Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Preparation of A Magnetic Nanosensor Based on Cobalt Ferrite Nanoparticles for The Electrochemical Determination of Methyldopa in The Presence of Uric Acid

Author(s): Khadijeh Najafi, Karim Asadpour-Zeynali* and Fariba Mollarasouli*

Volume 23, Issue 10, 2020

Page: [1023 - 1031] Pages: 9

DOI: 10.2174/1386207323666200521123657

Price: $65

Abstract

Aim and Objective: Methyldopa is one of the medications that is used for the treatment of hypertension. Therefore, the determination of methyldopa in the presence of other biological components is essential. In this work, a promising electrochemical sensor based on CoFe2O4 magnetic nanoparticles modified glassy carbon electrode (CoFe2O4/GCE) was developed for electrochemical determination of methyldopa in the presence of uric acid. Cobalt ferrite nanoparticles were synthesized via chemical method.

Materials and Methods: Characterizing the CoFe2O4 was investigated by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), transmission electron microscope (TEM), and cyclic voltammetry techniques.

Results: Under the optimal experimental conditions, the current response of the electrochemical sensor obtained with differential pulse voltammetry was increased linearly in the concentration range from 1.45 to 15.1 μmol L−1 with the detection limit of 1.07 μmol L−1 for methyldopa. Also, by using the proposed method, methyldopa and uric acid could be analyzed in a mixture independently. The difference in peak potential for analytes is about 150 mV.

Conclusion: The present sensor was successfully applied for the determination of methyldopa in the presence of uric acid in biological samples and the pharmaceutical samples with satisfactory results.

Keywords: Magnetic nanoparticles (MNPs), cobalt ferrite, electroanalysis, methyldopa, uric acid, CoFe2O4.

[1]
Garcia, L.F.; da Cunha, C.E.P.; Moreno, E.K.G.; Vieira Thomaz, D.; Lobón, G.S.; Luque, R.; Somerset, V.; de Souza Gil, E. Nanostructured TiO2 carbon paste based sensor for determination of methyldopa. Pharmaceuticals (Basel), 2018, 11(4), 99.
[http://dx.doi.org/10.3390/ph11040099] [PMID: 30301183]
[2]
Ghodsi, J.; Rafati, A.A.; Shoja, Y.A. novel biosensor based on horseradish peroxidase trapped in silica Sol-Gel/MWCNTs matrix for methyldopa determination in medical and pharmaceutical samples. Advances in Nanochemistry, 2019, 1(1), 6-11.
[3]
Asadpour-Zeynali, K.; Mollarasouli, F. A novel and facile synthesis of TGA-capped CdSe@ Ag2Se core-shell quantum dots as a new substrate for high sensitive and selective methyldopa sensor. Sens. Actuators B Chem., 2016, 237, 387-399.
[http://dx.doi.org/10.1016/j.snb.2016.06.116]
[4]
Pérez-Mella, B.; Álvarez-Lueje, A. Development of a carbon nanotube modified ionic liquid electrode for the voltammetric determination of methyldopa levels in urine. Electroanalysis, 2013, 25(9), 2193-2199.
[http://dx.doi.org/10.1002/elan.201300241]
[5]
Antunes, R.S.; Thomaz, D.V.; Garcia, L.F.; Gil, E.S.; Sommerset, V.S.; Lopes, F.M. De Souza Gil, E; Somerset, V.S; Lopes, F.M. Determination of methyldopa and paracetamol in pharmaceutical samples by a low cost genipa americana l. polyphenol oxidase based biosensor. Adv. Pharm. Bull., 2019, 9(3), 416-422.
[http://dx.doi.org/10.15171/apb.2019.049] [PMID: 31592074]
[6]
Emara, S.; Masujima, T.; Zarad, W.; Kamal, M.; Fouad, M.; El-Bagary, R. An eco-friendly direct injection HPLC method for methyldopa determination in serum by mixed-mode chromatography using a single protein-coated column. J. Chromatogr. Sci., 2015, 53(8), 1353-1360.
[http://dx.doi.org/10.1093/chromsci/bmv024] [PMID: 25834172]
[7]
Adamiak-Giera, U.; Gawronska-Szklarz, B. Simultaneous determination of levodopa and 3-O-methyldopa in patients with parkinson’s disease by high-performance liquid chromatography with electrochemical detection. J. Liq. Chromatogr. Relat. Technol., 2018, 41(19-20), 1047-1051.
[http://dx.doi.org/10.1080/10826076.2018.1556162]
[8]
Ribeiro, P.R.S.; Duarte, R.M. Development and validation of a simple spectrophotometric method for the determination of methyldopa in both bulk and marketed dosage formulations. Braz. J. Pharm. Sci., 2014, 50(3), 573-582.
[http://dx.doi.org/10.1590/S1984-82502014000300017]
[9]
Thomas, O.E.; Mustapha, A.K. Development of a visible spectrophotometric method for the assay of methyldopa following oxidative coupling with N-(1-naphthyl) ethylenediamine dihydrochloride. Niger. J. Pharm. Sci., 2016, 11(1), 147-153.
[10]
Sanati, A.L.; Faridbod, F. Electrochemical determination of methyldopa by graphene quantum dot/1-butyl-3-methylimidazolium hexafluoro phosphate nanocomposite electrode. Int. J. Electrochem. Sci., 2017, 12, 7997-8005.
[http://dx.doi.org/10.20964/2017.09.71]
[11]
Tajik, S.; Beitollahi, H.; Biparva, P. Methyldopa electrochemical sensor based on a glassy carbon electrode modified with Cu/TiO2 nanocomposite. J. Serb. Chem. Soc., 2018, 83(7-8), 863-874.
[http://dx.doi.org/10.2298/JSC170930024T]
[12]
Talebpour, Z.; Haghgoo, S.; Shamsipur, M. 1H nuclear magnetic resonance spectroscopy analysis for simultaneous determination of levodopa, carbidopa and methyldopa in human serum and pharmaceutical formulations. Anal. Chim. Acta, 2004, 506(1), 97-104.
[http://dx.doi.org/10.1016/j.aca.2003.10.081]
[13]
Wang, X.Y.; Zhu, G.B.; Cao, W.D.; Liu, Z.J.; Pan, C.G.; Hu, W.J.; Zhao, W.Y.; Sun, J.F. A novel ratiometric fluorescent probe for the detection of uric acid in human blood based on H2O2-mediated fluorescence quenching of gold/silver nanoclusters. Talanta, 2019, 191, 46-53.
[http://dx.doi.org/10.1016/j.talanta.2018.08.015] [PMID: 30262085]
[14]
Abellán-Llobregat, A.; Vidal, L.; Rodríguez-Amaro, R.; Canals, A.; Morallon, E. Evaluation of herringbone carbon nanotubes-modified electrodes for the simultaneous determination of ascorbic acid and uric acid. Electrochim. Acta, 2018, 285, 284-291.
[http://dx.doi.org/10.1016/j.electacta.2018.08.007]
[15]
Movlaee, K.; Norouzi, P.; Beitollahi, H.; Rezapour, M.; Larijani, B. Highly selective differential pulse voltammetric determination of uric acid using modified glassy carbon electrode. Int. J. Electrochem. Sci., 2017, 12, 3241-3251.
[http://dx.doi.org/10.20964/2017.04.06]
[16]
Gutiérrez, A.; Camargo, M.L.L.; Galicia, L. Sensitive and selective determination of uric acid by modified glassy carbon electrodes with multi-walled carbon nanotubes dispersed in Nafion®. electroanalytical applications for the development as sensors. ECS Trans., 2017, 76(1), 119-131.
[http://dx.doi.org/10.1149/07601.0119ecst] [PMID: 29276553]
[17]
Moghadam, M.R.; Dadfarnia, S.; Shabani, A.M.H.; Shahbazikhah, P. Chemometric-assisted kinetic-spectrophotometric method for simultaneous determination of ascorbic acid, uric acid, and dopamine. Anal. Biochem., 2011, 410(2), 289-295.
[http://dx.doi.org/10.1016/j.ab.2010.11.007] [PMID: 21078280]
[18]
Kanďár, R.; Drábková, P.; Hampl, R. The determination of ascorbic acid and uric acid in human seminal plasma using an HPLC with UV detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(26), 2834-2839.
[http://dx.doi.org/10.1016/j.jchromb.2011.08.007] [PMID: 21871848]
[19]
Mohammed, O.J.; Saeed, A.M.; Mohammed, I.S. Rp–hplc developed method for uric acid estimation in human serum. Res. J. Pharm. Technol., 2019, 12, 4703-4708.
[http://dx.doi.org/10.5958/0974-360X.2019.00810.2]
[20]
Honeychurch, K. The determination of uric acid in human saliva by liquid chromatography with electrochemical detection. J. Anal. Bioanal. Sep. Tech., 2017, 2(1), 47-51.
[http://dx.doi.org/10.15436/2476-1869.17.1280]
[21]
Dai, H.; Wang, N.; Wang, D.; Zhang, X.; Ma, H.; Lin, M. Voltammetric uric acid sensor based on a glassy carbon electrode modified with a nanocomposite consisting of polytetraphenylporphyrin, polypyrrole, and graphene oxide. Mikrochim. Acta, 2016, 183(11), 3053-3059.
[http://dx.doi.org/10.1007/s00604-016-1953-x]
[22]
Wu, W.; Min, H.; Wu, H.; Ding, Y.; Yang, S. Electrochemical determination of uric acid using a multiwalled carbon nanotube platinum–nickel alloy glassy carbon electrode. Anal. Lett., 2017, 50(1), 91-104.
[http://dx.doi.org/10.1080/00032719.2016.1174709]
[23]
Pourgolmohammad, B.; Masoudpanah, S.; Aboutalebi, M. Synthesis of CoFe2O4 powders with high surface area by solution combustion method: effect of fuel content and cobalt precursor. Ceram. Int., 2017, 43(4), 3797-3803.
[http://dx.doi.org/10.1016/j.ceramint.2016.12.027]
[24]
Jauhar, S.; Kaur, J.; Goyal, A.; Singhal, S. Tuning the properties of cobalt ferrite: a road towards diverse applications. RSC Advances, 2016, 100(6), 97694-97719.
[http://dx.doi.org/10.1039/C6RA21224G]
[25]
Asadpour-Zeynali, K.; Mollarasouli, F. Novel electrochemical biosensor based on PVP capped CoFe2O4@CdSe core-shell nanoparticles modified electrode for ultra-trace level determination of rifampicin by square wave adsorptive stripping voltammetry. Biosens. Bioelectron., 2017, 92, 509-516.
[http://dx.doi.org/10.1016/j.bios.2016.10.071] [PMID: 27840036]
[26]
Lu, A.H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl., 2007, 46(8), 1222-1244.
[http://dx.doi.org/10.1002/anie.200602866] [PMID: 17278160]
[27]
Mollarasouli, F.; Kurbanoglu, S.; Asadpour-Zeynali, K.; Ozkan, S.A. Non-enzymatic monitoring of hydrogen peroxide using novel nanosensor based on CoFe2O4@CdSeQD magnetic nanocomposite and rifampicin mediator ‎. Anal. Bioanal. Chem., 2020, 412, 5053-5065.
[http://dx.doi.org/10.1007/s00216-019-02306-y]
[28]
Toksha, B.; Shirsath, S.E.; Patange, S.; Jadhav, K. Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol–gel auto combustion method. Solid State Commun., 2008, 147(11-12), 479-483.
[http://dx.doi.org/10.1016/j.ssc.2008.06.040]
[29]
Maaz, K.; Mumtaz, A.; Hasanain, S.; Ceylan, A. Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater., 2007, 308(2), 289-295.
[http://dx.doi.org/10.1016/j.jmmm.2006.06.003]
[30]
Amiri, S.; Shokrollahi, H. The role of cobalt ferrite magnetic nanoparticles in medical science. Mater. Sci. Eng. C, 2013, 33(1), 1-8.
[http://dx.doi.org/10.1016/j.msec.2012.09.003] [PMID: 25428034]
[31]
Pourgolmohammad, B.; Masoudpanah, S.; Aboutalebi, M. Effect of starting solution acidity on the characteristics of CoFe2O4 powders prepared by solution combustion synthesis. J. Magn. Magn. Mater., 2017, 424, 352-358.
[http://dx.doi.org/10.1016/j.jmmm.2016.10.073]
[32]
Mathew, D.S.; Juang, R-S. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J., 2007, 129(1-3), 51-65.
[http://dx.doi.org/10.1016/j.cej.2006.11.001]
[33]
Zhao, L.; Zhang, H.; Xing, Y.; Song, S.; Yu, S.; Shi, W.; Guo, X.; Yang, J.; Lei, Y.; Cao, F. Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method. J. Solid State Chem., 2008, 181(2), 245-252.
[http://dx.doi.org/10.1016/j.jssc.2007.10.034]
[34]
Amiri, M.; Salavati-Niasari, M.; Akbari, A. A magnetic CoFe2O4/SiO2 nanocomposite fabricated by the sol-gel method for electrocatalytic oxidation and determination of L-cysteine. Mikrochim. Acta, 2017, 184(3), 825-833.
[http://dx.doi.org/10.1007/s00604-016-2064-4]
[35]
Houshiar, M.; Zebhi, F.; Razi, Z.J.; Alidoust, A.; Askari, Z. Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties. J. Magn. Magn. Mater., 2014, 371, 43-48.
[http://dx.doi.org/10.1016/j.jmmm.2014.06.059]
[36]
Bard, A.J.; Faulkner, L.R. Fundamentals and applications. Electrochemical Methods, 2001, 2, 482.
[37]
Yin, H.; Cui, L.; Ai, S.; Fan, H.; Zhu, L. Electrochemical determination of bisphenol A at Mg–Al–CO3 layered double hydroxide modified glassy carbon electrode. Electrochim. Acta, 2010, 55(3), 603-610.
[http://dx.doi.org/10.1016/j.electacta.2009.09.020]
[38]
Movlaee, K.; Ganjali, M.R.; Aghazadeh, M.; Beitollahi, H.; Hosseini, M.; Shahabi, S.; Norouzi, P. Graphene nanocomposite modified glassy carbon electrode: As a sensing platform for simultaneous determination of methyldopa and uric acid. Int. J. Electrochem. Sci., 2017, 12(1), 305-315.
[http://dx.doi.org/10.20964/2017.01.41]
[39]
Karimi-Maleh, H.; Khalilzadeh, M.A.; Ranjbarha, Z.; Beitollahi, H.; Ensafi, A.A.; Zareyee, D. p-Chloranil modified carbon nanotubes paste electrode as a voltammetric sensor for the simultaneous determination of methyldopa and uric acid. Anal. Methods, 2012, 4(7), 2088-2094.
[http://dx.doi.org/10.1039/c2ay05865k]
[40]
Shahrokhian, S.; Saberi, R.S.; Kamalzadeh, Z. Sensitive electrochemical sensor for determination of methyldopa based on polypyrrole/carbon nanoparticle composite thin film made by in situ electropolymerization. Electroanalysis, 2011, 23(9), 2248-2254.
[http://dx.doi.org/10.1002/elan.201100169]
[41]
Fouladgar, M.; Karimi-Maleh, H. Ionic liquid/multiwall carbon nanotubes paste electrode for square wave voltammetric determination of methyldopa. Ionics, 2013, 19(8), 1163-1170.
[http://dx.doi.org/10.1007/s11581-012-0832-7]
[42]
Molaakbari, E.; Mostafavi, A.; Beitollahi, H. First report for voltammetric determination of methyldopa in the presence of folic acid and glycine. Mater. Sci. Eng. C, 2014, 36, 168-172.
[http://dx.doi.org/10.1016/j.msec.2013.12.013] [PMID: 24433900]
[43]
Moccelini, S.K.; Franzoi, A.C.; Vieira, I.C.; Dupont, J.; Scheeren, C.W. A novel support for laccase immobilization: cellulose acetate modified with ionic liquid and application in biosensor for methyldopa detection. Biosens. Bioelectron., 2011, 26(8), 3549-3554.
[http://dx.doi.org/10.1016/j.bios.2011.01.043] [PMID: 21353521]
[44]
Gholivand, M.B.; Amiri, M. Preparation of polypyrrole/nuclear fast red films on gold electrode and its application on the electrocatalytic determination of methyl‐dopa and ascorbic acid. Electroanalysis, 2009, 21(22), 2461-2467.
[http://dx.doi.org/10.1002/elan.200900231]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy