.D.; Rodrigues, T.H.S.; Silva, P.T.D.; Sousa, K.C.; Silva, R.B.D.; Nascimento Neto, L.G.D.; Saker-Sampaio, S.; Bandeira, P.N.; Santos, H.S.; Souza, E.B.; Teixeira, E.H. Chemical composition, antioxidant, antimicrobial and antibiofilm activities of Vitex gardneriana schauer leaves’s essential oil. Microb. Pathog., 2019, 135, 103608.
[http://dx.doi.org/10.1016/j.micpath.2019.103608] [PMID: 31229603]
[49]
Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Mohan, S.; Venkatesh, K.S.; Esakkirajan, M.; Kaleeswarran, P.; Alharbi, N.S.; Kadaikunnan, S.; Govindarajan, M.; Benelli, G.; Arumugam, A. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb. Pathog., 2016, 101, 1-11.
[http://dx.doi.org/10.1016/j.micpath.2016.10.011] [PMID: 27765621]
[50]
Amaya, S.; Pereira, J.A.; Borkosky, S.A.; Valdez, J.C.; Bardón, A.; Arena, M.E. Inhibition of quorum sensing in Pseudomonas aeruginosa by sesquiterpene lactones. Phytomedicine, 2012, 19(13), 1173-1177.
[http://dx.doi.org/10.1016/j.phymed.2012.07.003] [PMID: 22925726]
[51]
Kiymaci, M.E.; Altanlar, N.; Gumustas, M.; Ozkan, S.A.; Akin, A. Quorum sensing signals and related virulence inhibition of Pseudomonas aeruginosa by a potential probiotic strain’s organic acid. Microb. Pathog., 2018, 121, 190-197.
[http://dx.doi.org/10.1016/j.micpath.2018.05.042] [PMID: 29807134]
[52]
Josenhans, C.; Suerbaum, S. The role of motility as a virulence factor in bacteria. Int. J. Med. Microbiol., 2002, 291(8), 605-614.
[http://dx.doi.org/10.1078/1438-4221-00173] [PMID: 12008914]
[53]
Khan, M.S.; Zahin, M.; Hasan, S.; Husain, F.M.; Ahmad, I. Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil. Lett. Appl. Microbiol., 2009, 49(3), 354-360.
[http://dx.doi.org/10.1111/j.1472-765X.2009.02666.x] [PMID: 19627477]
[54]
Tabanca, N.; Kirimer, N.; Demirci, B.; Demirci, F.; Başer, K.H. Composition and antimicrobial activity of the essential oils of Micromeria cristata subsp. phrygia and the enantiomeric distribution of borneol. J. Agric. Food Chem., 2001, 49(9), 4300-4303.
[http://dx.doi.org/10.1021/jf0105034] [PMID: 11559128]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy