Review Article

调节Toll样受体和免疫系统的热激蛋白可能是黑色素瘤的新型治疗靶点。

卷 21, 期 1, 2021

发表于: 11 May, 2020

页: [15 - 24] 页: 10

弟呕挨: 10.2174/1566524020666200511091540

价格: $65

摘要

黑色素瘤是一种严重的皮肤癌,在黑色素细胞中发展。尽管它不像其他一些皮肤癌那么普遍,但是如果不及早治疗,它的危险性会更大,因为它能够迅速扩散到其他器官。热激蛋白(HSP)是幼稚蛋白的细胞内分子伴侣,可在应激条件下被诱导。 HSP被释放到细胞外环境中,并与Toll样受体(TLR)结合以调节免疫应答,例如细胞因子和趋化因子的释放。 HSP可以与主要组织相容性复合体(MHC)I类抗原交叉呈递,并与肿瘤特异性抗原结合。 TLR是先天免疫系统受体,通过HSP激活参与黑色素瘤生长途径。黑色素细胞表达TLR4和TLR9来调节免疫反应。许多TLR配体被认为是合适的佐剂,因为它们可以激活树突状细胞。针对某些TLR,例如TLR7和TLR9,是治疗黑色素瘤的一种可用选择。在这篇综述中,我们旨在确定黑色素瘤中TLR和HSP组之间的关系。

关键词: HSP,TLR,免疫系统,治疗目标,预后因素,黑色素瘤。

[1]
Takazawa Y, Kiniwa Y, Ogawa E, et al. Toll-like receptor 4 signaling promotes the migration of human melanoma cells. Tohoku J Exp Med 2014; 234(1): 57-65.
[http://dx.doi.org/10.1620/tjem.234.57] [PMID: 25175033]
[2]
Eiró N, Ovies C, Fernandez-Garcia B, et al. Expression of TLR3, 4, 7 and 9 in cutaneous malignant melanoma: relationship with clinicopathological characteristics and prognosis. Arch Dermatol Res 2013; 305(1): 59-67.
[http://dx.doi.org/10.1007/s00403-012-1300-y] [PMID: 23179584]
[3]
Sadat-Hatamnezhad L, Tanomand A, Mahmoudi J, Sandoghchian Shotorbani S. Activation of toll-like receptors 2 by high-mobility group box 1 in monocytes from patients with ischemic stroke. Iran Biomed J 2016; 20(4): 223-8.
[PMID: 27040385]
[4]
Goto Y, Arigami T, Kitago M, et al. Activation of Toll-like receptors 2, 3, and 4 on human melanoma cells induces inflammatory factors. Mol Cancer Ther 2008; 7(11): 3642-53.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0582] [PMID: 19001446]
[5]
Iyengar NM, Gucalp A, Dannenberg AJ, Hudis CA. Obesity and cancer mechanisms: tumor microenvironment and inflammation. J Clin Oncol 2016; 34(35): 4270-6.
[http://dx.doi.org/10.1200/JCO.2016.67.4283] [PMID: 27903155]
[6]
Pivarcsi A, Nagy I, Kemeny L. Innate immunity in the skin: how keratinocytes fight against pathogens. Curr Immunol Rev 2005; 1(1): 29-42.
[http://dx.doi.org/10.2174/1573395052952941]
[7]
Corrales L, Matson V, Flood B, Spranger S, Gajewski TF. Innate immune signaling and regulation in cancer immunotherapy. Cell Res 2017; 27(1): 96-108.
[http://dx.doi.org/10.1038/cr.2016.149] [PMID: 27981969]
[8]
Li K, Qu S, Chen X, Wu Q, Shi M. Promising targets for cancer immunotherapy: TLRs, RLRs, and STING-mediated innate immune pathways. Int J Mol Sci 2017; 18(2): 404.
[http://dx.doi.org/10.3390/ijms18020404] [PMID: 28216575]
[9]
Van Vliet A, Martin S, Garg A, Agostinis P. Seminars in cancer biology. Elsevier 2015; Vol. 33: pp. 74-85.
[10]
Li X, Kanegasaki S, Jin F, et al. Simultaneous induction of HSP70 expression, and degranulation, in IgE/Ag-stimulated or extracellular HSP70-stimulated mast cells. Allergy 2018; 73(2): 361-8.
[http://dx.doi.org/10.1111/all.13296] [PMID: 28857181]
[11]
Calderwood SK, Gong J, Murshid A. Extracellular HSPs: the complicated roles of extracellular HSPs in immunity. Front Immunol 2016; 7: 159.
[http://dx.doi.org/10.3389/fimmu.2016.00159] [PMID: 27199984]
[12]
Ikwegbue PC, Masamba P, Oyinloye BE, Kappo AP. Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals (Basel) 2017; 11(1): 2.
[http://dx.doi.org/10.3390/ph11010002] [PMID: 29295496]
[13]
Vijay K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int Immunopharmacol 2018; 59: 391-412.
[http://dx.doi.org/10.1016/j.intimp.2018.03.002] [PMID: 29730580]
[14]
Ramaswamy A, Wei P, Pan F. Heat Shock Proteins in Signaling Pathways. Springer 2019; pp. 183-215.
[http://dx.doi.org/10.1007/978-3-030-03952-3_10]
[15]
Shevtsov M, Multhoff G. Heat shock protein–peptide and HSP-based immunotherapies for the treatment of cancer. Front Immunol 2016; 7: 171.
[http://dx.doi.org/10.3389/fimmu.2016.00171] [PMID: 27199993]
[16]
Radons J. The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones 2016; 21(3): 379-404.
[http://dx.doi.org/10.1007/s12192-016-0676-6] [PMID: 26865365]
[17]
Milani V, Noessner E, Ghose S, et al. Heat shock protein 70: role in antigen presentation and immune stimulation. Int J Hyperthermia 2002; 18(6): 563-75.
[http://dx.doi.org/10.1080/02656730210166140] [PMID: 12537755]
[18]
Moldogazieva NT, Lutsenko SV, Terentiev AA. Reactive Oxygen and Nitrogen Species-Induced Protein Modifications: Implication in Carcinogenesis and Anticancer Therapy. Cancer Res 2018; 78(21): 6040-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0980] [PMID: 30327380]
[19]
Kumada K, Fuse N, Tamura T, Okamori C, Kurata S. HSP70/DNAJA3 chaperone/cochaperone regulates NF-κB activity in immune responses. Biochem Biophys Res Commun 2019; 513(4): 947-51.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.077] [PMID: 31005254]
[20]
Deane C. Localization of Heat Shock Proteins HSPA6 (Hsp70B′) HSPA1A (Hsp70-1) and HSPA8 (Hsc70) in Cultured Human Neuronal Cells. 2019.
[21]
Geng J, Li H, Huang C, et al. Functional analysis of HSPA1A and HSPA8 in parturition. Biochem Biophys Res Commun 2017; 483(1): 371-9.
[http://dx.doi.org/10.1016/j.bbrc.2016.12.136] [PMID: 28025138]
[22]
Wang H, Pezeshki AM, Yu X, Guo C, Subjeck JR, Wang XY. The endoplasmic reticulum chaperone GRP170: from immunobiology to cancer therapeutics. Front Oncol 2015; 4: 377.
[http://dx.doi.org/10.3389/fonc.2014.00377] [PMID: 25629003]
[23]
Berthenet K. La protéine HSP110: rôle dans le développement tumoral et sur l'immunogénicité du cancer colorectal 2015.
[24]
He J, Wang H. HspA1B Is a Prognostic Biomarker and Correlated With Immune Infiltrates in different subtypes of Breast Cancers. bioRxiv 2019.725861.
[25]
Akhter S, Chakraborty S, Moutinho D, et al. The human VGF-derived bioactive peptide TLQP-21 binds heat shock 71 kDa protein 8 (HSPA8)on the surface of SH-SY5Y cells. PLoS One 2017; 12(9)e0185176
[http://dx.doi.org/10.1371/journal.pone.0185176] [PMID: 28934328]
[26]
Quek D, Nguyen L, Fan H, Silver D. Archive for the ‘Neuroscience’Category. J Biol Chem 2016.
[27]
Jagadish N, Agarwal S, Gupta N, et al. Heat shock protein 70-2 (HSP70-2) overexpression in breast cancer. J Exp Clin Cancer Res 2016; 35(1): 150.
[http://dx.doi.org/10.1186/s13046-016-0425-9] [PMID: 27658496]
[28]
Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 2002; 277(17): 15107-12.
[http://dx.doi.org/10.1074/jbc.M111204200] [PMID: 11842086]
[29]
Toomey D, Conroy H, Jarnicki AG, Higgins SC, Sutton C, Mills KH. Therapeutic vaccination with dendritic cells pulsed with tumor-derived Hsp70 and a COX-2 inhibitor induces protective immunity against B16 melanoma. Vaccine 2008; 26(27-28): 3540-9.
[http://dx.doi.org/10.1016/j.vaccine.2008.04.005] [PMID: 18479787]
[30]
Kottke T, Sanchez-Perez L, Diaz RM, et al. Induction of hsp70-mediated Th17 autoimmunity can be exploited as immunotherapy for metastatic prostate cancer. Cancer Res 2007; 67(24): 11970-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2259] [PMID: 18089828]
[31]
Sanchez-Perez L, Kottke T, Daniels GA, et al. Killing of normal melanocytes, combined with heat shock protein 70 and CD40L expression, cures large established melanomas. J Immunol 2006; 177(6): 4168-77.
[http://dx.doi.org/10.4049/jimmunol.177.6.4168] [PMID: 16951382]
[32]
Pulido J, Kottke T, Thompson J, et al. Using virally expressed melanoma cDNA libraries to identify tumor-associated antigens that cure melanoma. Nat Biotechnol 2012; 30(4): 337-43.
[http://dx.doi.org/10.1038/nbt.2157] [PMID: 22426030]
[33]
Fang H, Wu Y, Huang X, et al. Toll-like receptor 4 (TLR4) is essential for Hsp70-like protein 1 (HSP70L1) to activate dendritic cells and induce Th1 response. J Biol Chem 2011; 286(35): 30393-400.
[http://dx.doi.org/10.1074/jbc.M111.266528] [PMID: 21730052]
[34]
Gong W, Wang Z-Y, Chen G-X, Liu YQ, Gu XY, Liu WW. Invasion potential of H22 hepatocarcinoma cells is increased by HMGB1-induced tumor NF-κB signaling via initiation of HSP70. Oncol Rep 2013; 30(3): 1249-56.
[http://dx.doi.org/10.3892/or.2013.2595] [PMID: 23836405]
[35]
Testori A, Richards J, Whitman E, et al. Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician’s choice of treatment for stage IV melanoma: the C-100-21 Study Group. Clin Oncol 2006.
[36]
Wood C, Srivastava P, Bukowski R, et al. C-100-12 RCC Study Group. An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet 2008; 372(9633): 145-54.
[http://dx.doi.org/10.1016/S0140-6736(08)60697-2] [PMID: 18602688]
[37]
Kwon S-M, Kim S, Song N-J, et al. Antiadipogenic and proosteogenic effects of luteolin, a major dietary flavone, are mediated by the induction of DnaJ (Hsp40) Homolog, Subfamily B, Member 1. J Nutr Biochem 2016; 30: 24-32.
[http://dx.doi.org/10.1016/j.jnutbio.2015.11.013] [PMID: 27012618]
[38]
Mitsugi R, Itoh T, Fujiwara R. Expression of human DNAJ (Heat Shock Protein-40) B3 in humanized UDP-glucuronosyltransferase 1 mice. Int J Mol Sci 2015; 16(7): 14997-5008.
[http://dx.doi.org/10.3390/ijms160714997] [PMID: 26147428]
[39]
Weisbart RH, Nishimura RN, Hansen JE. Google Patents 2018.
[40]
Ambarus CA, Yeremenko N, Baeten DL. Altered cytokine expression by macrophages from HLA-B27-positive spondyloarthritis patients without evidence of endoplasmic reticulum stress. Rheumatol Adv Pract 2018; 2(1): rky014...
[41]
Kastenhuber ER, Lalazar G, Houlihan SL, et al. DNAJB1-PRKACA fusion kinase interacts with β-catenin and the liver regenerative response to drive fibrolamellar hepatocellular carcinoma. Proc Natl Acad Sci USA 2017; 114(50): 13076-84.
[http://dx.doi.org/10.1073/pnas.1716483114] [PMID: 29162699]
[42]
Karki A, Putra J, LaQuaglia M, Perez-Atayde A, Vakili K. AACR 2018.
[43]
Lu T-W, Zhang P, Cianfrocco M, et al. Biochemical Study of A Cancer Driver Fusion Protein, DnaJB1-PKA. FASEB J 2017; 31(1_supplement): 713-770..
[44]
McCarthy MM, Pick E, Kluger Y, et al. HSP90 as a marker of progression in melanoma. Ann Oncol 2008; 19(3): 590-4.
[http://dx.doi.org/10.1093/annonc/mdm545] [PMID: 18037622]
[45]
Radons J, Multhoff G. Immunostimulatory functions of membrane-bound and exported heat shock protein 70. Exerc Immunol Rev 2005; 11(1): 17-33.
[PMID: 16385841]
[46]
Shipp C, Weide B, Derhovanessian E, Pawelec G. Hsps are up-regulated in melanoma tissue and correlate with patient clinical parameters. Cell Stress Chaperones 2013; 18(2): 145-54.
[http://dx.doi.org/10.1007/s12192-012-0363-1] [PMID: 22872370]
[47]
Abubaker J, Tiss A, Abu-Farha M, et al. DNAJB3/HSP-40 cochaperone is downregulated in obese humans and is restored by physical exercise. PLoS One 2013; 8(7)e69217
[http://dx.doi.org/10.1371/journal.pone.0069217] [PMID: 23894433]
[48]
Vahid S, Thaper D, Gibson KF, Bishop JL, Zoubeidi A. Molecular chaperone Hsp27 regulates the Hippo tumor suppressor pathway in cancer. Sci Rep 2016; 6: 31842.
[http://dx.doi.org/10.1038/srep31842] [PMID: 27555231]
[49]
Chatterjee S, Burns TF. Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci 2017; 18(9): 1978.
[http://dx.doi.org/10.3390/ijms18091978] [PMID: 28914774]
[50]
Choi S-K, Kam H, Kim K-Y, Park SI, Lee Y-S. Targeting Heat Shock Protein 27 in Cancer: A Druggable Target for Cancer Treatment? Cancers (Basel) 2019; 11(8): 1195.
[http://dx.doi.org/10.3390/cancers11081195] [PMID: 31426426]
[51]
Batulan Z, Pulakazhi Venu VK, Li Y, et al. Extracellular release and signaling by heat shock protein 27: role in modifying vascular inflammation. Front Immunol 2016; 7: 285.
[http://dx.doi.org/10.3389/fimmu.2016.00285] [PMID: 27507972]
[52]
Pockley AG, Henderson B. Extracellular cell stress (heat shock) proteins—immune responses and disease: an overview. Philosophical Transactions of the Royal Society B: Biological Sciences 2017; 373(1738): 20160522...
[53]
Zhu Z, Reiser G. The small heat shock proteins, especially HspB4 and HspB5 are promising protectants in neurodegenerative diseases. Neurochem Int 2018; 115: 69-79.
[http://dx.doi.org/10.1016/j.neuint.2018.02.006] [PMID: 29425965]
[54]
Li F, Xiao H, Hu Z, Zhou F, Yang B. Exploring the multifaceted roles of heat shock protein B8 (HSPB8) in diseases. Eur J Cell Biol 2018; 97(3): 216-29.
[http://dx.doi.org/10.1016/j.ejcb.2018.03.003] [PMID: 29555102]
[55]
Thuringer D, Jego G, Wettstein G, et al. Extracellular HSP27 mediates angiogenesis through Toll-like receptor 3. FASEB J 2013; 27(10): 4169-83.
[http://dx.doi.org/10.1096/fj.12-226977] [PMID: 23804239]
[56]
Glavan TM, Pavelic J. The exploitation of Toll-like receptor 3 signaling in cancer therapy. Curr Pharm Des 2014; 20(42): 6555-64.
[http://dx.doi.org/10.2174/1381612820666140826153347] [PMID: 25341932]
[57]
Wang X, Chen M, Zhou J, Zhang X. HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy. (Review) Int J Oncol 2014; 45(1): 18-30.
[http://dx.doi.org/10.3892/ijo.2014.2399] [PMID: 24789222]
[58]
Acunzo J, Katsogiannou M, Rocchi P. Small heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int J Biochem Cell Biol 2012; 44(10): 1622-31.
[http://dx.doi.org/10.1016/j.biocel.2012.04.002] [PMID: 22521623]
[59]
Havasi A, Li Z, Wang Z, et al. Hsp27 inhibits Bax activation and apoptosis via a phosphatidylinositol 3-kinase-dependent mechanism. J Biol Chem 2008; 283(18): 12305-13.
[http://dx.doi.org/10.1074/jbc.M801291200] [PMID: 18299320]
[60]
Aldrian S, Kindas-Mügge I, Trautinger F, et al. Overexpression of Hsp27 in a human melanoma cell line: regulation of E-cadherin, MUC18/MCAM, and plasminogen activator (PA) system. Cell Stress Chaperones 2003; 8(3): 249-57.
[http://dx.doi.org/10.1379/1466-1268(2003)008<0249:OOHIAH>2.0.CO;2] [PMID: 14984058]
[61]
Aldrian S, Trautinger F, Fröhlich I, Berger W, Micksche M, Kindas-Mügge I. Overexpression of Hsp27 affects the metastatic phenotype of human melanoma cells in vitro. Cell Stress Chaperones 2002; 7(2): 177-85.
[http://dx.doi.org/10.1379/1466-1268(2002)007<0177:OOHATM>2.0.CO;2] [PMID: 12380685]
[62]
Jin C, Cleveland JC, Ao L, et al. Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: the proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4. Mol Med 2014; 20(1): 280-9.
[http://dx.doi.org/10.2119/molmed.2014.00058] [PMID: 24918749]
[63]
Wang B, Chen Z, Yu F, et al. Hsp90 regulates autophagy and plays a role in cancer therapy. Tumour Biol 2016; 37(1): 1-6.
[http://dx.doi.org/10.1007/s13277-015-4142-3] [PMID: 26432328]
[64]
Baumhof P. Google Patents 2015.
[65]
Amadori M. The Innate Immune Response to Noninfectious Stressors: Human and Animal Models. Academic Press 2016.
[66]
Tang AC, Rahavi SM, Fung S-Y, et al. Combination therapy with proteasome inhibitors and TLR agonists enhances tumour cell death and IL-1β production. Cell Death Dis 2018; 9(2): 162.
[http://dx.doi.org/10.1038/s41419-017-0194-1] [PMID: 29415982]
[67]
Saito K, Kukita K, Kutomi G, et al. Heat shock protein 90 associates with Toll-like receptors 7/9 and mediates self-nucleic acid recognition in SLE. Eur J Immunol 2015; 45(7): 2028-41.
[http://dx.doi.org/10.1002/eji.201445293] [PMID: 25871979]
[68]
Prodromou C. Mechanisms of Hsp90 regulation. Biochem J 2016; 473(16): 2439-52.
[http://dx.doi.org/10.1042/BCJ20160005] [PMID: 27515256]
[69]
Ito T, Suzuki T, Sakabe J-i, et al. Plasmacytoid dendritic cells as a possible key player to initiate alopecia areata in the C3H/HeJ mouse. Allergol Int 2019.
[PMID: 31431342]
[70]
Petes C, Odoardi N, Gee K. The toll for trafficking: toll-like receptor 7 delivery to the endosome. Front Immunol 2017; 8: 1075.
[http://dx.doi.org/10.3389/fimmu.2017.01075] [PMID: 28928743]
[71]
Tamura Y, Yoneda A, Takei N, et al. Chaperokine Activity of Heat Shock Proteins. Springer 2019; pp. 279-97.
[http://dx.doi.org/10.1007/978-3-030-02254-9_13]
[72]
Nativel B, Planesse C, Gasque P, et al. In Chaperokine Activity of Heat Shock Proteins. Springer 2019; pp. 57-80.
[http://dx.doi.org/10.1007/978-3-030-02254-9_3]
[73]
Cappello F. Chaperones. Springer 2018; pp. 293-305.
[74]
Şelli ME, Wick G, Wraith DC, Newby AC. Autoimmunity to HSP60 during diet induced obesity in mice. Int J Obes 2017; 41(2): 348-51.
[http://dx.doi.org/10.1038/ijo.2016.216] [PMID: 27899808]
[75]
Marino Gammazza A, Macaluso F, Di Felice V, Cappello F, Barone R. Hsp60 in skeletal muscle fiber biogenesis and homeostasis: From physical exercise to skeletal muscle pathology. Cells 2018; 7(12): 224.
[http://dx.doi.org/10.3390/cells7120224] [PMID: 30469470]
[76]
de Graaf R, Kloppenburg G, Kitslaar PJ, Bruggeman CA, Stassen F. Human heat shock protein 60 stimulates vascular smooth muscle cell proliferation through Toll-like receptors 2 and 4. Microbes Infect 2006; 8(7): 1859-65.
[http://dx.doi.org/10.1016/j.micinf.2006.02.024] [PMID: 16843693]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy