Abstract
Background: Astroglioma, one major form of brain tumors, has remained principally tough to handle for decades, due to the complexity of tumor pathology and the poor response to chemo- and radio-therapies.
Methods: Our previous study demonstrated that nifurtimox could regulate the signaling axis of AKT-GSK3β in various tumor types including the astroglioma U251 cells. Intriguingly, earlier case studies suggested that nifurtimox could possibly permeate the blood brain barrier and arrest neuroblastoma in the brain. These observations jointly encouraged us to explore whether nifurtimox would hinder the growth of astroglioma in vivo.
Results: Our results exhibited that nifurtimox could competently hinder the development of astroglioma in the mouse brain as compared to temozolomide, the first line of drug for brain tumors. Meanwhile the surviving rate, as well as the body-weight was dramatically upregulated upon nifurtimox treatment, as compared to that of temozolomide. These findings offered nifurtimox as a better alternative drug in treating astroglioma in vivo.
Conclusion: Persistently, the manipulation of the signaling axis of AKT-GSK3β in astroglioma was found in line with earlier findings in neuroblastoma when treated with nifurtimox.
Keywords: Astroglioma, Nifurtimox treatment, Temozolomide, in vivo, AKT-GSK3β, blood brain barrier.
Current Molecular Medicine
Title:Nifurtimox Hampered the Progression of Astroglioma In vivo Via Manipulating the AKT-GSK3β axis
Volume: 20 Issue: 9
Author(s): Qiuxia Zhang, Zhenshuai Chen, Wei Yuan, Yu-Qing Tang, Jiangli Zhu, Wentao Wu, Hongguang Ren, Hui Wang, Weiyi Zheng, Zhongjian Zhang*Eryan Kong*
Affiliation:
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang,China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang,China
Keywords: Astroglioma, Nifurtimox treatment, Temozolomide, in vivo, AKT-GSK3β, blood brain barrier.
Abstract:
Background: Astroglioma, one major form of brain tumors, has remained principally tough to handle for decades, due to the complexity of tumor pathology and the poor response to chemo- and radio-therapies.
Methods: Our previous study demonstrated that nifurtimox could regulate the signaling axis of AKT-GSK3β in various tumor types including the astroglioma U251 cells. Intriguingly, earlier case studies suggested that nifurtimox could possibly permeate the blood brain barrier and arrest neuroblastoma in the brain. These observations jointly encouraged us to explore whether nifurtimox would hinder the growth of astroglioma in vivo.
Results: Our results exhibited that nifurtimox could competently hinder the development of astroglioma in the mouse brain as compared to temozolomide, the first line of drug for brain tumors. Meanwhile the surviving rate, as well as the body-weight was dramatically upregulated upon nifurtimox treatment, as compared to that of temozolomide. These findings offered nifurtimox as a better alternative drug in treating astroglioma in vivo.
Conclusion: Persistently, the manipulation of the signaling axis of AKT-GSK3β in astroglioma was found in line with earlier findings in neuroblastoma when treated with nifurtimox.
Export Options
About this article
Cite this article as:
Zhang Qiuxia , Chen Zhenshuai , Yuan Wei , Tang Yu-Qing, Zhu Jiangli , Wu Wentao , Ren Hongguang , Wang Hui , Zheng Weiyi , Zhang Zhongjian *, Kong Eryan *, Nifurtimox Hampered the Progression of Astroglioma In vivo Via Manipulating the AKT-GSK3β axis, Current Molecular Medicine 2020; 20 (9) . https://dx.doi.org/10.2174/1566524020666200409124258
DOI https://dx.doi.org/10.2174/1566524020666200409124258 |
Print ISSN 1566-5240 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5666 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Endocannabinoid Signaling in Midbrain Dopamine Neurons: More than Physiology?
Current Neuropharmacology Lentiviral Vectors: A Versatile Tool to Fight Cancer
Current Molecular Medicine Emerging Proof of Protein Misfolding and Interactions in Multifactorial Alzheimer's Disease
Current Topics in Medicinal Chemistry <i>Lepidium meyenii</i> Supplemented Diet Modulates Neurobehavioral and Biochemical Parameters in Mice Fed High-Fat High-Sugar Diet
Endocrine, Metabolic & Immune Disorders - Drug Targets Epigenetics in Medullary Thyroid Cancer: From Pathogenesis to Targeted Therapy
Recent Patents on Anti-Cancer Drug Discovery The Role of RNA Modifications and RNA-modifying Proteins in Cancer Therapy and Drug Resistance
Current Cancer Drug Targets Peptide Nucleic Acids with a Structurally Biased Backbone: Effects of Conformational Constraints and Stereochemistry
Current Topics in Medicinal Chemistry A Prooxidant Mechanism for the Anticancer and Chemopreventive Properties of Plant Polyphenols
Current Drug Targets ABC Transporters: Regulation and Association with Multidrug Resistance in Hepatocellular Carcinoma and Colorectal Carcinoma
Current Medicinal Chemistry Docosahexaenoic Acid-Phosphatidylcholine Improves Cognitive Deficits in an Aβ<sub>23-35</sub>-Induced Alzheimer’s Disease Rat Model
Current Topics in Medicinal Chemistry Natural Coumarins as a Novel Class of Neuroprotective Agents
Mini-Reviews in Medicinal Chemistry ABC Transporters in Neurological Disorders: An Important Gateway for Botanical Compounds Mediated Neuro-Therapeutics
Current Topics in Medicinal Chemistry Molecular Foundations for Personalized Therapy in Prostate Cancer
Current Drug Targets Bioactive Polyphenols from Healthy Diets and Forest Biomass
Current Nutrition & Food Science Dendrimers As Vectors for Genetic Material Delivery to the Nervous System
Current Medicinal Chemistry Breaking the Barrier of Cancer Through Liposome Loaded with Phytochemicals
Current Drug Delivery Tankyrase as a Novel Molecular Target in Cancer and Fibrotic Diseases
Current Drug Targets A Survey and a Molecular Dynamics Study on the (Central) Hydrophobic Region of Prion Proteins
Current Pharmaceutical Biotechnology Anti-Aggregating Antibodies, a New Approach Towards Treatment of Conformational Diseases
Current Medicinal Chemistry The Role of Survivin for Radiation Oncology: Moving Beyond Apoptosis Inhibition
Current Medicinal Chemistry