Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

HOTAIR竞争性地将MiRNA330结合为分子海绵,以增加胃癌对曲妥珠单抗的耐药性

卷 20, 期 9, 2020

页: [700 - 709] 页: 10

弟呕挨: 10.2174/1568009620666200504114000

价格: $65

摘要

背景:HOTAIR是在肿瘤中研究最广泛的长非编码RNA之一,与肿瘤的增殖,迁移,侵袭和化学耐药性密切相关。 目的:在这里,我们研究了增殖和化学抗性过程的机制。 方法:从接受胃癌手术切除并接受曲妥珠单抗治疗的患者中收集总共75份样品。分离并培养原代细胞。我们还通过构建慢病毒载体开发了过表达HOTAIR的细胞系。使用一系列已建立的生物分子方法研究了这些细胞系。 结果:我们发现,HOTAIR水平与胃癌对曲妥珠单抗的敏感性呈负相关,并且HOTAIR的过表达可以促进胃癌细胞的增殖和侵袭。细胞过度表达HOTAIR对两种不同类型的人类表皮生长因子受体2(HER2)抑制剂(曲妥珠单抗和afatinib)的敏感性表明,HOTAIR的过度表达对曲妥珠单抗具有特异性。此外,荧光素酶报告基因分析和蛋白质印迹分析表明,存在一个以miRNA330为核心的HOTAIR-miRNA330-ERBB4竞争性内源RNA调节网络。 结论:HOTAIR不仅可以促进肿瘤的增殖,而且可以增强肿瘤细胞对药物的耐药性。我们的实验数据不仅显示了HOTAIR在胃癌中的强表达,而且还表明HOTAIR的强表达引起胃癌细胞对曲妥珠单抗的敏感性,为术后药物治疗提供了有用的参考。

关键词: 曲妥珠单抗,HOTAIR,阿法替尼,ERBB4,HER2,miRNA330,胃癌。

图形摘要

[1]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[2]
Theuer, C.P.; Kurosaki, T.; Ziogas, A.; Butler, J.; Anton-Culver, H. Asian patients with gastric carcinoma in the United States exhibit unique clinical features and superior overall and cancer specific survival rates. Cancer, 2000, 89(9), 1883-1892.
[http://dx.doi.org/10.1002/1097-0142(20001101)89:9<1883:AID-CNCR3>3.3.CO;2-8] [PMID: 11064344]
[3]
Zhong, X. Efficacy results from the ToGA trial: A phase III study of trastuzumab added to standard chemotherapy (CT) in first-line human epidermal growth factor receptor 2 (HER2)-positive advanced gastric cancer (GC). J. Clin. Oncol., 2009, 27(S18) LBA4509
[4]
Sutcliffe, J.G.; Foye, P.E.; Erlander, M.G.; Hilbush, B.S.; Bodzin, L.J.; Durham, J.T.; Hasel, K.W. TOGA: An automated parsing technology for analyzing expression of nearly all genes. Proc. Natl. Acad. Sci. USA, 2000, 97(5), 1976-1981.
[http://dx.doi.org/10.1073/pnas.040537997] [PMID: 10681428]
[5]
Rinn, J.L.; Kertesz, M.; Wang, J.K.; Squazzo, S.L.; Xu, X.; Brugmann, S.A.; Goodnough, L.H.; Helms, J.A.; Farnham, P.J.; Segal, E.; Chang, H.Y. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 2007, 129(7), 1311-1323.
[http://dx.doi.org/10.1016/j.cell.2007.05.022] [PMID: 17604720]
[6]
Woo, C.J.; Kingston, R.E. HOTAIR lifts noncoding RNAs to new levels. Cell, 2007, 129(7), 1257-1259.
[http://dx.doi.org/10.1016/j.cell.2007.06.014] [PMID: 17604716]
[7]
Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.C.; Hung, T.; Argani, P.; Rinn, J.L.; Wang, Y.; Brzoska, P.; Kong, B.; Li, R.; West, R.B.; van de Vijver, M.J.; Sukumar, S.; Chang, H.Y. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464(7291), 1071-1076.
[http://dx.doi.org/10.1038/nature08975] [PMID: 20393566]
[8]
Endo, H.; Shiroki, T.; Nakagawa, T.; Yokoyama, M.; Tamai, K.; Yamanami, H.; Fujiya, T.; Sato, I.; Yamaguchi, K.; Tanaka, N.; Iijima, K.; Shimosegawa, T.; Sugamura, K.; Satoh, K. Enhanced expression of long non-coding RNA HOTAIR is associated with the development of gastric cancer. PLoS One, 2013, 8(10) e77070
[http://dx.doi.org/10.1371/journal.pone.0077070] [PMID: 24130837]
[9]
Chisholm, K.M.; Wan, Y.; Li, R.; Montgomery, K.D.; Chang, H.Y.; West, R.B. Detection of long non-coding RNA in archival tissue: Correlation with polycomb protein expression in primary and metastatic breast carcinoma. PLoS One, 2012, 7(10) e47998
[http://dx.doi.org/10.1371/journal.pone.0047998] [PMID: 23133536]
[10]
Milhem, M.M.; Knutson, T.; Yang, S.; Zhu, D.; Wang, X.; Leslie, K.K.; Meng, X. Correlation of MTDH/AEG-1 and HOTAIR expression with metastasis and response to treatment in sarcoma patients J. Cancer Sci. Ther., 2011, S5((4)), 004.
[PMID: 23543869]
[11]
Li, D.; Feng, J.; Wu, T.; Wang, Y.; Sun, Y.; Ren, J.; Liu, M. Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma. Am. J. Pathol., 2013, 182(1), 64-70.
[http://dx.doi.org/10.1016/j.ajpath.2012.08.042] [PMID: 23141928]
[12]
Liao, A.; Liu, Z.; Lei, Z. The relationship study between the down expression of NDRG1 and E-cadherin with lymphonode metastasis in gastric cancer. J. Mol. Diagnostics Ther., 2015, 12(2), 176-179.
[13]
Dressler, F.; Whalen, J.A.; Reinhardt, B.N.; Steere, A.C. Western blotting in the serodiagnosis of lyme disease. J. Infect. Dis., 1993, 167(2), 392-400.
[http://dx.doi.org/10.1093/infdis/167.2.392] [PMID: 8380611]
[14]
Janku, F.; Wheler, J.J.; Westin, S.N.; Moulder, S.L.; Naing, A.; Tsimberidou, A.M.; Fu, S.; Falchook, G.S.; Hong, D.S.; Garrido-Laguna, I.; Luthra, R.; Lee, J.J.; Lu, K.H.; Kurzrock, R. PI3K/AKT/mTOR inhibitors in patients with breast and gynecologic malignancies harboring PIK3CA mutations. J. Clin. Oncol., 2012, 30(8), 777-782.
[http://dx.doi.org/10.1200/JCO.2011.36.1196] [PMID: 22271473]
[15]
Endo, H.; Shiroki, T.; Nakagawa, T.; Yokoyama, M.; Tamai, K. Enhanced expression of long non-coding RNA HOTAIR is associated with the development of gastric cancer. PLoS One, , 8(10) e77070
[http://dx.doi.org/10.1371/journal.pone.0077070]
[16]
Xu, Z.Y.; Yu, Q.M.; Du, Y.A.; Yang, L.T.; Dong, R.Z.; Huang, L.; Yu, P.F.; Cheng, X.D. Knockdown of long non-coding RNA HOTAIR suppresses tumor invasion and reverses epithelial-mesenchymal transition in gastric cancer. Int. J. Biol. Sci., 2013, 9(6), 587-597.
[http://dx.doi.org/10.7150/ijbs.6339] [PMID: 23847441]
[17]
Wang, Y.; Wang, H.; Song, T.; Zou, Y.; Jiang, J.; Fang, L.; Li, P. HOTAIR is a potential target for the treatment of cisplatinresistant ovarian cancer. Mol. Med. Rep., 2015, 12(2), 2211-2216.
[http://dx.doi.org/10.3892/mmr.2015.3562] [PMID: 25824616]
[18]
Madarnas, Y.; Trudeau, M.; Franek, J.A.; McCready, D.; Pritchard, K.I.; Messersmith, H. Adjuvant/neoadjuvant trastuzumab therapy in women with HER-2/neu-overexpressing breast cancer: A systematic review. Cancer Treat. Rev., 2008, 34(6), 539-557.
[http://dx.doi.org/10.1016/j.ctrv.2008.03.013] [PMID: 18502589]
[19]
Elster, N.; Toomey, S.; Fan, Y.; Cremona, M.; Morgan, C.; Weiner Gorzel, K.; Bhreathnach, U.; Milewska, M.; Murphy, M.; Madden, S.; Naidoo, J.; Fay, J.; Kay, E.; Carr, A.; Kennedy, S.; Furney, S.; Mezynski, J.; Breathhnach, O.; Morris, P.; Grogan, L.; Hill, A.; Kennedy, S.; Crown, J.; Gallagher, W.; Hennessy, B.; Eustace, A. Frequency, impact and a preclinical study of novel ERBB gene family mutations in HER2-positive breast cancer. Ther. Adv. Med. Oncol., 2018, 101758835918778297
[http://dx.doi.org/10.1177/1758835918778297] [PMID: 30023006]
[20]
Gunzer, K.; Joly, F.; Ferrero, J.M.; Gligorov, J.; de Mont-Serrat, H.; Uttenreuther-Fischer, M.; Pelling, K.; Wind, S.; Bousquet, G.; Misset, J.L. A phase II study of afatinib, an irreversible ErbB family blocker, added to letrozole in patients with estrogen receptor-positive hormone-refractory metastatic breast cancer progressing on letrozole. Springerplus, 2016, 5(1), 45.
[http://dx.doi.org/10.1186/s40064-015-1601-7] [PMID: 26835225]
[21]
Lin, N.U.; Winer, E.P.; Wheatley, D.; Carey, L.A.; Houston, S.; Mendelson, D.; Munster, P.; Frakes, L.; Kelly, S.; Garcia, A.A.; Cleator, S.; Uttenreuther-Fischer, M.; Jones, H.; Wind, S.; Vinisko, R.; Hickish, T. A phase II study of afatinib (BIBW 2992), an irreversible ErbB family blocker, in patients with HER2-positive metastatic breast cancer progressing after trastuzumab. Breast Cancer Res. Treat., 2012, 133(3), 1057-1065.
[http://dx.doi.org/10.1007/s10549-012-2003-y] [PMID: 22418700]
[22]
Muraoka-Cook, R.S.; Feng, S.M.; Strunk, K.E.; Earp, H.S., III ErbB4/HER4: Role in mammary gland development, differentiation and growth inhibition. J. Mammary Gland Biol. Neoplasia, 2008, 13(2), 235-246.
[http://dx.doi.org/10.1007/s10911-008-9080-x] [PMID: 18437540]
[23]
Bellinger, G. Formation of Neu/ErbB2-induced mammary tumors is unaffected by loss of ErbB4. Oncogene, 2006, 25(41), 5664-5672.
[24]
Holbro, T.; Beerli, R.R.; Maurer, F.; Koziczak, M.; Barbas, C.F., III; Hynes, N.E. The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc. Natl. Acad. Sci. USA, 2003, 100(15), 8933-8938.
[http://dx.doi.org/10.1073/pnas.1537685100] [PMID: 12853564]
[25]
Liu, J.; Pan, C.; Guo, L.; Wu, M.; Guo, J.; Peng, S.; Wu, Q.; Zuo, Q. A new mechanism of trastuzumab resistance in gastric cancer: MACC1 promotes the Warburg effect via activation of the PI3K/AKT signaling pathway. J. Hematol. Oncol., 2016, 9(1), 76.
[http://dx.doi.org/10.1186/s13045-016-0302-1] [PMID: 27581375]
[26]
Tang, L.; Long, Z.; Zhao, N.; Feng, G.; Guo, X.; Yu, M. NES1/KLK10 promotes trastuzumab resistance via activation of PI3K/AKT signaling pathway in gastric cancer. J. Cell. Biochem., 2018, 119(8), 6398-6407.
[http://dx.doi.org/10.1002/jcb.26562] [PMID: 29231994]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy