Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

Experimental Breast Cancer Models: Preclinical Imaging Perspective

Author(s): Ulku Korkmaz* and Funda Ustun

Volume 14, Issue 1, 2021

Published on: 08 May, 2020

Page: [5 - 14] Pages: 10

DOI: 10.2174/1874471013666200508080250

Price: $65

Abstract

Background: Breast cancer is the leading cause of cancer in women. 13% of breast cancer patients are at a distant stage and mortality is due to metastases rather than primary disease. The unique genetic structure and natural process of breast cancer make it a very suitable area for targeted therapies. Experimental tumor models are validated methods to examine the pathogenesis of cancer, the onset of the neoplastic process and progression.

Objective: This study aims to review the current literature on experimental breast cancer models and to bring a new perspective to the use of these models in teranostic preclinical studies in terms of the imaging.

Methods: Search for relevant literature from academic databases using keywords (Breast cancer, theranostic, preclinical imaging, tumor models, animal study, and tailored therapy) was conducted. The full text of the articles was reached and reviewed. Current scientific data has been reevaluated and compiled according to subtitles.

Results and Conclusion: The development of animal models for breast cancer research has been done in the last century. Imaging methods used in breast cancer are used for tumor localization, quantification of tumor mass, imaging of genes and proteins, evaluation of tumor microenvironment, evaluation of tumor cell proliferation and metabolism and treatment response evaluation. Since human breast cancer is a heterogeneous group of diseases in terms of genetics and phenotype; it is not possible for a single model to adequately address all aspects of breast cancer biology. Considering that each model has advantages and disadvantages, the most suitable model should be chosen to verify the thesis of the study.

Keywords: Breast cancer, theranostic, preclinical imaging, tumor models, animal study, tailored therapy.

Graphical Abstract

[1]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[2]
Parks, R.M.; Derks, M.G.M.; Bastiaannet, E.; Cheung, K.L. Breast Cancer Epidemiology.Breast Cancer Management for Surgeons; Wyld, L.; Markopoulos, C.; Leidenius, M.; Senkus-Konefka, E., Eds.; Springer: Cham, 2018.
[http://dx.doi.org/10.1007/978-3-319-56673-3_3]
[3]
Mariotto, A.B.; Etzioni, R.; Hurlbert, M.; Penberthy, L.; Mayer, M. Estimation of the Number of Women Living with Metastatic Breast Cancer in the United States. Cancer Epidemiol. Biomarkers Prev., 2017, 26(6), 809-815.
[http://dx.doi.org/10.1158/1055-9965.EPI-16-0889] [PMID: 28522448]
[4]
DeSantis, C.E.; Ma, J.; Goding Sauer, A.; Newman, L.A.; Jemal, A. Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J. Clin., 2017, 67(6), 439-448.
[http://dx.doi.org/10.3322/caac.21412] [PMID: 28972651]
[5]
Whittle, J.R.; Lewis, M.T.; Lindeman, G.J.; Visvader, J.E. Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res., 2015, 17, 17.
[http://dx.doi.org/10.1186/s13058-015-0523-1] [PMID: 25849559]
[6]
Heppner, G.H.; Miller, F.R.; Shekhar, P.M. Nontransgenic models of breast cancer. Breast Cancer Res., 2000, 2(5), 331-334.
[http://dx.doi.org/10.1186/bcr77] [PMID: 11250725]
[7]
Manning, H.C.; Buck, J.R.; Cook, R.S. Mouse Models of Breast Cancer: Platforms for Discovering Precision Imaging Diagnostics and Future Cancer Medicine. J. Nucl. Med., 2016, 57(Suppl. 1), 60S-68S.
[http://dx.doi.org/10.2967/jnumed.115.157917] [PMID: 26834104]
[8]
Gallardo, A.; Garcia-Valdecasas, B.; Murata, P.; Teran, R.; Lopez, L.; Barnadas, A.; Lerma, E. Inverse relationship between Ki67 and survival in early luminal breast cancer: confirmation in a multivariate analysis. Breast Cancer Res. Treat., 2018, 167(1), 31-37.
[http://dx.doi.org/10.1007/s10549-017-4486-z] [PMID: 28865009]
[9]
Rouzier, R.; Perou, C.M.; Symmans, W.F.; Ibrahim, N.; Cristofanilli, M.; Anderson, K.; Hess, K.R.; Stec, J.; Ayers, M.; Wagner, P.; Morandi, P.; Fan, C.; Rabiul, I.; Ross, J.S.; Hortobagyi, G.N.; Pusztai, L. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin. Cancer Res., 2005, 11(16), 5678-5685.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2421] [PMID: 16115903]
[10]
Cheang, M.C.U.; Chia, S.K.; Voduc, D.; Gao, D.; Leung, S.; Snider, J.; Watson, M.; Davies, S.; Bernard, P.S.; Parker, J.S.; Perou, C.M.; Ellis, M.J.; Nielsen, T.O. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J. Natl. Cancer Inst., 2009, 101(10), 736-750.
[http://dx.doi.org/10.1093/jnci/djp082] [PMID: 19436038]
[11]
Carey, L.A.; Dees, E.C.; Sawyer, L.; Gatti, L.; Moore, D.T.; Collichio, F.; Ollila, D.W.; Sartor, C.I.; Graham, M.L.; Perou, C.M. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res., 2007, 13(8), 2329-2334.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1109] [PMID: 17438091]
[12]
Rudolph, M; Sizemore, S.T; Lu, Y; Teng, K.Y; Basree, M.M; Reinbolt, R. A hedgehog pathway‑dependent gene signature is associated with poor clinical outcomes in Luminal A breast cancer. Breast Cancer Research and Treatment,, 2018, 169, 457-67.
[13]
Race, L.A. Carey, L.A; Perou, C.M; Livasy, C.A; Dressler, L.G; Cowan, D; Conway, K, et all. Breast Cancer Subtypes, and Survival in the Carolina Breast Cancer Study. JAMA, 2006, 295, 2492-2502.
[http://dx.doi.org/10.1001/jama.295.21.2492]
[14]
Ustun, F.; Durmus-Altun, G.; Altaner, S.; Tuncbilek, N.; Uzal, C.; Berkarda, S. Evaluation of morphine effect on tumour angiogenesis in mouse breast tumour model, EATC. Med. Oncol., 2011, 28(4), 1264-1272.
[http://dx.doi.org/10.1007/s12032-010-9573-5] [PMID: 20567944]
[15]
Ustun, F.; Durmus-Altun, G.; Cukur, Z.; Altaner, S.; Berkarda, S. Glucose-induced alteration of accumulation of organotechnetium complexes accumulation in Pgp-negative tumor-bearing mice. Cancer Biother. Radiopharm., 2009, 24(3), 333-338.
[http://dx.doi.org/10.1089/cbr.2008.0546] [PMID: 19538056]
[16]
Chen, M.T.; Sun, H.F.; Zhao, Y.; Fu, W.Y.; Yang, L.P.; Gao, S.P.; Li, L.D.; Jiang, H.L.; Jin, W. Comparison of patterns and prognosis among distant metastatic breast cancer patients by age groups: a SEER population-based analysis. Sci. Rep., 2017, 7(1), 9254.
[http://dx.doi.org/10.1038/s41598-017-10166-8] [PMID: 28835702]
[17]
Price, J.E. Metastasis from human breast cancer cell lines. Breast Cancer Res. Treat., 1996, 39(1), 93-102.
[http://dx.doi.org/10.1007/BF01806081] [PMID: 8738609]
[18]
Sierra, A. Animal models of breast cancer for the study of pathogenesis and therapeutic insights. Clin. Transl. Oncol., 2009, 11(11), 721-727.
[http://dx.doi.org/10.1007/s12094-009-0434-7] [PMID: 19917535]
[19]
Khanna, C.; Hunter, K. Modeling metastasis in vivo. Carcinogenesis, 2005, 26(3), 513-523.
[http://dx.doi.org/10.1093/carcin/bgh261] [PMID: 15358632]
[20]
Russo, J.; Russo, I.H. Experimentally induced mammary tumors in rats. Breast Cancer Res. Treat., 1996, 39(1), 7-20.
[http://dx.doi.org/10.1007/BF01806074] [PMID: 8738602]
[21]
Bhatnagar, S; Dhingra Verma, K; Hu, Y; Khera, E; Priluc, A; David, E; Smith, D.E. Oral Administration and Detection of a Near-Infrared Molecular Imaging Agent in an Orthotopic Mouse Model for Breast Cancer Screening. Mol. Pharmaceutics,, 2018, 15, 1746-1754.
[22]
Fricke, I.B.; De Souza, R.; Costa Ayub, L.; Francia, G.; Kerbel, R.; Jaffray, D.A.; Zheng, J. Spatiotemporal assessment of spontaneous metastasis formation using multimodal in vivo imaging in HER2+ and triple negative metastatic breast cancer xenograft models in mice. PLoS One, 2018, 13(5)e0196892
[http://dx.doi.org/10.1371/journal.pone.0196892] [PMID: 29723251]
[23]
Chen, F.; Ma, K.; Madajewski, B.; Zhuang, L.; Zhang, L.; Rickert, K.; Marelli, M.; Yoo, B.; Turker, M.Z.; Overholtzer, M.; Quinn, T.P.; Gonen, M.; Zanzonico, P.; Tuesca, A.; Bowen, M.A.; Norton, L.; Subramony, J.A.; Wiesner, U.; Bradbury, M.S. Ultrasmall targeted nanoparticles with engineered antibody fragments for imaging detection of HER2-overexpressing breast cancer. Nat. Commun., 2018, 9(1), 4141.
[http://dx.doi.org/10.1038/s41467-018-06271-5] [PMID: 30297810]
[24]
Bachawal, S.V.; Jensen, K.C.; Wilson, K.E.; Tian, L.; Lutz, A.M.; Willmann, J.K. Breast Cancer Detection by B7-H3-Targeted Ultrasound Molecular Imaging. Cancer Res., 2015, 75(12), 2501-2509.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3361] [PMID: 25899053]
[25]
Doganlar, O.; Doganlar, Z.B. Optik Görüntüleme in Deney hayvanlarında moleküler görüntüleme. G. Durmus-Altun and F.Ustun; Kitabevleri, N.T., Ed.; İstanbul, 2015, pp. 123-140.
[26]
Torun, N. Radionüklid Tedavi in Deney hayvanlarında moleküler görüntüleme. G. Durmus-Altun and F.Ustun; Kitabevleri, N.T., Ed.; İstanbul, 2015, pp. 241-246.
[27]
Unak, P. Radiofarmasi ve Biyodagılım Deney hayvanlarında moleküler görüntüleme. G. Durmus-Altun and F.Ustun; Kitabevleri, N.T., Ed.; İstanbul, 2015, pp. 96-105.
[28]
Soyluoglu Demir, S. Görüntüleme Protokolleri in Deney hayvanlarında moleküler görüntüleme. G. Durmus-Altun and F.Ustun; Kitabevleri, N.T., Ed.; İstanbul, 2015, pp. 251-262.
[29]
Karacalıoglu, A.O. Otoradiografi Deney hayvanlarında moleküler görüntüleme. G. Durmus-Altun and F.Ustun; Kitabevleri, N.T., Ed.; İstanbul, 2015, pp. 109-120.
[30]
Kula, M. Deney hayvanlarında SPECT: Temel Prensipler ve Protokoller Deney hayvanlarında moleküler görüntüleme. G. Durmus-Altun and F.Ustun; Kitabevleri, N.T., Ed.; İstanbul, 2015, pp. 195-205.
[31]
Al-Qahtani, M.; Al Malki, Y.; Mutwali, H.; Helal-Neto, E.; Santos-Oliveira, R. Ga-68 Nanoparticles and Ultra-small Nanoparticle: Next Generation of PET Radiopharmaceuticals? Curr. Radiopharm., 2018, 11(2), 123-129.
[http://dx.doi.org/10.2174/1874471011666180418110206] [PMID: 29667558]
[32]
Parkins, K.M; Dubois, V.P; Hamilton, A.M; Makela, A.V Multimodality cellular and molecular imaging of concomitant tumour enhancement in a syngeneic mouse model of breast cancer metastasis. Scientific Reports, 2018, 8, 8930.
[33]
Korkmaz, U.; Aras, O. Prostat kanseri tanı ve cerrahisinde NIR floresans görüntüleme ajanlarının F-18 PSMA ile konjugasyonunun getirileri. Prostat Kanseri Olgularında Yeni Nükleer Tıp Görüntüleme Yöntemleri. Sayman, H.B; Klinikleri, T., Ed.; Ankara, 2019, pp. 44-48.
[34]
Nicolson, F.; Jamieson, L.E.; Mabbott, S.; Plakas, K.; Shand, N.C.; Detty, M.R.; Graham, D.; Faulds, K. Through tissue imaging of a live breast cancer tumour model using handheld surface enhanced spatially offset resonance Raman spectroscopy (SESORRS). Chem. Sci. (Camb.), 2018, 9(15), 3788-3792.
[http://dx.doi.org/10.1039/C8SC00994E] [PMID: 29780511]
[35]
Zanzonico, P. Noninvasive Imaging for Supporting Basic Research.Small Animal Imaging Basics and Practical Guide; Kiessling, F.; Pichler, B.J., Eds.; Springer-Verlag: Berlin, Heidelberg, 2011, pp. 3-16.
[http://dx.doi.org/10.1007/978-3-642-12945-2_1]
[36]
Kiessling, F.; Pichler, B.J.; Hauff, P. How to Choose the Right Imaging Modality.Small Animal Imaging Basics and Practical Guide; Kiessling, F.; Pichler, B.J., Eds.; Springer-Verlag: Berlin, Heidelberg, 2011, pp. 119-124.
[http://dx.doi.org/10.1007/978-3-642-12945-2_9]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy