Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

The Application of Tetrahedral Framework Nucleic Acids as a Drug Carrier in Biomedicine Fields

Author(s): Xiaolin Zhang, Nanxin Liu, Mi Zhou, Songhang Li and Xiaoxiao Cai*

Volume 16, Issue 1, 2021

Published on: 22 April, 2020

Page: [48 - 56] Pages: 9

DOI: 10.2174/1574888X15666200422103415

Price: $65

Abstract

In recent years, tetrahedral Framework Nucleic Acids(tFNAs) have become a hot topic in the field of DNA nanostructures because of their stable structures, nanoscale size, superior mechanical properties and convenient synthesis with high yield. tFNAs are considered promising drug delivery carriers because they can pass through the cellular membrane without any help and they have a good biocompatibility and biodegradability. Besides, they have rich modification sites, they can be modified by kinds of functional groups. The functionalization molecules can be modified on the vertexes, embedded between the double-stranded DNA of the tetrahedron edges, hanged on the edges, or encapsulated in the cage-like structure of the tetrahedron. The structure of tetrahedron can also be intelligently controlled through smart design, such as integrating DNA hairpin loop structure onto the edges. Nowadays, DNA tetrahedron will have a broader development prospect in the application of drug transport carriers and intelligent drug carriers. Therefore, DNA material is a new carrier material with great advantages and has a very broad application prospect in the construction of an intelligent drug transport system.

Keywords: Tetrahedral, framework nucleic acids, drug-delivery, nanomaterials, nanoscale size, tetrahedron.

[1]
Seeman NC. Nucleic acid junctions and lattices. J Theor Biol 1982; 99(2): 237-47.
[http://dx.doi.org/10.1016/0022-5193(82)90002-9 ] [PMID: 6188926]
[2]
Seeman NC, Lukeman PS. Nucleic acid nanostructures: Bottom-up control of geometry on the nanoscale. Rep Prog Phys 2005; 68(1): 237-70.
[http://dx.doi.org/10.1088/0034-4885/68/1/R05 ] [PMID: 25152542]
[3]
Zhao H, Wang M, Xiong X, Liu Y, Chen X. Simultaneous fluorescent detection of multiplexed miRNA of liver cancer based on DNA tetrahedron nanotags. Talanta 2020; 210120677
[http://dx.doi.org/10.1016/j.talanta.2019.120677 ] [PMID: 31987188]
[4]
Li S, Tian T, Zhang T, et al. Advances in biological applications of self-assembled DNA tetrahedral nanostructures. Mater Today 2018; 8(11): S1369-7021.
[5]
Zhao D, Liu M, Li Q, et al. Tetrahedral DNA nanostructure promote endothelia cells proliferation, migration and angiogenesis via Notch signaling pathway. ACS Appl Mater Interfaces 2018; 10(44): 37911-8.
[http://dx.doi.org/10.1021/acsami.8b16518 ] [PMID: 30335942]
[6]
Lin S, Zhang Q, Zhang T, et al. Tetrahedral DNA nanomaterial regulates the biological behaviors of adipose-derived stem cells via DNA methylation on Dlg3. ACS Appl Mater Interfaces 2018; 10(38): 32017-25.
[http://dx.doi.org/10.1021/acsami.8b12408 ] [PMID: 30168311]
[7]
Zhang Y, Ma W, Zhan Y, et al. Nucleic acids and analogs for bone regeneration. Bone Res 2018; 6: 37.
[http://dx.doi.org/10.1038/s41413-018-0042-7 ] [PMID: 30603226]
[8]
Mao C, Pan W, Shao X, et al. The Clearance effect of tetrahedral dna nanostructures on senescent human dermal fibroblasts. ACS Appl Mater Interfaces 2019; 11(2): 1942-50.
[http://dx.doi.org/10.1021/acsami.8b20530 ] [PMID: 30562007]
[9]
Shao X, Ma W, Xie X, et al. Neuroprotective effect of tetrahedral dna nanostructures in a cell model of Alzheimer’s Disease. ACS Appl Mater Interfaces 2018; 10(28): 23682-92.
[http://dx.doi.org/10.1021/acsami.8b07827 ] [PMID: 29927573]
[10]
Ma W, Xie X, Shao X, et al. Tetrahedral DNA nanostructures facilitate neural stem cell migration via activating RHOA/ROCK2 signalling pathway. Cell Prolif 2018; 51(6)e12503
[http://dx.doi.org/10.1111/cpr.12503 ] [PMID: 30091500]
[11]
Ma W, Shao X, Zhao D, et al. Self-Assembled Tetrahedral DNA nanostructures promote neural stem cell proliferation and neuronal differentiation. ACS Appl Mater Interfaces 2018; 10(9): 7892-900.
[http://dx.doi.org/10.1021/acsami.8b00833 ] [PMID: 29424522]
[12]
Zhang Q, Lin S, Shi S, et al. Anti-inflammatory and antioxidative effects of tetrahedral DNA nanostructures via the modulation of macrophage responses. ACS Appl Mater Interfaces 2018; 10(4): 3421-30.
[http://dx.doi.org/10.1021/acsami.7b17928 ] [PMID: 29300456]
[13]
Shi S, Lin S, Li Y, et al. Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes. Chem Commun (Camb) 2018; 54(11): 1327-30.
[http://dx.doi.org/10.1039/C7CC09397G ] [PMID: 29349457]
[14]
Zhou M, Liu NX, Shi SR, et al. Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway. Nanomedicine (Lond) 2018; 14(4): 1227-36.
[http://dx.doi.org/10.1016/j.nano.2018.02.004 ] [PMID: 29458214]
[15]
Shao X, Lin S, Peng Q, et al. Tetrahedral DNA nanostructure: A potential promoter for cartilage tissue regeneration via regulating chondrocyte phenotype and proliferation. Small 2017; 13(12)1602770
[http://dx.doi.org/10.1002/smll.201602770 ] [PMID: 28112870]
[16]
Tian T, Zhang T, Zhou T, Lin S, Shi S, Lin Y. Synthesis of an ethyleneimine/tetrahedral DNA nanostructure complex and its potential application as a multi-functional delivery vehicle. Nanoscale 2017; 9(46): 18402-12.
[http://dx.doi.org/10.1039/C7NR07130B ] [PMID: 29147695]
[17]
Shi S, Lin S, Shao X, Li Q, Tao Z, Lin Y. Modulation of chondrocyte motility by tetrahedral DNA nanostructures. Cell Prolif 2017; 50(5)e12368
[http://dx.doi.org/10.1111/cpr.12368 ] [PMID: 28792637]
[18]
Shi S, Peng Q, Shao X, et al. Self-assembled tetrahedral DNA nanostructures promote adipose-derived stem cell migration via lncRNA XLOC 010623 and RHOA/ROCK2 signal pathway. ACS Appl Mater Interfaces 2016; 8(30): 19353-63.
[http://dx.doi.org/10.1021/acsami.6b06528 ] [PMID: 27403707]
[19]
Thubagere AJ, Li W, Johnson RF, et al. A cargo-sorting DNA robot. Science 2017; 357(6356): 1095-6.
[http://dx.doi.org/10.1126/science.aan6558 ] [PMID: 28912216]
[20]
Shang J, Wei J, Wang Q, et al. Adaption of an autonomously cascade DNA circuit for amplified detection and intracellular imaging of polynucleotide kinase with ultralow background. Biosens Bioelectron 2020.152111994
[http://dx.doi.org/10.1016/j.bios.2019.111994 ] [PMID: 31941614]
[21]
Ke Y, Ong LL, Shih WM, Yin P. Three-dimensional structures self-assembled from DNA bricks. Science 2012; 338(6111): 1177-83.
[http://dx.doi.org/10.1126/science.1227268 ] [PMID: 23197527]
[22]
Wei B, Dai M, Yin P. Complex shapes self-assembled from single-stranded DNA tiles. Nature 2012; 485(7400): 623-6.
[http://dx.doi.org/10.1038/nature11075 ] [PMID: 22660323]
[23]
Li BL, Setyawati MI, Chen L, et al. Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for drug delivery. ACS Appl Mater Interfaces 2017; 9(18): 15286-96.
[http://dx.doi.org/10.1021/acsami.7b02529 ] [PMID: 28452468]
[24]
Chen G, Liu D, He C, Gannett TR, Lin W, Weizmann Y. Enzymatic synthesis of periodic DNA nanoribbons for intracellular pH sensing and gene silencing. J Am Chem Soc 2015; 137(11): 3844-51.
[http://dx.doi.org/10.1021/ja512665z ] [PMID: 25622178]
[25]
Ouyang X, Li J, Liu H, et al. Rolling circle amplification-based DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs. Small 2013; 9(18): 3082-7.
[http://dx.doi.org/10.1002/smll.201300458 ] [PMID: 23613456]
[26]
Sun W, Jiang T, Lu Y, Reiff M, Mo R, Gu Z. Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery. J Am Chem Soc 2014; 136(42): 14722-5.
[http://dx.doi.org/10.1021/ja5088024 ] [PMID: 25336272 ]
[27]
Zhu G, Zheng J, Song E, et al. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc Natl Acad Sci USA 2013; 110(20): 7998-8003.
[http://dx.doi.org/10.1073/pnas.1220817110 ] [PMID: 23630258]
[28]
Jiang Q, Song C, Nangreave J, et al. DNA origami as a carrier for circumvention of drug resistance. J Am Chem Soc 2012; 134(32): 13396-403.
[http://dx.doi.org/10.1021/ja304263n ] [PMID: 22803823]
[29]
Goodman RP, Schaap IA, Tardin CF, et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 2005; 310(5754): 1661-5.
[http://dx.doi.org/10.1126/science.1120367 ] [PMID: 16339440]
[30]
Bergamini C, Angelini P, Rhoden KJ, Porcelli AM, Fato R, Zuccheri G. A practical approach for the detection of DNA nanostructures in single live human cells by fluorescence microscopy. Methods 2014; 67(2): 185-92.
[http://dx.doi.org/10.1016/j.ymeth.2014.01.009 ] [PMID: 24440746]
[31]
Samanta A, Banerjee S, Liu Y. DNA nanotechnology for nanophotonic applications. Nanoscale 2015; 7(6): 2210-20.
[http://dx.doi.org/10.1039/C4NR06283C ] [PMID: 25592639]
[32]
Cluzel P, Lebrun A, Heller C, et al. DNA: An extensible molecule. Science 1996; 271(5250): 792-4.
[http://dx.doi.org/10.1126/science.271.5250.792 ] [PMID: 8628993]
[33]
Xiong Q, Xie C, Zhang Z, et al. DNA Origami Post-Processing by CRISPR-Cas12a. Ed.in English. Angew Chem Int Ed Engl 2020; 59(10): 3956-60.
[http://dx.doi.org/10.1002/anie.201915555]
[34]
Park SY, Lytton-Jean AK, Lee B, Weigand S, Schatz GC, Mirkin CA. DNA-programmable nanoparticle crystallization. Nature 2008; 451(7178): 553-6.
[http://dx.doi.org/10.1038/nature06508 ] [PMID: 18235497]
[35]
Berea AW, Kyle L, Yan L, et al. Self-Assembled Peptide Nanoarrays: An Approach to Studying Protein Protein Interactions. Angew Chem Int Ed 2007; 119(17): 3111-4.
[http://dx.doi.org/10.1002/ange.200603919]
[36]
Rinker S, Ke Y, Liu Y, Chhabra R, Yan H. Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. Nat Nanotechnol 2008; 3(7): 418-22.
[http://dx.doi.org/10.1038/nnano.2008.164 ] [PMID: 18654566]
[37]
Ma W, Zhan Y, Zhang Y, et al. An Intelligent DNA Nanorobot with in vitro enhanced protein lysosomal degradation of HER2. Nano Lett 2019; 19(7): 4505-17.
[http://dx.doi.org/10.1021/acs.nanolett.9b01320 ] [PMID: 31185573]
[38]
Hu J, Liu MH, Zhang CY. Construction of Tetrahedral DNA-quantum dot nanostructure with the integration of multistep förster resonance energy transfer for multiplex enzymes assay. ACS Nano 2019; 13(6): 7191-201.
[http://dx.doi.org/10.1021/acsnano.9b02679 ] [PMID: 31180625]
[39]
Ding H, Li J, Chen N, et al. DNA Nanostructure-programmed like-charge attraction at the cell-membrane interface. ACS Cent Sci 2018; 4(10): 1344-51.
[http://dx.doi.org/10.1021/acscentsci.8b00383 ] [PMID: 30410972]
[40]
Liang L, Li J, Li Q, et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew Chem Int Ed Engl 2014; 53(30): 7745-50.
[http://dx.doi.org/10.1002/anie.201403236 ] [PMID: 24827912]
[41]
Lin M, Wang J, Zhou G, et al. Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. Angew Chem Int Ed Engl 2015; 54(7): 2151-5.
[http://dx.doi.org/10.1002/anie.201410720 ] [PMID: 25556850]
[42]
Wiraja C, Zhu Y, Lio DCS, et al. Framework nucleic acids as programmable carrier for transdermal drug delivery. Nat Commun 2019; 10(1): 1147.
[http://dx.doi.org/10.1038/s41467-019-09029-9 ] [PMID: 30850596]
[43]
Han X, Jiang Y, Li S, et al. Multivalent aptamer-modified tetrahedral DNA nanocage demonstrates high selectivity and safety for anti-tumor therapy. Nanoscale 2018; 11(1): 339-47.
[http://dx.doi.org/10.1039/C8NR05546G ] [PMID: 30534748]
[44]
Tacar O, Sriamornsak P, Dass CR. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 2013; 65(2): 157-70.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01567.x ] [PMID: 23278683]
[45]
Li Y, Yan T, Chang W, Cao C, Deng D. Fabricating an intelligent cell-like nano-prodrug via hierarchical self-assembly based on the DNA skeleton for suppressing lung metastasis of breast cancer. Biomater Sci 2019; 7(9): 3652-61.
[http://dx.doi.org/10.1039/C9BM00630C ] [PMID: 31169833]
[46]
Zhang L, Abdullah R, Hu X, et al. Engineering of bioinspired, size-controllable, self-degradable cancer-targeting dna nanoflowers via the incorporation of an artificial sandwich base. J Am Chem Soc 2019; 141(10): 4282-90.
[http://dx.doi.org/10.1021/jacs.8b10795 ] [PMID: 30730715]
[47]
Au KM, Balhorn R, Balhorn MC, Park SI, Wang AZ. High-performance concurrent chemo-immuno-radiotherapy for the treatment of hematologic cancer through selective high-affinity ligand antibody mimic-functionalized doxorubicin-encapsulated nanoparticles. ACS Cent Sci 2019; 5(1): 122-44.
[http://dx.doi.org/10.1021/acscentsci.8b00746 ] [PMID: 30693332]
[48]
Liu M, Ma W, Li Q, et al. Aptamer-targeted DNA nanostructures with doxorubicin to treat protein tyrosine kinase 7-positive tumours. Cell Prolif 2019; 52(1)e12511
[http://dx.doi.org/10.1111/cpr.12511 ] [PMID: 30311693]
[49]
Xie X, Shao X, Ma W, et al. Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures. Nanoscale 2018; 10(12): 5457-65.
[http://dx.doi.org/10.1039/C7NR09692E ] [PMID: 29484330]
[50]
Liu J, Song L, Liu S, et al. A DNA-Based Nanocarrier for efficient gene delivery and combined cancer therapy. Nano Lett 2018; 18(6): 3328-34.
[http://dx.doi.org/10.1021/acs.nanolett.7b04812 ] [PMID: 29708760]
[51]
Keum JW, Ahn JH, Bermudez H. Design, assembly, and activity of antisense DNA nanostructures. Small 2011; 7(24): 3529-35.
[http://dx.doi.org/10.1002/smll.201101804 ] [PMID: 22025353]
[52]
Lee HT, Kim SK, Yoon JW. Antisense peptide nucleic acids as a potential anti-infective agent. J Microbiol 2019; 57(6): 423-30.
[http://dx.doi.org/10.1007/s12275-019-8635-4 ] [PMID: 31054136]
[53]
Lin S, Zhang Q, et al. Antioxidative and angiogenesis-promoting effects of tetrahedral framework nucleic acids in diabetic wound healing with activation of the Akt/Nrf2/HO-1 Pathway. ACS Appl Mater Interfaces 2020; 12(10): 11397-408.
[http://dx.doi.org/10.1021/acsami.0c00874]
[54]
Readman JB, Dickson G, Coldham NG. Tetrahedral DNA nanoparticle vector for intracellular delivery of targeted peptide nucleic acid antisense agents to restore antibiotic sensitivity in cefotaxime-resistant Escherichia coli. Nucleic Acid Ther 2017; 27(3): 176-81.
[http://dx.doi.org/10.1089/nat.2016.0644 ] [PMID: 28080251]
[55]
Thomsen RP, Malle MG, Okholm AH, et al. A large size-selective DNA nanopore with sensing applications. Nat Commun 2019; 10(1): 5655.
[http://dx.doi.org/10.1038/s41467-019-13284-1 ] [PMID: 31827087]
[56]
Tian T, Li J, Xie C, et al. Targeted imaging of brain tumors with a framework nucleic acid Probe. ACS Appl Mater Interfaces 2018; 10(4): 3414-20.
[http://dx.doi.org/10.1021/acsami.7b17927 ] [PMID: 29299920]
[57]
Zhang Y, Ma W, Zhu Y, et al. Inhibiting methicillin-resistant staphylococcus aureus by tetrahedral DNA nanostructure-enabled antisense peptide nucleic acid delivery. Nano Lett 2018; 18(9): 5652-9.
[http://dx.doi.org/10.1021/acs.nanolett.8b02166 ] [PMID: 30088771]
[58]
Chai H, Cheng W, Xu L, Gui H, He J, Miao P. Fabrication of Polymeric Ferrocene nanoparticles for electrochemical aptasensing of protein with target-catalyzed hairpin assembly. Anal Chem 2019; 91(15): 9940-5.
[http://dx.doi.org/10.1021/acs.analchem.9b01673 ] [PMID: 31246440]
[59]
Zheng H, Lang Y, Yu J, Han Z, Chen B, Wang Y. Affinity binding of aptamers to agarose with DNA tetrahedron for removal of hepatitis B virus surface antigen. Colloids Surf B Biointerfaces 2019; 178: 80-6.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.040 ] [PMID: 30844563]
[60]
Wang J, Wang DX, Ma JY, Wang YX, Kong DM. Three-dimensional DNA nanostructures to improve the hyperbranched hybridization chain reaction. Chem Sci (Camb) 2019; 10(42): 9758-67.
[http://dx.doi.org/10.1039/C9SC02281C ] [PMID: 32055345]
[61]
Charoenphol P, Bermudez H. Aptamer-targeted DNA nanostructures for therapeutic delivery. Mol Pharm 2014; 11(5): 1721-5.
[http://dx.doi.org/10.1021/mp500047b ] [PMID: 24739136]
[62]
Kim KR, Jegal H, Kim J, Ahn DR. A self-assembled DNA tetrahedron as a carrier for in vivo liver-specific delivery of siRNA. Biomater Sci 2020; 8(2): 586-90.
[http://dx.doi.org/10.1039/C9BM01769K ] [PMID: 31913375]
[63]
Li Q, Zhao D, Shao X, et al. Aptamer-Modified Tetrahedral DNA nanostructure for tumor-targeted drug delivery. ACS Appl Mater Interfaces 2017; 9(42): 36695-701.
[http://dx.doi.org/10.1021/acsami.7b13328 ] [PMID: 28991436]
[64]
Liang Z, Ou D, Sun D, Tong Y, Luo H, Chen Z. Ultrasensitive biosensor for microRNA-155 using synergistically catalytic nanoprobe coupled with improved cascade strand displacement reaction. Biosens Bioelectron 2019; 146111744
[http://dx.doi.org/10.1016/j.bios.2019.111744 ] [PMID: 31605986]
[65]
Cheng Y, Sun C, Liu R, et al. A multifunctional peptide-conjugated aiegen for efficient and sequential targeted gene delivery into the nucleus. Angew Chem Int Ed Engl 2019; 58(15): 5049-53.
[http://dx.doi.org/10.1002/anie.201901527 ] [PMID: 30767348]
[66]
Hoffmann M, Hersch N, Merkel R, Csiszar A, Hoffmann B. Changing the way of entrance: Highly efficient transfer of mrna and sirna via fusogenic nano-carriers. J Biomed Nanotechnol 2019; 15(1): 170-83.
[http://dx.doi.org/10.1166/jbn.2019.2663 ] [PMID: 30480524]
[67]
Ren K, Zhang Y, Zhang X, Liu Y, Yang M, Ju H. In Situ SiRNA assembly in living cells for gene therapy with microRNA triggered cascade reactions templated by nucleic acids. ACS Nano 2018; 12(11): 10797-806.
[http://dx.doi.org/10.1021/acsnano.8b02403 ] [PMID: 30354052]
[68]
Paunovska K, Sago CD, Monaco CM, et al. A direct comparison of in vitro and in vivo nucleic acid delivery mediated by hundreds of nanoparticles reveals a weak correlation. Nano Lett 2018; 18(3): 2148-57.
[http://dx.doi.org/10.1021/acs.nanolett.8b00432 ] [PMID: 29489381]
[69]
Li F, Li Y, Zhou Z, et al. Engineering the aromaticity of cationic helical polypeptides toward “self-activated” DNA/siRNA delivery. ACS Appl Mater Interfaces 2017; 9(28): 23586-601.
[http://dx.doi.org/10.1021/acsami.7b08534 ] [PMID: 28657294]
[70]
Li N, Yang H, Yu Z, et al. Nuclear-targeted siRNA delivery for long-term gene silencing. Chem Sci (Camb) 2017; 8(4): 2816-22.
[http://dx.doi.org/10.1039/C6SC04293G ] [PMID: 28553519]
[71]
Lee H, Lytton-Jean AKR, Chen Y, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol 2012; 7(6): 389-93.
[http://dx.doi.org/10.1038/nnano.2012.73 ] [PMID: 22659608]
[72]
Kim TH, Park J, Kim D, et al. Anti-bacterial effect of CpG-DNA involves enhancement of the complement systems. Int J Moliecular Sciences 2019; 20(14): 3397.
[http://dx.doi.org/10.3390/ijms20143397]
[73]
Casey LM, Kakade S, Decker JT, et al. Cargo-less nanoparticles program innate immune cell responses to toll-like receptor activation. Biomaterials 2019; 218119333
[http://dx.doi.org/10.1016/j.biomaterials.2019.119333 ] [PMID: 31301576]
[74]
de Mendoza A, Pflueger J, Lister R. Capture of a functionally active methyl-CpG binding domain by an arthropod retrotransposon family. Genome Res 2019; 29(8): 1277-86.
[http://dx.doi.org/10.1101/gr.243774.118 ] [PMID: 31239280]
[75]
Ficarelli M, Wilson H, Pedro GR, et al. KHNYN is essential for the zinc finger antiviral protein (ZAP) to restrict HIV-1 containing clustered CpG dinucleotides. Elife 2019; 8. undefined
[http://dx.doi.org/10.7554/eLife.46767]
[76]
Zhao Z, Fu J, Dhakal S, et al. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion. Nat Commun 2016; 7: 10619.
[http://dx.doi.org/10.1038/ncomms10619 ] [PMID: 26861509]
[77]
Xu Y, Jiang S, Simmons CR, et al. Tunable nanoscale cages from self-assembling DNA and protein building blocks. ACS Nano 2019; 13(3): 3545-54.
[http://dx.doi.org/10.1021/acsnano.8b09798 ] [PMID: 30835439]
[78]
Lei J, Sheng G, Cheung P, et al. Two symmetric arginine residues play distinct roles in Argonaute DNA guide strand-mediated DNA target cleavage. Proc Natl Acad Sci USA 2019; 116(3): 845-53.
[http://dx.doi.org/10.1073/pnas.1817041116 ] [PMID: 30591565]
[79]
Wenz NL, Piasecka S, Kalinowski M, Schneider A, Richert C, Wege C. Building expanded structures from tetrahedral DNA branching elements, RNA and TMV protein. Nanoscale 2018; 10(14): 6496-510.
[http://dx.doi.org/10.1039/C7NR07743B ] [PMID: 29569670]
[80]
Wang D, Chai Y, Yuan Y, Yuan R. Lattice-Like DNA tetrahedron nanostructure as scaffold to locate GOx and HRP enzymes for highly efficient enzyme cascade reaction. ACS Appl Mater Interfaces 2020; 12(2): 2871-7.
[http://dx.doi.org/10.1021/acsami.9b18702 ] [PMID: 31849211]
[81]
Raniolo S, Iacovelli F, et al. In silico and in cell analysis of openable DNA nanocages for miRNA silencing. Int J Mol Sci 2019; 21(1): 61.
[http://dx.doi.org/10.3390/ijms21010061]
[82]
Sundah NR, Ho NRY, Lim GS, et al. Barcoded DNA nanostructures for the multiplexed profiling of subcellular protein distribution. Nat Biomed Eng 2019; 3(9): 684-94.
[http://dx.doi.org/10.1038/s41551-019-0417-0 ] [PMID: 31285580]
[83]
Bui H, Brown CW III, Buckhout-White S, et al. Transducing protease activity into DNA output for developing smart bionanosensors. Small 2019; 15(14)e1805384
[http://dx.doi.org/10.1002/smll.201805384 ] [PMID: 30803148]
[84]
Zhu G, Xu Z, Yang Y, Dai X, Yan LT. Hierarchical crystals formed from DNA-functionalized janus nanoparticles. ACS Nano 2018; 12(9): 9467-75.
[http://dx.doi.org/10.1021/acsnano.8b04753 ] [PMID: 30189141]
[85]
He L, Lu D, Liang H, et al. mRNA-initiated, three-dimensional DNA amplifier able to function inside living cells. J Am Chem Soc 2018; 140(1): 258-63.
[http://dx.doi.org/10.1021/jacs.7b09789 ] [PMID: 29211455]
[86]
Schiffels D, Szalai VA, Liddle JA. Molecular precision at micrometer length scales: Hierarchical assembly of DNA-protein nanostructures. ACS Nano 2017; 11(7): 6623-9.
[http://dx.doi.org/10.1021/acsnano.7b00320 ] [PMID: 28651051]
[87]
Setyawati MI, Kutty RV, Leong DT. DNA Nanostructures carrying stoichiometrically definable antibodies. Small 2016; 12(40): 5601-11.
[http://dx.doi.org/10.1002/smll.201601669 ] [PMID: 27571230]
[88]
Huang Y, Huang W, Chan L, Zhou B, Chen T. A multifunctional DNA origami as carrier of metal complexes to achieve enhanced tumoral delivery and nullified systemic toxicity. Biomaterials 2016; 103: 183-96.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.053 ] [PMID: 27388944]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy