Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Perspective Article

Metabolic Ink Lactate Modulates Epigenomic Landscape: A Concerted Role of Pro-tumor Microenvironment and Macroenvironment During Carcinogenesis

Author(s): Nilesh Kumar Sharma* and Jayanta K. Pal

Volume 21, Issue 3, 2021

Published on: 21 May, 2020

Page: [177 - 181] Pages: 5

DOI: 10.2174/1566524020666200521075252

Abstract

Tumor heterogeneity is influenced by various factors including genetic, epigenetic and axis of metabolic-epigenomic regulation. In recent years, metabolic-epigenomic reprogramming has been considered as one of the many tumor hallmarks and it appears to be driven by both microenvironment and macroenvironment factors including diet, microbiota and environmental pressures. Epigenetically, histone lysine residues are altered by various post-translational modifications (PTMs) such as acetylation, acylation, methylation and lactylation. Furthermore, lactylation is suggested as a new form of PTM that uses a lactate substrate as a metabolic ink for epigenetic writer enzyme that remodels histone proteins. Therefore, preclinical and clinical attempts are warranted to disrupt the pathway of metabolic-epigenomic reprogramming that will turn pro-tumor microenvironment into an anti-tumor microenvironment. This paper highlights the metabolicepigenomic regulation events including lactylation and its metabolic substrate lactate in the tumor microenvironment.

Keywords: Metabolite, Epigenomic, Cancer, Microenvironment, Diet, Lactate.

Next »
[1]
Al-Zoughbi W, Huang J, Paramasivan GS, et al. Tumor macroenvironment and metabolism. Semin Oncol 2014; 41(2): 281-95.
[http://dx.doi.org/10.1053/j.seminoncol.2014.02.005] [PMID: 24787299]
[2]
O’Keefe SJ. Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol 2016; 13(12): 691-706.
[http://dx.doi.org/10.1038/nrgastro.2016.165] [PMID: 27848961]
[3]
Pavlova NN, Thompson CB. The Emerging Hallmarks of Cancer Metabolism. Cell Metab 2016; 23(1): 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[4]
Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol 2017; 14(1): 11-31.
[http://dx.doi.org/10.1038/nrclinonc.2016.60] [PMID: 27141887]
[5]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[6]
Nilendu P, Sarode SC, Jahagirdar D, et al. Mutual concessions and compromises between stromal cells and cancer cells: driving tumor development and drug resistance. Cell Oncol (Dordr) 2018; 41(4): 353-67.
[http://dx.doi.org/10.1007/s13402-018-0388-2] [PMID: 30027403]
[7]
Patel H, Nilendu P, Jahagirdar D, Pal JK, Sharma NK. Modulating non-cellular components of microenvironmental heterogeneity: A masterstroke in tumor therapeutics. Cancer Biol Ther 2018; 19(1): 3-12.
[http://dx.doi.org/10.1080/15384047.2017.1394538] [PMID: 29219656]
[8]
Lebelo MT, Joubert AM, Visagie MH. Warburg effect and its role in tumourigenesis. Arch Pharm Res 2019; 42(10): 833-47.
[http://dx.doi.org/10.1007/s12272-019-01185-2] [PMID: 31473944]
[9]
Kaelin WG Jr, McKnight SL. Influence of metabolism on epigenetics and disease. Cell 2013; 153(1): 56-69.
[http://dx.doi.org/10.1016/j.cell.2013.03.004] [PMID: 23540690]
[10]
Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet 2016; 17(8): 487-500.
[http://dx.doi.org/10.1038/nrg.2016.59] [PMID: 27346641]
[11]
Su XB, Pillus L. Functions for diverse metabolic activities in heterochromatin. Proc Natl Acad Sci USA 2016; 113(11): E1526-35.
[http://dx.doi.org/10.1073/pnas.1518707113] [PMID: 26936955]
[12]
Tran TQ, Lowman XH, Kong M. Molecular Pathways: Metabolic Control of Histone Methylation and Gene Expression in Cancer. Clin Cancer Res 2017; 23(15): 4004-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2506] [PMID: 28404599]
[13]
Wong CC, Qian Y, Yu J. Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches. Oncogene 2017; 36(24): 3359-74.
[http://dx.doi.org/10.1038/onc.2016.485] [PMID: 28092669]
[14]
Sabari BR, Zhang D, Allis CD, Zhao Y. Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol 2017; 18(2): 90-101.
[http://dx.doi.org/10.1038/nrm.2016.140] [PMID: 27924077]
[15]
Schvartzman JM, Thompson CB, Finley LWS. Metabolic regulation of chromatin modifications and gene expression. J Cell Biol 2018; 217(7): 2247-59.
[http://dx.doi.org/10.1083/jcb.201803061] [PMID: 29760106]
[16]
Trefely S, Doan MT, Snyder NW. Crosstalk between cellular metabolism and histone acetylation. Methods Enzymol 2019; 626: 1-21.
[http://dx.doi.org/10.1016/bs.mie.2019.07.013] [PMID: 31606071]
[17]
Kulkarni RA, Montgomery DC, Meier JL. Epigenetic regulation by endogenous metabolite pharmacology. Curr Opin Chem Biol 2019; 51: 30-9.
[http://dx.doi.org/10.1016/j.cbpa.2019.02.002] [PMID: 30884380]
[18]
Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation. Nature 2019; 574(7779): 575-80.
[http://dx.doi.org/10.1038/s41586-019-1678-1] [PMID: 31645732]
[19]
Brooks GA. Lactate as a fulcrum of metabolism. Redox Biol 2020.101454101454
[http://dx.doi.org/10.1016/j.redox.2020.101454] [PMID: 32113910]
[20]
Gaffney DO, Jennings EQ, Anderson CC, et al. Non-enzymatic Lysine Lactoylation of Glycolytic Enzymes. Cell Chem Biol 2020; 27(2): 206-213.e6.
[http://dx.doi.org/10.1016/j.chembiol.2019.11.005] [PMID: 31767537]
[21]
Liberti MV, Locasale JW. Histone Lactylation: A New Role for Glucose Metabolism. Trends Biochem Sci 2020; 45(3): 179-82.
[http://dx.doi.org/10.1016/j.tibs.2019.12.004] [PMID: 31901298]
[22]
Hardbower DM, Asim M, Luis PB, et al. Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications. Proc Natl Acad Sci USA 2017; 114(5): E751-60.
[http://dx.doi.org/10.1073/pnas.1614958114] [PMID: 28096401]
[23]
Singh K, Coburn LA, Asim M, et al. Ornithine Decarboxylase in Macrophages Exacerbates Colitis and Promotes Colitis-Associated Colon Carcinogenesis by Impairing M1 Immune Responses. Cancer Res 2018; 78(15): 4303-15.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0116] [PMID: 29853605]
[24]
Peng M, Yin N, Chhangawala S, Xu K, Leslie CS, Li MO. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 2016; 354(6311): 481-4.
[http://dx.doi.org/10.1126/science.aaf6284] [PMID: 27708054]
[25]
Wang Z, Yip LY, Lee JHJ, et al. Methionine is a metabolic dependency of tumor-initiating cells. Nat Med 2019; 25(5): 825-37.
[http://dx.doi.org/10.1038/s41591-019-0423-5] [PMID: 31061538]
[26]
Haas R, Cucchi D, Smith J, Pucino V, Macdougall CE, Mauro C. Intermediates of metabolism: from bystanders to signalling molecules. Trends Biochem Sci 2016; 41(5): 460-71.
[http://dx.doi.org/10.1016/j.tibs.2016.02.003] [PMID: 26935843]
[27]
Carrer A, Parris JL, Trefely S, et al. Impact of a High-fat Diet on Tissue Acyl-CoA and Histone Acetylation Levels. J Biol Chem 2017; 292(8): 3312-22.
[http://dx.doi.org/10.1074/jbc.M116.750620] [PMID: 28077572]
[28]
Nordgren KK, Skildum AJ. The deep end of the metabolite pool: influences on epigenetic regulatory mechanisms in cancer. Eur J Clin Invest 2015; 45(Suppl. 1): 9-15.
[http://dx.doi.org/10.1111/eci.12361] [PMID: 25524581]
[29]
Colegio OR, Chu NQ, Szabo AL, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014; 513(7519): 559-63.
[http://dx.doi.org/10.1038/nature13490] [PMID: 25043024]
[30]
Vinasco K, Mitchell HM, Kaakoush NO, Castaño-Rodríguez N. Microbial carcinogenesis: Lactic acid bacteria in gastric cancer. Biochim Biophys Acta Rev Cancer 2019; 1872(2)188309
[http://dx.doi.org/10.1016/j.bbcan.2019.07.004] [PMID: 31394110]
[31]
Bhagat TD, Von Ahrens D, Dawlaty M, et al. Lactate-mediated epigenetic reprogramming regulates formation of human pancreatic cancer-associated fibroblasts. eLife 2019.8e50663
[http://dx.doi.org/10.7554/eLife.50663] [PMID: 31663852]
[32]
Walenta S, Wetterling M, Lehrke M, et al. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 2000; 60(4): 916-21.
[PMID: 10706105]
[33]
Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 2013; 496(7444): 238-42.
[http://dx.doi.org/10.1038/nature11986] [PMID: 23535595]
[34]
Sciacovelli M, Gonçalves E, Johnson TI, et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 2016; 537(7621): 544-7.
[http://dx.doi.org/10.1038/nature19353] [PMID: 27580029]
[35]
Gao X, Lin SH, Ren F, et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun 2016; 7: 11960.
[http://dx.doi.org/10.1038/ncomms11960] [PMID: 27357947]
[36]
Nadtochiy SM, Schafer X, Fu D, Nehrke K, Munger J, Brookes PS. Acidic pH Is a Metabolic Switch for 2-Hydroxyglutarate Generation and Signaling. J Biol Chem 2016; 291(38): 20188-97.
[http://dx.doi.org/10.1074/jbc.M116.738799] [PMID: 27510037]
[37]
Chisolm DA, Weinmann AS. Connections Between Metabolism and Epigenetics in Programming Cellular Differentiation. Annu Rev Immunol 2018; 36: 221-46.
[http://dx.doi.org/10.1146/annurev-immunol-042617-053127] [PMID: 29328786]
[38]
Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 2015; 518(7539): 413-6.
[http://dx.doi.org/10.1038/nature13981] [PMID: 25487152]

© 2024 Bentham Science Publishers | Privacy Policy