Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

In situ Generated 212Pb-PSMA Ligand in a 224Ra-Solution for Dual Targeting of Prostate Cancer Sclerotic Stroma and PSMA-positive Cells

Author(s): Vilde Y. Stenberg, Asta Juzeniene*, Øyvind S. Bruland and Roy H. Larsen

Volume 13, Issue 2, 2020

Page: [130 - 141] Pages: 12

DOI: 10.2174/1874471013666200511000532

open access plus

Abstract

Background: New treatments combating bone and extraskeletal metastases are needed for patients with metastatic castration-resistant prostate cancer. The majority of metastases overexpress prostate-specific membrane antigen (PSMA), making it an ideal candidate for targeted radionuclide therapy.

Objective: The aim of this study was to test a novel liquid 224Ra/212Pb-generator for the rapid preparation of a dual-alpha targeting solution. Here, PSMA-targeting ligands are labelled with 212Pb in the 224Ra-solution in transient equilibrium with daughter nuclides. Thus, natural bone-seeking 224Ra targeting sclerotic bone metastases and 212Pb-chelated PSMA ligands targeting PSMA-expressing tumour cells are obtained.

Methods: Two PSMA-targeting ligands, the p-SCN-Bn-TCMC-PSMA ligand (NG001), specifically developed for chelating 212Pb, and the most clinically used DOTA-based PSMA-617 were labelled with 212Pb. Radiolabelling and targeting potential were investigated in situ, in vitro (PSMA-positive C4-2 human prostate cancer cells) and in vivo (athymic mice bearing C4-2 xenografts).

Results: NG001 was rapidly labelled with 212Pb (radiochemical purity >94% at concentrations of ≥15 μg/ml) using the liquid 224Ra/212Pb-generator. The high radiochemical purity and stability of [212Pb]Pb- NG001 were demonstrated over 48 hours in the presence of ascorbic acid and albumin. Similar binding abilities of the 212Pb-labelled ligands were observed in C4-2 cells. The PSMA ligands displayed comparable tumour uptake after 2 hours, but NG001 showed a 3.5-fold lower kidney uptake than PSMA- 617. Radium-224 was not chelated and, hence, showed high uptake in bones.

Conclusion: A fast method for the labelling of PSMA ligands with 212Pb in the 224Ra/212Pb-solution was developed. Thus, further in vivo studies with dual tumour targeting by alpha-particles are warranted.

Keywords: 224Ra/212Pb-liquid generator, 212Pb, metastatic castration-resistant prostate cancer, NG001, PSMA-617, TCMC, targeted alpha therapy.

Graphical Abstract

[1]
Dolgin, E. Radioactive drugs emerge from the shadows to storm the market. Nat. Biotechnol., 2018, 36(12), 1125-1127.
[http://dx.doi.org/10.1038/nbt1218-1125] [PMID: 30520873]
[2]
Marcu, L.; Bezak, E.; Allen, B.J. Global comparison of targeted alpha vs targeted beta therapy for cancer: In vitro, in vivo and clinical trials. Crit. Rev. Oncol. Hematol., 2018, 123, 7-20.
[http://dx.doi.org/10.1016/j.critrevonc.2018.01.001] [PMID: 29482781]
[3]
Kim, Y.S.; Brechbiel, M.W. An overview of targeted alpha therapy. Tumour Biol., 2012, 33(3), 573-590.
[http://dx.doi.org/10.1007/s13277-011-0286-y] [PMID: 22143940]
[4]
Garashchenko, B.L.; Korsakova, V.A.; Yakovlev, R.Y. Radiopharmaceuticals based on alpha emitters: preparation, properties, and applica-tion. Phys. At. Nucl., 2018, 81(10), 1515-1525.
[http://dx.doi.org/10.1134/S1063778818100071]
[5]
Kozempel, J.; Mokhodoeva, O.; Vlk, M. Progress in targeted alpha-particle therapy. what we learned about recoils release from in vivo generators. Molecules, 2018, 23(3) E581
[http://dx.doi.org/10.3390/molecules23030581] [PMID: 29510568]
[6]
Makvandi, M.; Dupis, E.; Engle, J.W.; Nortier, F.M.; Fassbender, M.E.; Simon, S.; Birnbaum, E.R.; Atcher, R.W.; John, K.D.; Rixe, O.; Norenberg, J.P. Alpha-emitters and targeted alpha therapy in oncology: from basic science to clinical investigations. Target. Oncol., 2018, 13(2), 189-203.
[http://dx.doi.org/10.1007/s11523-018-0550-9] [PMID: 29423595]
[7]
Henriksen, G.; Hoff, P.; Larsen, R.H. Evaluation of potential chelating agents for radium. Appl. Radiat. Isot., 2002, 56(5), 667-671.
[http://dx.doi.org/10.1016/S0969-8043(01)00282-2] [PMID: 11993940]
[8]
Gott, M.; Yang, P.; Kortz, U.; Stephan, H.; Pietzsch, H.J.; Mamat, C.A. 224Ra-labeled polyoxopalladate as a putative radiopharmaceutical. Chem. Commun. (Camb.), 2019, 55(53), 7631-7634.
[http://dx.doi.org/10.1039/C9CC02587A] [PMID: 31197298]
[9]
Deshayes, E.; Roumiguie, M.; Thibault, C.; Beuzeboc, P.; Cachin, F.; Hennequin, C.; Huglo, D.; Rozet, F.; Kassab-Chahmi, D.; Rebillard, X.; Houédé, N. Radium 223 dichloride for prostate cancer treatment. Drug Des. Devel. Ther., 2017, 11, 2643-2651.
[http://dx.doi.org/10.2147/DDDT.S122417] [PMID: 28919714]
[10]
Bruland, O.S.; Nilsson, S.; Fisher, D.R.; Larsen, R.H. High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter 223Ra: adjuvant or alternative to conventional modalities? Clin. Cancer Res., 2006, 12(20 Pt 2), 6250-6257.
[PMID: 17062709]
[11]
Juzeniene, A.; Bernoulli, J.; Suominen, M.; Halleen, J.; Larsen, R.H. Antitumor Activity of Novel Bone-seeking, α-emitting 224Ra-solution in a breast cancer skeletal metastases model. Anticancer Res., 2018, 38(4), 1947-1955.
[PMID: 29599310]
[12]
Meredith, R.F.; Torgue, J.J.; Rozgaja, T.A.; Banaga, E.P.; Bunch, P.W.; Alvarez, R.D.; Straughn, J.M., Jr; Dobelbower, M.C.; Lowy, A.M. Safety and Outcome Measures of First-in-human intraperitoneal α radioimmunotherapy with 212Pb-TCMC-trastuzumab. Am. J. Clin. Oncol., 2018, 41(7), 716-721.
[http://dx.doi.org/10.1097/COC.0000000000000353] [PMID: 27906723]
[13]
Yong, K.; Brechbiel, M. Application of 212Pb for Targeted α-particle Therapy (TAT): Pre-clinical and mechanistic understanding through to clinical translation. AIMS Med. Sci., 2015, 2(3), 228-245.
[http://dx.doi.org/10.3934/medsci.2015.3.228] [PMID: 26858987]
[14]
Dos Santos, J.C.; Schäfer, M.; Bauder-Wüst, U.; Lehnert, W.; Leotta, K.; Morgenstern, A.; Kopka, K.; Haberkorn, U.; Mier, W.; Kratochwil, C. Development and dosimetry of 203Pb/212Pb-labelled PSMA ligands: bringing “the lead” into PSMA-targeted alpha therapy? Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(5), 1081-1091.
[http://dx.doi.org/10.1007/s00259-018-4220-z] [PMID: 30603987]
[15]
Banerjee, S.R.; Minn, I.; Kumar, V.; Josefsson, A.; Lisok, A.; Brummet, M.; Chen, J.; Kiess, A.P.; Baidoo, K.; Brayton, C.; Mease, R.C.; Brechbiel, M.; Sgouros, G.; Hobbs, R.F.; Pomper, M.G. Preclinical evaluation of 203/212Pb-labeled low-molecular-weight compounds for targeted radiopharmaceutical therapy of prostate cancer. J. Nucl. Med., 2020, 61(1), 80-88.
[http://dx.doi.org/10.2967/jnumed.119.229393] [PMID: 31253744]
[16]
Stallons, T.A.R.; Saidi, A.; Tworowska, I.; Delpassand, E.S.; Torgue, J.J. Preclinical investigation of 212Pb-DOTAMTATE for peptide receptor radionuclide therapy in a neuroendocrine tumor model. Mol. Cancer Ther., 2019, 18(5), 1012-1021.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1103] [PMID: 30926632]
[17]
Westrøm, S.; Generalov, R.; Bønsdorff, T.B.; Larsen, R.H. Preparation of 212Pb-labeled monoclonal antibody using a novel 224Ra-based generator solution. Nucl. Med. Biol., 2017, 51, 1-9.
[http://dx.doi.org/10.1016/j.nucmedbio.2017.04.005] [PMID: 28486098]
[18]
Chappell, L.L.; Dadachova, E.; Milenic, D.E.; Garmestani, K.; Wu, C.; Brechbiel, M.W. Synthesis, characterization, and evaluation of a novel bifunctional chelating agent for the lead isotopes 203Pb and 212Pb. Nucl. Med. Biol., 2000, 27(1), 93-100.
[http://dx.doi.org/10.1016/S0969-8051(99)00086-4] [PMID: 10755652]
[19]
Baidoo, K.E.; Milenic, D.E.; Brechbiel, M.W. Methodology for labeling proteins and peptides with lead-212 (212Pb). Nucl. Med. Biol., 2013, 40(5), 592-599.
[http://dx.doi.org/10.1016/j.nucmedbio.2013.01.010] [PMID: 23602604]
[20]
Mirzadeh, S.; Kumar, K.; Gansow, O.A. The chemical fate of 212Bi-DOTA formed by b-decay of 212Pb(DOTA)2-***. Radiochim. Acta, 1993, 60, 1-10.
[http://dx.doi.org/10.1524/ract.1993.60.1.1]
[21]
Templeman, T.; Shandalov, M.; Schmidt, M.; Tal, A.; Sarusi, G.; Yahel, E.; Kelson, I.; Golan, Y. A new solid solution approach for the study of self-irradiating damage in non-radioactive materials. Sci. Rep., 2017, 7(1), 2780.
[http://dx.doi.org/10.1038/s41598-017-03150-9]
[22]
WISE Uranium Project. Universal Decay Calculator., http://www.wise-uranium.org/ [Accessed September 5, 2019];
[23]
Meredith, R.F.; Torgue, J.; Azure, M.T.; Shen, S.; Saddekni, S.; Banaga, E.; Carlise, R.; Bunch, P.; Yoder, D.; Alvarez, R. Pharmacokinetics and imaging of 212Pb-TCMC-trastuzumab after intraperitoneal administration in ovarian cancer patients. Cancer Biother. Radiopharm., 2014, 29(1), 12-17.
[http://dx.doi.org/10.1089/cbr.2013.1531] [PMID: 24229395]
[24]
Kasten, B.B.; Gangrade, A.; Kim, H.; Fan, J.; Ferrone, S.; Ferrone, C.R.; Zinn, K.R.; Buchsbaum, D.J. 212Pb-labeled B7-H3-targeting antibody for pancreatic cancer therapy in mouse models. Nucl. Med. Biol., 2018, 58, 67-73.
[http://dx.doi.org/10.1016/j.nucmedbio.2017.12.004] [PMID: 29413459]
[25]
Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today. International Agency for Research on Cancer., https://gco.iarc.fr/ [Accessed September 23, 2019];
[26]
Cimadamore, A.; Cheng, M.; Santoni, M.; Lopez-Beltran, A.; Battelli, N.; Massari, F.; Galosi, A.B.; Scarpelli, M.; Montironi, R. New prostate cancer targets for diagnosis, imaging, and therapy: focus on prostate-specific membrane antigen. Front. Oncol., 2018, 8 E653
[27]
Wüstemann, T.; Haberkorn, U.; Babich, J.; Mier, W. Targeting prostate cancer: Prostate-specific membrane antigen based diagnosis and therapy. Med. Res. Rev., 2019, 39(1), 40-69.
[http://dx.doi.org/10.1002/med.21508] [PMID: 29771460]
[28]
Lütje, S.; Slavik, R.; Fendler, W.; Herrmann, K.; Eiber, M. PSMA ligands in prostate cancer - Probe optimization and theranostic applications. Methods, 2017, 130, 42-50.
[http://dx.doi.org/10.1016/j.ymeth.2017.06.026] [PMID: 28666778]
[29]
Sachpekidis, C.; Alberts, I.; Rominger, A.; Afshar-Oromieh, A. PSMA radioligand therapy in prostate cancer: overview, latest advances and remaining challenges. Immunother., 2019, 11(5), 1267-1271.
[http://dx.doi.org/10.2217/imt-2019-0146]
[30]
Kim, Y.J.; Kim, Y.I. Therapeutic responses and survival effects of 177lu-psma-617 radioligand therapy in metastatic castrate-resistant prostate cancer: a meta-analysis. Clin. Nucl. Med., 2018, 43(10), 728-734.
[http://dx.doi.org/10.1097/RLU.0000000000002210] [PMID: 30059428]
[31]
von Eyben, F.E.; Roviello, G.; Kiljunen, T.; Uprimny, C.; Virgolini, I.; Kairemo, K.; Joensuu, T. Third-line treatment and 177Lu-PSMA radioligand therapy of metastatic castration-resistant prostate cancer: a systematic review. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(3), 496-508.
[http://dx.doi.org/10.1007/s00259-017-3895-x] [PMID: 29247284]
[32]
Fendler, W.P.; Reinhardt, S.; Ilhan, H.; Delker, A.; Böning, G.; Gildehaus, F.J.; Stief, C.; Bartenstein, P.; Gratzke, C.; Lehner, S.; Rominger, A. Preliminary experience with dosimetry, response and patient reported outcome after 177Lu-PSMA-617 therapy for metastatic castration-resistant prostate cancer. Oncotarget, 2017, 8(2), 3581-3590.
[http://dx.doi.org/10.18632/oncotarget.12240] [PMID: 27683041]
[33]
Chakravarty, R.; Siamof, C.M.; Dash, A.; Cai, W. Targeted α-therapy of prostate cancer using radiolabeled PSMA inhibitors: a game changer in nuclear medicine. Am. J. Nucl. Med. Mol. Imaging, 2018, 8(4), 247-267.
[PMID: 30245917]
[34]
Kratochwil, C.; Bruchertseifer, F.; Giesel, F.L.; Weis, M.; Verburg, F.A.; Mottaghy, F.; Kopka, K.; Apostolidis, C.; Haberkorn, U.; Mor-genstern, A. 225Ac-PSMA-617 for PSMA-Targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J. Nucl. Med., 2016, 57(12), 1941-1944.
[http://dx.doi.org/10.2967/jnumed.116.178673] [PMID: 27390158]
[35]
Kratochwil, C.; Bruchertseifer, F.; Rathke, H.; Bronzel, M.; Apostolidis, C.; Weichert, W.; Haberkorn, U.; Giesel, F.L.; Morgenstern, A. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: dosimetry estimate and empiric dose finding. J. Nucl. Med., 2017, 58(10), 1624-1631.
[http://dx.doi.org/10.2967/jnumed.117.191395] [PMID: 28408529]
[36]
Sathekge, M.; Knoesen, O.; Meckel, M.; Modiselle, M.; Vorster, M.; Marx, S. 213Bi-PSMA-617 targeted alpha-radionuclide therapy in metastatic castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(6), 1099-1100.
[http://dx.doi.org/10.1007/s00259-017-3657-9] [PMID: 28255795]
[37]
Sathekge, M.; Bruchertseifer, F.; Knoesen, O.; Reyneke, F.; Lawal, I.; Lengana, T.; Davis, C.; Mahapane, J.; Corbett, C.; Vorster, M.; Mor-genstern, A. 225Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(1), 129-138.
[http://dx.doi.org/10.1007/s00259-018-4167-0] [PMID: 30232539]
[38]
Dahle, J.; Abbas, N.; Bruland, O.S.; Larsen, R.H. Toxicity and relative biological effectiveness of alpha emitting radioimmunoconjugates. Curr. Radiopharm., 2011, 4(4), 321-328.
[http://dx.doi.org/10.2174/1874471011104040321] [PMID: 22202154]
[39]
Robertson, A.K.H.; Ramogida, C.F.; Schaffer, P.; Radchenko, V. Development of (225). Ac Radiopharmaceuticals: TRIUMF Perspectives and Experiences. Curr. Radiopharm., 2018, 11(3), 156-172.
[http://dx.doi.org/10.2174/1874471011666180416161908]
[40]
Tannock, I.F.; de Wit, R.; Berry, W.R.; Horti, J.; Pluzanska, A.; Chi, K.N.; Oudard, S.; Théodore, C.; James, N.D.; Turesson, I.; Rosenthal, M.A.; Eisenberger, M.A. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med., 2004, 351(15), 1502-1512.
[http://dx.doi.org/10.1056/NEJMoa040720] [PMID: 15470213]
[41]
Rahbar, K.; Boegemann, M.; Yordanova, A.; Eveslage, M.; Schäfers, M.; Essler, M.; Ahmadzadehfar, H. PSMA targeted radioligandtherapy in metastatic castration resistant prostate cancer after chemotherapy, abiraterone and/or enzalutamide. A retrospective analysis of overall survival. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(1), 12-19.
[http://dx.doi.org/10.1007/s00259-017-3848-4] [PMID: 29026946]
[42]
Pezaro, C.; Omlin, A.; Lorente, D.; Rodrigues, D.N.; Ferraldeschi, R.; Bianchini, D.; Mukherji, D.; Riisnaes, R.; Altavilla, A.; Crespo, M.; Tunariu, N.; de Bono, J.; Attard, G. Visceral disease in castration-resistant prostate cancer. Eur. Urol., 2014, 65(2), 270-273.
[http://dx.doi.org/10.1016/j.eururo.2013.10.055] [PMID: 24295792]
[43]
Lassmann, M.; Nosske, D.; Reiners, C. Therapy of ankylosing spondylitis with 224Ra-radium chloride: dosimetry and risk considerations. Radiat. Environ. Biophys., 2002, 41(3), 173-178.
[http://dx.doi.org/10.1007/s00411-002-0164-5] [PMID: 12373325]
[44]
Kratochwil, C.; Giesel, F.L.; Stefanova, M.; Benešová, M.; Bronzel, M.; Afshar-Oromieh, A.; Mier, W.; Eder, M.; Kopka, K.; Haberkorn, U. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-Labeled PSMA-617. J. Nucl. Med., 2016, 57(8), 1170-1176.
[http://dx.doi.org/10.2967/jnumed.115.171397] [PMID: 26985056]
[45]
Baum, R.P.; Kulkarni, H.R.; Schuchardt, C.; Singh, A.; Wirtz, M.; Wiessalla, S.; Schottelius, M.; Mueller, D.; Klette, I.; Wester, H.J. 177Lu-Labeled prostate-specific membrane antigen radioligand therapy of metastatic castration-resistant prostate cancer: safety and efficacy. J. Nucl. Med., 2016, 57(7), 1006-1013.
[http://dx.doi.org/10.2967/jnumed.115.168443] [PMID: 26795286]
[46]
Kiess, A.P.; Minn, I.; Vaidyanathan, G.; Hobbs, R.F.; Josefsson, A.; Shen, C.; Brummet, M.; Chen, Y.; Choi, J.; Koumarianou, E.; Baidoo, K.; Brechbiel, M.W.; Mease, R.C.; Sgouros, G.; Zalutsky, M.R.; Pomper, M.G. (2S)-2-(3-(1-Carboxy-5-(4-211At-Astatobenzamido) Pentyl)Ureido)-Pentanedioic Acid for PSMA-Targeted α-Particle Radiopharmaceutical Therapy. J. Nucl. Med., 2016, 57(10), 1569-1575.
[http://dx.doi.org/10.2967/jnumed.116.174300] [PMID: 27230930]
[47]
Stenberg, V.Y.; Juzeniene, A.; Chen, Q.; Yang, X.; Bruland, O.S.; Larsen, R.H. Preparation of the alpha-emitting PSMA targeted radioligand [212Pb]Pb-NG001 for prostate cancer. J. Labelled Comp. Radiopharm., 2020, 63(3), 129-143.
[http://dx.doi.org/10.1002/jlcr.3825] [PMID: 31919866]
[48]
Larsen, R.H. Radiopharmaceutical solutions with advantageous properties. US Patent US9433690B1 2016.
[49]
Fan, X.; Wang, L.; Guo, Y.; Tu, Z.; Li, L.; Tong, H.; Xu, Y.; Li, R.; Fang, K. Ultrasonic nanobubbles carrying anti-PSMA nanobody: con-struction and application in prostate cancer-targeted imaging. PLoS One, 2015, 10(6) e0127419
[http://dx.doi.org/10.1371/journal.pone.0127419]] [PMID: 26111008]
[50]
Chakrabarti, M.C.; Le, N.; Paik, C.H.; De Graff, W.G.; Carrasquillo, J.A. Prevention of radiolysis of monoclonal antibody during labeling. J. Nucl. Med., 1996, 37(8), 1384-1388.
[PMID: 8708780]
[51]
Salako, Q.A.; O’Donnell, R.T.; DeNardo, S.J. Effects of radiolysis on yttrium-90-labeled Lym-1 antibody preparations. J. Nucl. Med., 1998, 39(4), 667-670.
[PMID: 9544679]
[52]
Schwartz, J.; Jaggi, J.S.; O’Donoghue, J.A.; Ruan, S.; McDevitt, M.; Larson, S.M.; Scheinberg, D.A.; Humm, J.L. Renal uptake of bismuth-213 and its contribution to kidney radiation dose following administration of actinium-225-labeled antibody. Phys. Med. Biol., 2011, 56(3), 721-733.
[http://dx.doi.org/10.1088/0031-9155/56/3/012] [PMID: 21220845]
[53]
de Kruijff, R.M.; Wolterbeek, H.T.; Denkova, A.G. A Critical review of alpha radionuclide therapy-how to deal with recoiling daughters? Pharmaceuticals (Basel), 2015, 8(2), 321-336.
[http://dx.doi.org/10.3390/ph8020321] [PMID: 26066613]
[54]
Poty, S.; Carter, L.M.; Mandleywala, K.; Membreno, R.; Abdel-Atti, D.; Ragupathi, A.; Scholz, W.W.; Zeglis, B.M.; Lewis, J.S. Leveraging bioorthogonal click chemistry to improve 225ac-radioimmunotherapy of pancreatic ductal adenocarcinoma. Clin. Cancer Res., 2019, 25(2), 868-880.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1650] [PMID: 30352909]
[55]
Bartoś, B.; Lyczko, K.; Kasperek, A.; Krajewski, S.; Bilewicz, A. Search of ligands suitable for 212Pb/212Bi in vivo generators. J. Radioanal. Nucl. Chem., 2013, 295(1), 205-209.
[http://dx.doi.org/10.1007/s10967-012-2238-4] [PMID: 26224928]
[56]
Atcher, R.W.; Friedman, A.M.; Hines, J.J. An improved generator for the production of 212Pb and 212Bi from 224Ra. Int. J. Rad. Appl. Instrum. [A], 1988, 39(4), 283-286.
[http://dx.doi.org/10.1016/0883-2889(88)90016-0] [PMID: 2838433]
[57]
Hassfjell, S.A. 212Pb generator based on a 228Th source. Appl. Radiat. Isot., 2001, 55(4), 433-439.
[http://dx.doi.org/10.1016/S0969-8043(00)00372-9] [PMID: 11545493]
[58]
Benešová, M.; Bauder-Wüst, U.; Schäfer, M.; Klika, K.D.; Mier, W.; Haberkorn, U.; Kopka, K.; Eder, M. Linker modification strategies to control the prostate-specific membrane antigen (PSMA)-targeting and pharmacokinetic properties of DOTA-conjugated PSMA inhibitors. J. Med. Chem., 2016, 59(5), 1761-1775.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01210] [PMID: 26878194]
[59]
de Zanger, R.M.S.; Chan, H.S.; Breeman, W.A.P.; de Blois, E. Maintaining radiochemical purity of [177Lu]Lu-DOTA-PSMA-617 for PRRT by reducing radiolysis. J. Radioanal. Nucl. Chem., 2019, 321(1), 285-291.
[http://dx.doi.org/10.1007/s10967-019-06573-y]
[60]
Umbricht, C.A.; Benešová, M.; Schibli, R.; Müller, C. Preclinical development of novel PSMA-targeting radioligands: modulation of albumin-binding properties to improve prostate cancer therapy. Mol. Pharm., 2018, 15(6), 2297-2306.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00152] [PMID: 29684274]
[61]
Larsen, R.H. Novel lead and thorium compounds. US patent US20190177345 2019.
[62]
Castanares, M.A.; Copeland, B.T.; Chowdhury, W.H.; Liu, M.M.; Rodriguez, R.; Pomper, M.G.; Lupold, S.E.; Foss, C.A. Characterization of a novel metastatic prostate cancer cell line of LNCaP origin. Prostate, 2016, 76(2), 215-225.
[http://dx.doi.org/10.1002/pros.23115] [PMID: 26499105]
[63]
Michalska, M.; Schultze-Seemann, S.; Bogatyreva, L.; Hauschke, D.; Wetterauer, U.; Wolf, P. In vitro and in vivo effects of a recombinant anti-PSMA immunotoxin in combination with docetaxel against prostate cancer. Oncotarget, 2016, 7(16), 22531-22542.
[http://dx.doi.org/10.18632/oncotarget.8001] [PMID: 26968813]
[64]
Yordanova, A.; Becker, A.; Eppard, E.; Kürpig, S.; Fisang, C.; Feldmann, G.; Essler, M.; Ahmadzadehfar, H. The impact of repeated cycles of radioligand therapy using [177Lu]Lu-PSMA-617 on renal function in patients with hormone refractory metastatic prostate cancer. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(9), 1473-1479.
[http://dx.doi.org/10.1007/s00259-017-3681-9] [PMID: 28337529]
[65]
Sarnelli, A.; Belli, M.L.; Di Iorio, V.; Mezzenga, E.; Celli, M.; Severi, S.; Tardelli, E.; Nicolini, S.; Oboldi, D.; Uccelli, L.; Cittanti, C.; Monti, M.; Ferrari, M.; Paganelli, G. Dosimetry of 177Lu-PSMA-617 after mannitol infusion and glutamate tablet administration: preliminary results of EUDRACT/RSO 2016-002732-32 IRST protocol. Molecules, 2019, 24(3) E621
[http://dx.doi.org/10.3390/molecules24030621] [PMID: 30754620]
[66]
Baum, R.P.; Langbein, T.; Singh, A.; Shahinfar, M.; Schuchardt, C.; Volk, G.F.; Kulkarni, H. Injection of botulinum toxin for preventing salivary gland toxicity after PSMA radioligand therapy: an empirical proof of a promising concept. Nucl. Med. Mol. Imaging, 2018, 52(1), 80-81.
[http://dx.doi.org/10.1007/s13139-017-0508-3] [PMID: 29391917]
[67]
Rathke, H.; Kratochwil, C.; Hohenberger, R.; Giesel, F.L.; Bruchertseifer, F.; Flechsig, P.; Morgenstern, A.; Hein, M.; Plinkert, P.; Haberkorn, U.; Bulut, O.C. Initial clinical experience performing sialendoscopy for salivary gland protection in patients undergoing 225Ac-PSMA-617 RLT. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(1), 139-147.
[http://dx.doi.org/10.1007/s00259-018-4135-8] [PMID: 30151743]
[68]
Nilsson, S.; Larsen, R.H.; Fosså, S.D.; Balteskard, L.; Borch, K.W.; Westlin, J.E.; Salberg, G.; Bruland, O.S. First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases. Clin. Cancer Res., 2005, 11(12), 4451-4459.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2244] [PMID: 15958630]
[69]
Henriksen, G.; Fisher, D.R.; Roeske, J.C.; Bruland, O.S.; Larsen, R.H. Targeting of osseous sites with alpha-emitting 223Ra: comparison with the beta-emitter 89Sr in mice. J. Nucl. Med., 2003, 44(2), 252-259.
[PMID: 15958630]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy