Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Biomedical Applications of Hemicellulose-Based Hydrogels

Author(s): Haitang Liu*, Ting Chen, Cuihua Dong and Xuejun Pan*

Volume 27, Issue 28, 2020

Page: [4647 - 4659] Pages: 13

DOI: 10.2174/0929867327666200408115817

Price: $65

Abstract

Background: Hydrogel has a three-dimensional network structure that is able to absorb a large amount of water/liquid and maintain its original structure. Hemicellulose (HC) is the second most abundant polysaccharide after cellulose in plants and a heterogeneous polysaccharide consisting of various saccharide units. The unique physical and chemical properties of hemicellulose make it a promising material for hydrogels.

Methods: This review first summarizes the three research hotspots on the hemicellulose-based hydrogels: intelligence, biodegradability and biocompatibility. It also overviews the progress in the fabrication and applications of hemicellulose hydrogels in the drug delivery system and tissue engineering (articular cartilage, cell immobilization, and wound dressing).

Results: Hemicellulose-based hydrogels have many unique properties, such as stimuliresponsibility, biodegradability and biocompatibility. Interpenetrating networking can endow appropriate mechanical properties to hydrogels. These properties make the hemicellulose-based hydrogels promising materials in biomedical applications such as drug delivery systems and tissue engineering (articular cartilage, cell immobilization, and wound dressing).

Conclusion: Hydrogels have been widely used in biomedicine and tissue engineering areas, such as tissue fillers, drug release agents, enzyme encapsulation, protein electrophoresis, contact lenses, artificial plasma, artificial skin, and tissue engineering scaffold materials. This article reviews the recent progress in the fabrication and applications of hemicellulose-based hydrogels in the biomedical field.

Keywords: Intelligent hydrogel, biocompatibility, biodegradability, drug delivery system, tissue engineering, Hemicellulose-based hydrogels.

[1]
Kim, S.H.; Won, C.Y.; Chu, C.C. Synthesis and characterization of dextran-maleic acid based hydrogel. J. Biomed. Mater. Res., 1999, 46(2), 160-170.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199908)46:2<160::AID-JBM4>3.0.CO;2-P] [PMID: 10379993]
[2]
Song, X.Y. Progress in preparation of interpenetrating polymer network hydrogels and their application in adsorption; Dissertation, South China University of Technology, 2015.
[3]
Wichterle, O.; Lím, D. Hydrophilic gels for biological use. Nature, 1960, 185(4706), 117-118.
[http://dx.doi.org/10.1038/185117a0]
[4]
Kouser, R.; Vashist, A.; Zafaryab, M.; Rizvi, M.A.; Ahmad, S. Biocompatible and mechanically robust nanocomposite hydrogels for potential applications in tissue engineering. Mater. Sci. Eng. C, 2018, 84(1), 168-179.
[http://dx.doi.org/10.1016/j.msec.2017.11.018] [PMID: 29519426]
[5]
Edlund, U.; Albertsson, A.C. A microspheric system: hemicellulose-based hydrogels. J. Bioact. Compat. Polym., 2008, 23(2), 171-186.
[http://dx.doi.org/10.1177/0883911507088400]
[6]
Stamatialis, D.F.; Papenburg, B.J.; Gironés, M.; Saiful, S.; Bettahalli, S.N.M.; Schmitmeier, S.; Wessling, M. Medical applications of membranes: Drug delivery, artificial organs and tissue engineering. J. Membr. Sci., 2008, 308(1), 1-34.
[http://dx.doi.org/10.1016/j.memsci.2007.09.059]
[7]
Paulino, A.T.; Pereira, A.G.B.; Fajardo, A.R.; Erickson, K.; Kipper, M.J.; Muniz, E.C.; Belfiore, L.A.; Tambourgi, E.B. Natural polymer-based magnetic hydrogels: Potential vectors for remote-controlled drug release. Carbohydr. Polym., 2012, 90(3), 1216-1225.
[http://dx.doi.org/10.1016/j.carbpol.2012.06.051] [PMID: 22939334]
[8]
Barouti, G.; Liow, S.S.; Dou, Q.; Ye, H.; Orione, C.; Guillaume, S.M.; Loh, X.J. New linear and star-shaped thermogelling poly([R]-3-hydroxybutyrate) copolymers. Chemistry, 2016, 22(30), 10501-10512.
[http://dx.doi.org/10.1002/chem.201601404] [PMID: 27345491]
[9]
Dou, Q.Q.; Liow, S.S.; Ye, E.; Lakshminarayanan, R.; Loh, X.J. Biodegradable thermogelling polymers: working towards clinical applications. Adv. Healthc. Mater., 2014, 3(7), 977-988.
[http://dx.doi.org/10.1002/adhm.201300627] [PMID: 24488805]
[10]
Wang, J.; Sun, H.; Li, J.; Dong, D.; Zhang, Y.; Yao, F. Ionic starch-based hydrogels for the prevention of nonspecific protein adsorption. Carbohydr. Polym., 2015, 117, 384-391.
[http://dx.doi.org/10.1016/j.carbpol.2014.09.077] [PMID: 25498650]
[11]
Söderqvist Lindblad, M.; Albertsson, A.C.; Ranucci, E.; Laus, M.; Giani, E. Biodegradable polymers from renewable sources: rheological characterization of hemicellulose-based hydrogels. Biomacromolecules, 2005, 6(2), 684-690.
[http://dx.doi.org/10.1021/bm049515z] [PMID: 15762630]
[12]
Dax, D.; Chávez, M.S.; Xu, C.; Willför, S.; Mendonça, R.T.; Sánchez, J. Cationic hemicellulose-based hydrogels for arsenic and chromium removal from aqueous solutions. Carbohydr. Polym., 2014, 111(20), 797-805.
[http://dx.doi.org/10.1016/j.carbpol.2014.05.045] [PMID: 25037418]
[13]
Dubrovskii, S.A. Polyelectrolytes hydrogels chromatographic materials. Adv. Polym. Sci., 1992, 104, 1-175.
[14]
Chaiyasat, A.; Jearanai, S.; Christopher, L.P.; Alam, M.N. Novel superabsorbent materials from bacterial cellulose. Polym. Int., 2018, 68(1), 102-109.
[http://dx.doi.org/10.1002/pi.5701]
[15]
Ossipov, D.A.; Piskounova, S.; Varghese, O.P.; Hilborn, J. Functionalization of hyaluronic acid with chemoselective groups via a disulfide-based protection strategy for in situ formation of mechanically stable hydrogels. Biomacromolecules, 2010, 11(9), 2247-2254.
[http://dx.doi.org/10.1021/bm1007986] [PMID: 20704177]
[16]
Park, Y.D.; Tirelli, N.; Hubbell, J.A. Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. Biomaterials, 2003, 24(6), 893-900.
[http://dx.doi.org/10.1016/S0142-9612(02)00420-9] [PMID: 12504509]
[17]
Lee, K.Y.; Mooney, D.J. Alginate: properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106-126.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
[18]
Alibolandi, M.; Mohammadi, M.; Taghdisi, S.M.; Abnous, K.; Ramezani, M. Synthesis and preparation of biodegradable hybrid dextran hydrogel incorporated with biodegradable curcumin nanomicelles for full thickness wound healing. Int. J. Pharm., 2017, 532(1), 466-477.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.042] [PMID: 28927842]
[19]
Lin, C.; Zhao, P.; Li, F.; Guo, F.; Li, Z.; Wen, X. Thermo sensitive in situ-forming dextran-pluronic hydrogels through michael addition. Mater. Sci. Eng. C, 2010, 30(8), 1236-1244.
[http://dx.doi.org/10.1016/j.msec.2010.07.004]
[20]
Markstedt, K.; Xu, W.; Liu, J.; Xu, C.; Gatenholm, P. Synthesis of tunable hydrogels based on O-acetyl-galactoglucomannans from spruce. Carbohydr. Polym., 2017, 157, 1349-1357.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.009] [PMID: 27987842]
[21]
Zhao, W.; Odelius, K.; Edlund, U.; Zhao, C.; Albertsson, A.C. In situ synthesis of magnetic field-responsive hemicellulose hydrogels for drug delivery. Biomacromolecules, 2015, 16(8), 2522-2528.
[http://dx.doi.org/10.1021/acs.biomac.5b00801] [PMID: 26196600]
[22]
Liu, H.; Hu, H.; Jahan, M.S.; Ni, Y. Furfural formation from the pre-hydrolysis liquor of a hardwood kraft-based dissolving pulp production process. Bioresour. Technol., 2013, 131, 315-320.
[http://dx.doi.org/10.1016/j.biortech.2012.12.158] [PMID: 23360707]
[23]
Peng, X.W.; Ren, J.L.; Sun, R-C. Homogeneous esterification of xylan-rich hemicelluloses with maleic anhydride in ionic liquid. Biomacromolecules, 2010, 11(12), 3519-3524.
[http://dx.doi.org/10.1021/bm1010118] [PMID: 21053970]
[24]
Eronen, P.; Österberg, M.; Heikkinen, S.; Tenkanen, M.; Laine, J. Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr. Polym., 2011, 86(3), 1281-1290.
[http://dx.doi.org/10.1016/j.carbpol.2011.06.031]
[25]
Millon, L.E.; Oates, C.J.; Wan, W. Compression properties of polyvinyl alcohol--bacterial cellulose nanocomposite. J. Biomed. Mater. Res. B Appl. Biomater., 2009, 90(2), 922-929.
[http://dx.doi.org/10.1002/jbm.b.31364] [PMID: 19360889]
[26]
Sun, X.F.; Wang, H.H.; Jing, Z.X.; Mohanathas, R. Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydr. Polym., 2013, 92(2), 1357-1366.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.032] [PMID: 23399165]
[27]
Naahidi, S.; Jafari, M.; Logan, M.; Wang, Y.; Yuan, Y.; Bae, H.; Dixon, B.; Chen, P. Biocompatibility of hydrogel based scaffolds for tissue engineering applications. Biotechnol. Adv., 2017, 35(5), 530-544.
[http://dx.doi.org/10.1016/j.biotechadv.2017.05.006] [PMID: 28558979]
[28]
Gong, J.P. Why are double network hydrogels so tough. Soft Matter, 2010, 6(12), 2559-2850.
[http://dx.doi.org/10.1039/b924290b]
[29]
Haque, M.A.; Kurokawa, T.; Gong, J-P. Super tough double network hydrogels and their application as biomaterials. Polymers (Basel), 2012, 53(9), 1805-1822.
[http://dx.doi.org/10.1016/j.polymer.2012.03.013]
[30]
Nakajima, T.; Sato, H.; Zhao, Y.; Kawahara, S.; Kurokawa, T.; Sugahara, K. A universal molecular stent method to toughen any hydrogels based on double network concept. Adv. Funct. Mater., 2012, 22(21), 4426-4432.
[http://dx.doi.org/10.1002/adfm.201200809]
[31]
Nakajima, T.; Fukuda, Y.; Kurokawa, T.; Sakai, T.; Chung, U.I.; Gong, J-P. Synthesis and fracture process analysis of double network hydrogels with a well-defined first network. ACS Macro Lett., 2013, 2(6), 518-521.
[http://dx.doi.org/10.1021/mz4002047]
[32]
Muroi, H.; Hidema, R.; Gong, J-P.; Furukawa, H. Development of optical 3D gel printer for fabricating free-form soft & wet industrial materials and evaluation of printed double network gels. J.Sol.Mech. Mat. Eng., 2013, 7(2), 163-168.
[http://dx.doi.org/10.1299/jmmp.7.163]
[33]
Chaudhary, P.; Ramos, M.V.; Vasconcelos, Mda.S.; Kumar, V.L. Protective effect of high molecular weight protein sub-fraction of Calotropis Procera latex in monoarthritic rats. Pharmacogn. Mag., 2016, 12(Suppl. 2), S147-S151.
[http://dx.doi.org/10.4103/0973-1296.182151] [PMID: 27279699]
[34]
Nakajima, T.; Takedomi, N.; Kurokawa, T.; Furukawa, H.; Gong, J-P. A facile method for synthesizing free-shaped and tough double network hydrogels using physically crosslinked poly (vinyl alcohol) as an internal mold. Polym. Chem., 2010, 1(5), 693-697.
[http://dx.doi.org/10.1039/c0py00031k]
[35]
Bastide, J.; Leibler, L. Large-scale heterogeneities in randomly cross-linked networks. Macromolecules, 1988, 21(8), 2647-2649.
[http://dx.doi.org/10.1021/ma00186a058]
[36]
Maleki, L.; Edlund, U.; Albertsson, A.C. Thiolated hemicellulose as a versatile platform for one-pot click-type hydrogel synthesis. Biomacromolecules, 2015, 16(2), 667-674.
[http://dx.doi.org/10.1021/bm5018468] [PMID: 25574855]
[37]
Ge, M.C. Preparation and study of multiple responsive hemicellulose-based hydrogels; Dissertation, South China University of Technology, 2016.
[38]
Yang, L.L.; Liang, G.Z. Hot-spot research and application of hydrogel in biomedicine field. Materials Review, 2007, 21(2), 112-115.
[39]
Yang, J.Y.; Zhou, X.S.; Fang, J. Synthesis and characterization of temperature sensitive hemicellulose-based hydrogels. Carbohydr. Polym., 2011, 86(3), 1113-1117.
[http://dx.doi.org/10.1016/j.carbpol.2011.05.043]
[40]
Xue, Y.; Mou, Z.; Xiao, H. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale, 2017, 9(39), 14758-14781.
[http://dx.doi.org/10.1039/C7NR04994C] [PMID: 28967940]
[41]
Peng, F.; Guan, Y.; Zhang, B.; Bian, J.; Ren, J.L.; Yao, C.L.; Sun, R.C. Synthesis and properties of hemicelluloses-based semi-IPN hydrogels. Int. J. Biol. Macromol., 2014, 65(5), 564-572.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.02.003] [PMID: 24530334]
[42]
García, J.; Ruiz-Durántez, E.; Valderruten, N.E. Interpenetrating polymer networks hydrogels of chitosan and poly (2-hydroxyethyl methacrylate) for controlled release of quetiapine. React. Funct. Polym., 2017, 8(117), 52-59.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2017.06.002]
[43]
Przekora, A. The summary of the most important cell biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications. Mater. Sci. Eng. C, 2019, 97, 1036-1051.
[http://dx.doi.org/10.1016/j.msec.2019.01.061] [PMID: 30678895]
[44]
Keane, T.J.; Badylak, S.F.; Stephen, F. Biomaterials for tissue engineering applications. Semin. Pediatr. Surg., 2014, 23(3), 112-118.
[http://dx.doi.org/10.1053/j.sempedsurg.2014.06.010] [PMID: 24994524]
[45]
Bose, S.; Ke, D.; Sahasrabudhe, H.; Bandyopadhyay, A. Additive manufacturing of biomaterials. Prog. Mater. Sci., 2018, 93, 45-111.
[http://dx.doi.org/10.1016/j.pmatsci.2017.08.003] [PMID: 31406390]
[46]
Williams, D.F. On the mechanisms of biocompatibility. Biomaterials, 2008, 29(20), 2941-2953.
[http://dx.doi.org/10.1016/j.biomaterials.2008.04.023] [PMID: 18440630]
[47]
Donaruma, L.G. Definitions in biomaterials. J. Pol. Sci., 1987, 26(9), 414-414.
[48]
Langer, R.; Kohane, D.S. Biocompatibility and drug delivery systems. Chem. Sci. (Camb.), 2010, 1(4), 441-446.
[http://dx.doi.org/10.1039/C0SC00203H]
[49]
Ghasemi-Mobarakeh, L.; Kolahreez, D.; Ramakrishna, S.; Williams, D. Key terminology in biomaterials and biocompatibility. Curr. Opin. Biomed. Eng., 2019, 10, 45-50.
[http://dx.doi.org/10.1016/j.cobme.2019.02.004]
[50]
Williams, D.F. Biocompatibility Pathways: Biomaterials-Induced Sterile Inflammation, Mechanotransduction, and Principles of Biocompatibility Control. ACS Biomater. Sci. Eng., 2016, 3(1), 2-35.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00607]
[51]
Van Vlierberghe, S.; Dubruel, P.; Schacht, E. Biopolymer based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules, 2011, 12(5), 1387-1408.
[http://dx.doi.org/10.1021/bm200083n] [PMID: 21388145]
[52]
Lee, Y.P.; Liu, H.Y.; Lin, P.C.; Lee, Y.H.; Yu, L.R.; Hsieh, C.C.; Shih, P.J.; Shih, W.P.; Wang, I.J.; Yen, J.Y.; Dai, C.A. Facile fabrication of superporous and biocompatible hydrogel scaffolds for artificial corneal periphery. Colloids Surf. B Biointerfaces, 2019, 175, 26-35.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.013] [PMID: 30513471]
[53]
Haridas, N.; Rosemary, M.J. Effect of steam sterilization and biocompatibility studies of hyaluronic acid hydrogel for viscosupplementation. Polym. Degrad. Stabil., 2019, 163, 220-227.
[http://dx.doi.org/10.1016/j.polymdegradstab.2019.03.019]
[54]
Schroeter, M.; Wildemann, B.; Lendlein, A. Biodegradable Materials. Regen. Med., 2013, 2011, 469-492.
[55]
Pan, Y.; Farmahini-Farahani, M.; O’Hearn, P.; Xiao, H.; Ocampo, H. An overview of bio-based polymers for packaging materials. J. Biores. Bioprod., 2016, 1(3), 106-113.
[http://dx.doi.org/10.21967/jbb.v1i3.49]
[56]
Zhang, E.; Li, J.; Zhou, Y.; Che, P.; Ren, B.; Qin, Z.; Ma, L.; Cui, J.; Sun, H.; Yao, F. Biodegradable and injectable thermoreversible xyloglucan based hydrogel for prevention of postoperative adhesion. Acta Biomater., 2017, 55, 420-433.
[http://dx.doi.org/10.1016/j.actbio.2017.04.003] [PMID: 28391053]
[57]
Hawkins, A.M.; Tolbert, M.E.; Newton, B.; Milbrandt, T.A.; Hilt, J.Z. Tuning biodegradable hydrogel properties via synthesis procedure. Polymers (Basel), 2013, 54(17), 4422-4426.
[http://dx.doi.org/10.1016/j.polymer.2013.06.010]
[58]
Li, Y.; Tan, Y.; Xu, K.; Lu, C.; Wang, P. A biodegradable starch hydrogel synthesized via thiol-ene click chemistry. Polym. Degrad. Stabil., 2016, 137, 75-82.
[http://dx.doi.org/10.1016/j.polymdegradstab.2016.07.015]
[59]
Karaaslan, M.A.; Tshabalala, M.A.; Yelle, D.J.; Buschle-DilleR, G. Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers. Carbohydr. Polym., 2011, 86(1), 192-201.
[http://dx.doi.org/10.1016/j.carbpol.2011.04.030]
[60]
Kuzmenko, V.; Hägg, D.; Toriz, G.; Gatenholm, P. In situ forming spruce xylan-based hydrogel for cell immobilization. Carbohydr. Polym., 2014, 102(1), 862-868.
[http://dx.doi.org/10.1016/j.carbpol.2013.10.077] [PMID: 24507357]
[61]
Liu, J.; Chinga-Carrasco, G.; Cheng, F.; Xu, W.; Xu, C. Hemicellulose-reinforced nanocellulose hydrogels for wound healing application. Cellulose, 2016, 23(5), 1-15.
[http://dx.doi.org/10.1007/s10570-016-1038-3]
[62]
Nguyen, M.K.; Lee, D.S. Injectable biodegradable hydrogels. Macromol. Biosci., 2010, 10(6), 563-579.
[http://dx.doi.org/10.1002/mabi.200900402] [PMID: 20196065]
[63]
Silva, R.; Singh, R.; Sarker, B.; Papageorgiou, D.G.; Juhasz-Bortuzzo, J.A.; Roether, J.A.; Cicha, I.; Kaschta, J.; Schubert, D.W.; Chrissafis, K.; Detsch, R.; Boccaccini, A.R. Hydrogel matrices based on elastin and alginate for tissue engineering applications. Int. J. Biol. Macromol., 2018, 114, 614-625.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.091] [PMID: 29572141]
[64]
Rao, K.M.; Kumar, A.; Han, S.S. Polysaccharide-based magnetically responsive polyelectrolyte hydrogels for tissue engineering applications. J. Mater. Sci. Technol., 2018, 34(8), 1371-1377.
[http://dx.doi.org/10.1016/j.jmst.2017.10.003]
[65]
Boschetti, F.; Gervaso, F.; Pennati, G.; Peretti, G.M.; Vena, P.; Dubini, G. Poroelastic numerical modelling of natural and engineered cartilage based on in vitro tests. Biorheology, 2006, 43(3-4), 235-247.
[PMID: 16912397]
[66]
Huang, T.; Xu, H.G.; Jiao, K.X.; Zhu, L.P.; Wang, H.L. A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv. Mater., 2007, 19(12), 1622-1626.
[http://dx.doi.org/10.1002/adma.200602533]
[67]
Freitas, A.P.F.; Bitencourt, F.S.; Brito, G.A.C.; de Alencar, N.M.; Ribeiro, R.A.; Lima-Júnior, R.C.P.; Ramos, M.V.; Vale, M.L. Protein fraction of Calotropis procera latex protects against 5-fluorouracil-induced oral mucositis associated with downregulation of pivotal pro-inflammatory mediators. Naunyn Schmiedebergs Arch. Pharmacol., 2012, 385(10), 981-990.
[http://dx.doi.org/10.1007/s00210-012-0778-3] [PMID: 22797601]
[68]
Vasconcelos, M.S.; Souza, T.F.G.; Figueiredo, I.S.; Sousa, E.T.; Sousa, F.D.; Moreira, R.A.; Alencar, N.M.N.; Lima-Filho, J.V.; Ramos, M.V. A phytomodulatory hydrogel with enhanced healing effects. Phytother. Res., 2018, 32(4), 688-697.
[http://dx.doi.org/10.1002/ptr.6018] [PMID: 29468743]
[69]
Chaudhary, P.; de Araújo Viana, C.; Ramos, M.V.; Kumar, V.L. Antiedematogenic and antioxidant properties of high molecular weight protein sub-fraction of Calotropis procera latex in rat. J. Basic Clin. Pharm., 2015, 6(2), 69-73.
[http://dx.doi.org/10.4103/0976-0105.152098] [PMID: 25767367]
[70]
de Alencar, N.M.; da Silveira Bitencourt, F.; de Figueiredo, I.S.; Luz, P.B.; Lima-Júnior, R.C.P.; Aragão, K.S.; Magalhães, P.J.; de Castro Brito, G.A.; Ribeiro, R.A.; de Freitas, A.P.; Ramos, M.V. Side-effects of irinotecan (CPT-11), the clinically used drug for colon cancer therapy, are eliminated in experimental animals treated with latex proteins from Calotropis procera (Apocynaceae). Phytother. Res., 2017, 31(2), 312-320.
[http://dx.doi.org/10.1002/ptr.5752] [PMID: 27910140]
[71]
Figueiredo, I.S.T.; Ramos, M.V.; Ricardo, N.M.P.S.; Gonzaga, M.L.C.; Pinheiro, R.S.P.; Alencar, N.M.N. Efficacy of a membrane composed of polyvinyl alcohol as a vehicle for releasing of wound healing proteins belonging to latex of Calotropis procera. Process Biochem., 2014, 49(3), 512-519.
[http://dx.doi.org/10.1016/j.procbio.2013.12.015]
[72]
Ramos, M.V.; de Alencar, N.M.; de Oliveira, R.S.; Freitas, L.B.N.; Aragão, K.S.; de Andrade, T.A.; Frade, M.A.; Brito, G.A.; de Figueiredo, I.S. Wound healing modulation by a latex protein-containing polyvinyl alcohol biomembrane. Naunyn Schmiedebergs Arch. Pharmacol., 2016, 389(7), 747-756.
[http://dx.doi.org/10.1007/s00210-016-1238-2] [PMID: 27037828]
[73]
Darabi, M.A.; Khosrozadeh, A.; Mbeleck, R.; Liu, Y.; Chang, Q.; Jiang, J.; Cai, J.; Wang, Q.; Luo, G.; Xing, M. Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv. Mater., 2017, 29(31)
[http://dx.doi.org/10.1002/adma.201700533] [PMID: 28640439]
[74]
Perazzo, A.; Nunes, J.K.; Guido, S.; Stone, H.A. Flow induced gelation of microfiber suspensions. Proc. Natl. Acad. Sci. USA, 2017, 114(41), E8557-E8564.
[http://dx.doi.org/10.1073/pnas.1710927114] [PMID: 28923973]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy