Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

LncRNAs as Therapeutic Targets for Autophagy-involved Cardiovascular Diseases: A Review of Molecular Mechanism and T herapy Strategy

Author(s): Lihui Jin, Nanchao Hong , Xuefeng Ai , Jing Wang , Zhuoyan Li , Zhenyuan Han , Qi Zhang , Yu Yu* and Kun Sun*

Volume 28, Issue 9, 2021

Published on: 20 March, 2020

Page: [1796 - 1814] Pages: 19

DOI: 10.2174/0929867327666200320161835

Price: $65

Abstract

Background: Cardiovascular diseases (CVDs) remain the leading cause of death worldwide. The concept of precision medicine in CVD therapy today requires the incorporation of individual genetic and environmental variability to achieve personalized disease prevention and tailored treatment. Autophagy, an evolutionarily conserved intracellular degradation process, has been demonstrated to be essential in the pathogenesis of various CVDs. Nonetheless, there have been no effective treatments for autophagy- involved CVDs. Long noncoding RNAs (lncRNAs) are noncoding RNA sequences that play versatile roles in autophagy regulation, but much needs to be explored about the relationship between lncRNAs and autophagy-involved CVDs.

Summary: Increasing evidence has shown that lncRNAs contribute considerably to modulate autophagy in the context of CVDs. In this review, we first summarize the current knowledge of the role lncRNAs play in cardiovascular autophagy and autophagy-involved CVDs. Then, recent developments of antisense oligonucleotides (ASOs) designed to target lncRNAs to specifically modulate autophagy in diseased hearts and vessels are discussed, focusing primarily on structure-activity relationships of distinct chemical modifications and relevant clinical trials.

Perspective: ASOs are promising in cardiovascular drug innovation. We hope that future studies of lncRNA-based therapies would overcome existing technical limitations and help people who suffer from autophagy-involved CVDs.

Keywords: lncRNA, autophagy, cardiovascular disease (CVD), lncRNA-based therapy, antisense oligonucleotides ASO, drug discovery.

[1]
McClellan, M.; Brown, N.; Califf, R.M.; Warner, J.J. Call to action: urgent challenges in cardiovascular disease: a presidential advisory from the American heart association. Circulation, 2019, 139(9), e44-e54.
[http://dx.doi.org/10.1161/CIR.0000000000000652] [PMID: 30674212]
[2]
Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; Alla, F.; Alvis-Guzman, N.; Amrock, S.; Ansari, H.; Ärnlöv, J.; Asayesh, H.; Atey, T.M.; Avila-Burgos, L.; Awasthi, A.; Banerjee, A.; Barac, A.; Bärnighausen, T.; Barregard, L.; Bedi, N.; Belay Ketema, E.; Bennett, D.; Berhe, G.; Bhutta, Z.; Bitew, S.; Carapetis, J.; Carrero, J.J.; Malta, D.C.; Castañeda-Orjuela, C.A.; Castillo-Rivas, J.; Catalá-López, F.; Choi, J.Y.; Christensen, H.; Cirillo, M.; Cooper, L., Jr; Criqui, M.; Cundiff, D.; Damasceno, A.; Dandona, L.; Dandona, R.; Davletov, K.; Dharmaratne, S.; Dorairaj, P.; Dubey, M.; Ehrenkranz, R.; El Sayed Zaki, M.; Faraon, E.J.A.; Esteghamati, A.; Farid, T.; Farvid, M.; Feigin, V.; Ding, E.L.; Fowkes, G.; Gebrehiwot, T.; Gillum, R.; Gold, A.; Gona, P.; Gupta, R.; Habtewold, T.D.; Hafezi-Nejad, N.; Hailu, T.; Hailu, G.B.; Hankey, G.; Hassen, H.Y.; Abate, K.H.; Havmoeller, R.; Hay, S.I.; Horino, M.; Hotez, P.J.; Jacobsen, K.; James, S.; Javanbakht, M.; Jeemon, P.; John, D.; Jonas, J.; Kalkonde, Y.; Karimkhani, C.; Kasaeian, A.; Khader, Y.; Khan, A.; Khang, Y.H.; Khera, S.; Khoja, A.T.; Khubchandani, J.; Kim, D.; Kolte, D.; Kosen, S.; Krohn, K.J.; Kumar, G.A.; Kwan, G.F.; Lal, D.K.; Larsson, A.; Linn, S.; Lopez, A.; Lotufo, P.A.; El Razek, H.M.A.; Malekzadeh, R.; Mazidi, M.; Meier, T.; Meles, K.G.; Mensah, G.; Meretoja, A.; Mezgebe, H.; Miller, T.; Mirrakhimov, E.; Mohammed, S.; Moran, A.E.; Musa, K.I.; Narula, J.; Neal, B.; Ngalesoni, F.; Nguyen, G.; Obermeyer, C.M.; Owolabi, M.; Patton, G.; Pedro, J.; Qato, D.; Qorbani, M.; Rahimi, K.; Rai, R.K.; Rawaf, S.; Ribeiro, A.; Safiri, S.; Salomon, J.A.; Santos, I.; Santric Milicevic, M.; Sartorius, B.; Schutte, A.; Sepanlou, S.; Shaikh, M.A.; Shin, M.J.; Shishehbor, M.; Shore, H.; Silva, D.A.S.; Sobngwi, E.; Stranges, S.; Swaminathan, S.; Tabarés-Seisdedos, R.; Tadele Atnafu, N.; Tesfay, F.; Thakur, J.S.; Thrift, A.; Topor-Madry, R.; Truelsen, T.; Tyrovolas, S.; Ukwaja, K.N.; Uthman, O.; Vasankari, T.; Vlassov, V.; Vollset, S.E.; Wakayo, T.; Watkins, D.; Weintraub, R.; Werdecker, A.; Westerman, R.; Wiysonge, C.S.; Wolfe, C.; Workicho, A.; Xu, G.; Yano, Y.; Yip, P.; Yonemoto, N.; Younis, M.; Yu, C.; Vos, T.; Naghavi, M.; Murray, C. Global, regional and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J. Am. Coll. Cardiol., 2017, 70(1), 1-25.
[http://dx.doi.org/10.1016/j.jacc.2017.04.052] [PMID: 28527533]
[3]
Picca, A.; Mankowski, R.T.; Burman, J.L.; Donisi, L.; Kim, J.S.; Marzetti, E.; Leeuwenburgh, C. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat. Rev. Cardiol., 2018, 15(9), 543-554.
[http://dx.doi.org/10.1038/s41569-018-0059-z] [PMID: 30042431]
[4]
Bonora, M.; Wieckowski, M.R.; Sinclair, D.A.; Kroemer, G.; Pinton, P.; Galluzzi, L. Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. Nat. Rev. Cardiol., 2019, 16(1), 33-55.
[http://dx.doi.org/10.1038/s41569-018-0074-0] [PMID: 30177752]
[5]
Wang, J.; Liu, S.; Heallen, T.; Martin, J.F. The Hippo pathway in the heart: pivotal roles in development, disease and regeneration. Nat. Rev. Cardiol., 2018, 15(11), 672-684.
[http://dx.doi.org/10.1038/s41569-018-0063-3] [PMID: 30111784]
[6]
Napoletano, F.; Baron, O.; Vandenabeele, P.; Mollereau, B.; Fanto, M. Intersections between regulated cell death and autophagy. Trends Cell Biol., 2019, 29(4), 323-338.
[http://dx.doi.org/10.1016/j.tcb.2018.12.007] [PMID: 30665736]
[7]
Mialet-Perez, J.; Vindis, C. Autophagy in health and disease: focus on the cardiovascular system. Essays Biochem., 2017, 61(6), 721-732.
[http://dx.doi.org/10.1042/EBC20170022] [PMID: 29233881]
[8]
Bravo-San Pedro, J.M.; Kroemer, G.; Galluzzi, L. Autophagy and mitophagy in cardiovascular disease. Circ. Res., 2017, 120(11), 1812-1824.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311082] [PMID: 28546358]
[9]
Galluzzi, L.; Bravo-San Pedro, J.M.; Levine, B.; Green, D.R.; Kroemer, G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov., 2017, 16(7), 487-511.
[http://dx.doi.org/10.1038/nrd.2017.22] [PMID: 28529316]
[10]
Hobuß, L.; Bär, C.; Thum, T. Long non-coding RNAs: at the heart of cardiac dysfunction? Front. Physiol., 2019, 10, 30.
[http://dx.doi.org/10.3389/fphys.2019.00030] [PMID: 30761015]
[11]
Lee, H.; Zhang, Z.; Krause, H.M. Long noncoding RNAs and repetitive elements: junk or intimate evolutionary partners? Trends Genet., 2019, 35(12), 892-902.
[http://dx.doi.org/10.1016/j.tig.2019.09.006] [PMID: 31662190]
[12]
Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; Lagarde, J.; Veeravalli, L.; Ruan, X.; Ruan, Y.; Lassmann, T.; Carninci, P.; Brown, J.B.; Lipovich, L.; Gonzalez, J.M.; Thomas, M.; Davis, C.A.; Shiekhattar, R.; Gingeras, T.R.; Hubbard, T.J.; Notredame, C.; Harrow, J.; Guigó, R. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution and expression. Genome Res., 2012, 22(9), 1775-1789.
[http://dx.doi.org/10.1101/gr.132159.111] [PMID: 22955988]
[13]
Quinodoz, S.; Guttman, M. Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol., 2014, 24(11), 651-663.
[http://dx.doi.org/10.1016/j.tcb.2014.08.009] [PMID: 25441720]
[14]
Yang, L.; Wang, H.; Shen, Q.; Feng, L.; Jin, H. Long non-coding RNAs involved in autophagy regulation. Cell Death Dis., 2017, 8(10), e3073.
[http://dx.doi.org/10.1038/cddis.2017.464] [PMID: 28981093]
[15]
Barangi, S.; Hayes, A.W.; Reiter, R.; Karimi, G. The therapeutic role of long non-coding RNAs in human diseases: A focus on the recent insights into autophagy. Pharmacol. Res., 2019, 142, 22-29.
[http://dx.doi.org/10.1016/j.phrs.2019.02.010] [PMID: 30742900]
[16]
Liu, C.Y.; Zhang, Y.H.; Li, R.B.; Zhou, L.Y.; An, T.; Zhang, R.C.; Zhai, M.; Huang, Y.; Yan, K.W.; Dong, Y.H.; Ponnusamy, M.; Shan, C.; Xu, S.; Wang, Q.; Zhang, Y.H.; Zhang, J.; Wang, K. LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat. Commun., 2018, 9(1), 29.
[http://dx.doi.org/10.1038/s41467-017-02280-y] [PMID: 29295976]
[17]
Guo, F.X.; Wu, Q.; Li, P.; Zheng, L.; Ye, S.; Dai, X.Y.; Kang, C.M.; Lu, J.B.; Xu, B.M.; Xu, Y.J.; Xiao, L.; Lu, Z.F.; Bai, H.L.; Hu, Y.W.; Wang, Q. The role of the LncRNA-FA2H-2-MLKL pathway in atherosclerosis by regulation of autophagy flux and inflammation through mTOR-dependent signaling. Cell Death Differ., 2019, 26(9), 1670-1687.
[http://dx.doi.org/10.1038/s41418-018-0235-z] [PMID: 30683918]
[18]
Viereck, J.; Kumarswamy, R.; Foinquinos, A.; Xiao, K.; Avramopoulos, P.; Kunz, M.; Dittrich, M.; Maetzig, T.; Zimmer, K.; Remke, J.; Just, A.; Fendrich, J.; Scherf, K.; Bolesani, E.; Schambach, A.; Weidemann, F.; Zweigerdt, R.; de Windt, L.J.; Engelhardt, S.; Dandekar, T.; Batkai, S.; Thum, T. Long noncoding RNA Chast promotes cardiac remodeling. Sci. Transl. Med., 2016, 8(326), 326ra22.
[http://dx.doi.org/10.1126/scitranslmed.aaf1475] [PMID: 26888430]
[19]
Liu, X.; Xiao, Z.D.; Han, L.; Zhang, J.; Lee, S.W.; Wang, W.; Lee, H.; Zhuang, L.; Chen, J.; Lin, H.K.; Wang, J.; Liang, H.; Gan, B. LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress. Nat. Cell Biol., 2016, 18(4), 431-442.
[http://dx.doi.org/10.1038/ncb3328] [PMID: 26999735]
[20]
Liu, X.; Xiao, Z.D.; Gan, B. An lncRNA switch for AMPK activation. Cell Cycle, 2016, 15(15), 1948-1949.
[http://dx.doi.org/10.1080/15384101.2016.1184515] [PMID: 27152502]
[21]
Qiao, E.; Chen, D.; Li, Q.; Feng, W.; Yu, X.; Zhang, X.; Xia, L.; Jin, J.; Yang, H. Long noncoding RNA TALNEC2 plays an oncogenic role in breast cancer by binding to EZH2 to target p57KIP2 and involving in p-p38 MAPK and NF-κB pathways. J. Cell. Biochem., 2019, 120(3), 3978-3988.
[http://dx.doi.org/10.1002/jcb.27680] [PMID: 30378143]
[22]
Chen, J.F.; Wu, P.; Xia, R.; Yang, J.; Huo, X.Y.; Gu, D.Y.; Tang, C.J.; De, W.; Yang, F. STAT3-induced lncRNA HAGLROS overexpression contributes to the malignant progression of gastric cancer cells via mTOR signal-mediated inhibition of autophagy. Mol. Cancer, 2018, 17(1), 6.
[http://dx.doi.org/10.1186/s12943-017-0756-y] [PMID: 29329543]
[23]
Zheng, Y.; Tan, K.; Huang, H. Long noncoding RNA HAGLROS regulates apoptosis and autophagy in colorectal cancer cells via sponging miR-100 to target ATG5 expression. J. Cell. Biochem., 2019, 120(3), 3922-3933.
[http://dx.doi.org/10.1002/jcb.27676] [PMID: 30430634]
[24]
Liu, M.; Han, T.; Shi, S.; Chen, E. Long noncoding RNA HAGLROS regulates cell apoptosis and autophagy in lipopolysaccharides-induced WI-38 cells via modulating miR-100/NF-κB axis. Biochem. Biophys. Res. Commun., 2018, 500(3), 589-596.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.109] [PMID: 29673591]
[25]
Chen, Z.H.; Wang, W.T.; Huang, W.; Fang, K.; Sun, Y.M.; Liu, S.R.; Luo, X.Q.; Chen, Y.Q. The lncRNA HOTAIRM1 regulates the degradation of PML-RARA oncoprotein and myeloid cell differentiation by enhancing the autophagy pathway. Cell Death Differ., 2017, 24(2), 212-224.
[http://dx.doi.org/10.1038/cdd.2016.111] [PMID: 27740626]
[26]
Egan, D.F.; Shackelford, D.B.; Mihaylova, M.M.; Gelino, S.; Kohnz, R.A.; Mair, W.; Vasquez, D.S.; Joshi, A.; Gwinn, D.M.; Taylor, R.; Asara, J.M.; Fitzpatrick, J.; Dillin, A.; Viollet, B.; Kundu, M.; Hansen, M.; Shaw, R.J. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science, 2011, 331(6016), 456-461.
[http://dx.doi.org/10.1126/science.1196371] [PMID: 21205641]
[27]
Lu, W.; Han, L.; Su, L.; Zhao, J.; Zhang, Y.; Zhang, S.; Zhao, B.; Miao, J.A. 3'UTR-associated RNA, FLJ11812 maintains stemness of human embryonic stem cells by targeting miR-4459. Stem Cells Dev., 2015, 24(9), 1133-1140.
[http://dx.doi.org/10.1089/scd.2014.0353] [PMID: 25437332]
[28]
Deng, X.; Feng, N.; Zheng, M.; Ye, X.; Lin, H.; Yu, X.; Gan, Z.; Fang, Z.; Zhang, H.; Gao, M.; Zheng, Z.J.; Yu, H.; Ding, W.; Qian, B. PM2.5 exposure-induced autophagy is mediated by lncRNA loc146880 which also promotes the migration and invasion of lung cancer cells. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(2), 112-125.
[http://dx.doi.org/10.1016/j.bbagen.2016.11.009] [PMID: 27836757]
[29]
Song, J.; Ahn, C.; Chun, C.H.; Jin, E.J. A long non-coding RNA, GAS5, plays a critical role in the regulation of miR-21 during osteoarthritis. J. Orthop. Res., 2014, 32(12), 1628-1635.
[http://dx.doi.org/10.1002/jor.22718] [PMID: 25196583]
[30]
Liu, Z.; Wei, X.; Zhang, A.; Li, C.; Bai, J.; Dong, J. Long non-coding RNA HNF1A-AS1 functioned as an oncogene and autophagy promoter in hepatocellular carcinoma through sponging hsa-miR-30b-5p. Biochem. Biophys. Res. Commun., 2016, 473(4), 1268-1275.
[http://dx.doi.org/10.1016/j.bbrc.2016.04.054] [PMID: 27084450]
[31]
Ma, B.; Yuan, Z.; Zhang, L.; Lv, P.; Yang, T.; Gao, J.; Pan, N.; Wu, Q.; Lou, J.; Han, C.; Zhang, B. Long non-coding RNA AC023115.3 suppresses chemoresistance of glioblastoma by reducing autophagy. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(8), 1393-1404.
[http://dx.doi.org/10.1016/j.bbamcr.2017.05.008] [PMID: 28499919]
[32]
Wakatsuki, S.; Tokunaga, S.; Shibata, M.; Araki, T. GSK3B-mediated phosphorylation of MCL1 regulates axonal autophagy to promote Wallerian degeneration. J. Cell Biol., 2017, 216(2), 477-493.
[http://dx.doi.org/10.1083/jcb.201606020] [PMID: 28053206]
[33]
Tang, B.; Bao, N.; He, G.; Wang, J. Long noncoding RNA HOTAIR regulates autophagy via the miR-20b-5p/ATG7 axis in hepatic ischemia/reperfusion injury. Gene, 2019, 686, 56-62.
[http://dx.doi.org/10.1016/j.gene.2018.10.059] [PMID: 30367982]
[34]
Bao, X.; Ren, T.; Huang, Y.; Sun, K.; Wang, S.; Liu, K.; Zheng, B.; Guo, W. Knockdown of long non-coding RNA HOTAIR increases miR-454-3p by targeting Stat3 and Atg12 to inhibit chondrosarcoma growth. Cell Death Dis., 2017, 8(2), e2605.
[http://dx.doi.org/10.1038/cddis.2017.31] [PMID: 28182000]
[35]
Tsai, M.C.; Manor, O.; Wan, Y.; Mosammaparast, N.; Wang, J.K.; Lan, F.; Shi, Y.; Segal, E.; Chang, H.Y. Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010, 329(5992), 689-693.
[http://dx.doi.org/10.1126/science.1192002] [PMID: 20616235]
[36]
Ge, D.; Han, L.; Huang, S.; Peng, N.; Wang, P.; Jiang, Z.; Zhao, J.; Su, L.; Zhang, S.; Zhang, Y.; Kung, H.; Zhao, B.; Miao, J. Identification of a novel MTOR activator and discovery of a competing endogenous RNA regulating autophagy in vascular endothelial cells. Autophagy, 2014, 10(6), 957-971.
[http://dx.doi.org/10.4161/auto.28363] [PMID: 24879147]
[37]
Chen, S.; Wu, D.D.; Sang, X.B.; Wang, L.L.; Zong, Z.H.; Sun, K.X.; Liu, B.L.; Zhao, Y. The lncRNA HULC functions as an oncogene by targeting ATG7 and ITGB1 in epithelial ovarian carcinoma. Cell Death Dis., 2017, 8(10), e3118.
[http://dx.doi.org/10.1038/cddis.2017.486] [PMID: 29022892]
[38]
Li, L.; Chen, H.; Gao, Y.; Wang, Y.W.; Zhang, G.Q.; Pan, S.H.; Ji, L.; Kong, R.; Wang, G.; Jia, Y.H.; Bai, X.W.; Sun, B. Long noncoding RNA MALAT1 promotes aggressive pancreatic cancer proliferation and metastasis via the stimulation of autophagy. Mol. Cancer Ther., 2016, 15(9), 2232-2243.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0008] [PMID: 27371730]
[39]
Porrello, E.R.; Mahmoud, A.I.; Simpson, E.; Hill, J.A.; Richardson, J.A.; Olson, E.N.; Sadek, H.A. Transient regenerative potential of the neonatal mouse heart. Science, 2011, 331(6020), 1078-1080.
[http://dx.doi.org/10.1126/science.1200708] [PMID: 21350179]
[40]
Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol., 2012, 298, 229-317.
[http://dx.doi.org/10.1016/B978-0-12-394309-5.00006-7] [PMID: 22878108]
[41]
Wang, K.; Liu, C.Y.; Zhou, L.Y.; Wang, J.X.; Wang, M.; Zhao, B.; Zhao, W.K.; Xu, S.J.; Fan, L.H.; Zhang, X.J.; Feng, C.; Wang, C.Q.; Zhao, Y.F.; Li, P.F. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat. Commun., 2015, 6, 6779.
[http://dx.doi.org/10.1038/ncomms7779] [PMID: 25858075]
[42]
Yin, G.; Yang, X.; Li, Q.; Guo, Z. GATA1 activated lncRNA (Galont) promotes anoxia/reoxygenation-induced autophagy and cell death in cardiomyocytes by sponging miR-338. J. Cell. Biochem., 2018, 119(5), 4161-4169.
[http://dx.doi.org/10.1002/jcb.26623] [PMID: 29247537]
[43]
Chen, Z.; Jia, S.; Li, D.; Cai, J.; Tu, J.; Geng, B.; Guan, Y.; Cui, Q.; Yang, J. Silencing of long noncoding RNA AK139328 attenuates ischemia/reperfusion injury in mouse livers. PLoS One, 2013, 8(11), e80817.
[http://dx.doi.org/10.1371/journal.pone.0080817] [PMID: 24312245]
[44]
Yu, S.Y.; Dong, B.; Fang, Z.F.; Hu, X.Q.; Tang, L.; Zhou, S.H. Knockdown of lncRNA AK139328 alleviates myocardial ischaemia/reperfusion injury in diabetic mice via modulating miR-204-3p and inhibiting autophagy. J. Cell. Mol. Med., 2018, 22(10), 4886-4898.
[http://dx.doi.org/10.1111/jcmm.13754] [PMID: 30047214]
[45]
Ma, M.; Hui, J.; Zhang, Q.Y.; Zhu, Y.; He, Y.; Liu, X.J. Long non-coding RNA nuclear-enriched abundant transcript 1 inhibition blunts myocardial ischemia reperfusion injury via autophagic flux arrest and apoptosis in streptozotocin-induced diabetic rats. Atherosclerosis, 2018, 277, 113-122.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.08.031] [PMID: 30205319]
[46]
Guo, X.; Wu, X.; Han, Y.; Tian, E.; Cheng, J. LncRNA MALAT1 protects cardiomyocytes from isoproterenol-induced apoptosis through sponging miR-558 to enhance ULK1-mediated protective autophagy. J. Cell. Physiol., 2019, 234(7), 10842-10854.
[http://dx.doi.org/10.1002/jcp.27925] [PMID: 30536615]
[47]
Zhang, C.; Pan, S.; Aisha, A.; Abudoukelimu, M.; Tang, L.; Ling, Y. Recombinant human brain natriuretic peptide regulates PI3K/AKT/mTOR pathway through lncRNA EGOT to attenuate hypoxia-induced injury in H9c2 cardiomyocytes. Biochem. Biophys. Res. Commun., 2018, 503(3), 1186-1193.
[http://dx.doi.org/10.1016/j.bbrc.2018.07.023] [PMID: 30031611]
[48]
Nakamura, M.; Sadoshima, J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol., 2018, 15(7), 387-407.
[http://dx.doi.org/10.1038/s41569-018-0007-y] [PMID: 29674714]
[49]
Negre-Salvayre, A.; Guerby, P.; Gayral, S.; Laffargue, M.; Salvayre, R. Role of reactive oxygen species in atherosclerosis: Lessons from murine genetic models. Free Radic. Biol. Med., 2020, 148, 2-22.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.10.011] [PMID: 31669759]
[50]
Libby, P. Mechanisms of acute coronary syndromes and their implications for therapy. N. Engl. J. Med., 2013, 368(21), 2004-2013.
[http://dx.doi.org/10.1056/NEJMra1216063] [PMID: 23697515]
[51]
Grootaert, M.O.J.; Roth, L.; Schrijvers, D.M.; De Meyer, G.R.Y.; Martinet, W. Defective Autophagy in Atherosclerosis: To Die or to Senesce? Oxid. Med. Cell. Longev., 2018, 2018, 7687083.
[http://dx.doi.org/10.1155/2018/7687083] [PMID: 29682164]
[52]
Huang, S.; Lu, W.; Ge, D.; Meng, N.; Li, Y.; Su, L.; Zhang, S.; Zhang, Y.; Zhao, B.; Miao, J. A new microRNA signal pathway regulated by long noncoding RNA TGFB2-OT1 in autophagy and inflammation of vascular endothelial cells. Autophagy, 2015, 11(12), 2172-2183.
[http://dx.doi.org/10.1080/15548627.2015.1106663] [PMID: 26565952]
[53]
Zhu, Y.; Yang, T.; Duan, J.; Mu, N.; Zhang, T. MALAT1/miR-15b-5p/MAPK1 mediates endothelial progenitor cells autophagy and affects coronary atherosclerotic heart disease via mTOR signaling pathway. Aging (Albany NY), 2019, 11(4), 1089-1109.
[http://dx.doi.org/10.18632/aging.101766] [PMID: 30787203]
[54]
Li, S.; Pan, X.; Yang, S.; Ma, A.; Yin, S.; Dong, Y.; Pei, H.; Bi, X.; Li, W. LncRNA MALAT1 promotes oxidized low-density lipoprotein-induced autophagy in HUVECs by inhibiting the PI3K/AKT pathway. J. Cell. Biochem., 2019, 120(3), 4092-4101.
[http://dx.doi.org/10.1002/jcb.27694] [PMID: 30485490]
[55]
Song, Z.; Wei, D.; Chen, Y.; Chen, L.; Bian, Y.; Shen, Y.; Chen, J.; Pan, Y. Association of astragaloside IV-inhibited autophagy and mineralization in vascular smooth muscle cells with lncRNA H19 and DUSP5-mediated ERK signaling. Toxicol. Appl. Pharmacol., 2019, 364, 45-54.
[http://dx.doi.org/10.1016/j.taap.2018.12.002] [PMID: 30529164]
[56]
Schulman, S.; Ageno, W.; Konstantinides, S.V. Venous thromboembolism: past, present and future. Thromb. Haemost., 2017, 117(7), 1219-1229.
[http://dx.doi.org/10.1160/TH16-10-0823] [PMID: 28594049]
[57]
Rabinovich, A.; Kahn, S.R. The postthrombotic syndrome: current evidence and future challenges. J. Thromb. Haemost., 2017, 15(2), 230-241.
[http://dx.doi.org/10.1111/jth.13569] [PMID: 27860129]
[58]
Li, W.D.; Li, X.Q. Endothelial progenitor cells accelerate the resolution of deep vein thrombosis. Vascul. Pharmacol., 2016, 83, 10-16.
[http://dx.doi.org/10.1016/j.vph.2015.07.007] [PMID: 26187355]
[59]
Simard, T.; Jung, R.G.; Motazedian, P.; Di Santo, P.; Ramirez, F.D.; Russo, J.J.; Labinaz, A.; Yousef, A.; Anantharam, B.; Pourdjabbar, A.; Hibbert, B. Progenitor cells for arterial repair: incremental advancements towards therapeutic reality. Stem Cells Int., 2017, 2017, 8270498.
[http://dx.doi.org/10.1155/2017/8270498] [PMID: 28232850]
[60]
Nussenzweig, S.C.; Verma, S.; Finkel, T. The role of autophagy in vascular biology. Circ. Res., 2015, 116(3), 480-488.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303805] [PMID: 25634971]
[61]
Li, W.D.; Zhou, D.M.; Sun, L.L.; Xiao, L.; Liu, Z.; Zhou, M.; Wang, W.B.; Li, X.Q. LncRNA WTAPP1 promotes migration and angiogenesis of endothelial progenitor cells via MMP1 through microRNA 3120 and Akt/PI3K/autophagy pathways. Stem Cells, 2018, 36(12), 1863-1874.
[http://dx.doi.org/10.1002/stem.2904] [PMID: 30171660]
[62]
Kim, J.; Guan, K.L. mTOR as a central hub of nutrient signalling and cell growth. Nat. Cell Biol., 2019, 21(1), 63-71.
[http://dx.doi.org/10.1038/s41556-018-0205-1] [PMID: 30602761]
[63]
Devaux, Y.; Zangrando, J.; Schroen, B.; Creemers, E.E.; Pedrazzini, T.; Chang, C.P.; Dorn, G.W., II; Thum, T.; Heymans, S. Cardiolinc network. Long noncoding RNAs in cardiac development and ageing. Nat. Rev. Cardiol., 2015, 12(7), 415-425.
[http://dx.doi.org/10.1038/nrcardio.2015.55] [PMID: 25855606]
[64]
Crooke, S.T. Molecular mechanisms of antisense oligonucleotides. Nucleic Acid Ther., 2017, 27(2), 70-77.
[http://dx.doi.org/10.1089/nat.2016.0656] [PMID: 28080221]
[65]
Hagedorn, P.H.; Persson, R.; Funder, E.D.; Albæk, N.; Diemer, S.L.; Hansen, D.J.; Møller, M.R.; Papargyri, N.; Christiansen, H.; Hansen, B.R.; Hansen, H.F.; Jensen, M.A.; Koch, T. Locked nucleic acid: modality, diversity and drug discovery. Drug Discov. Today, 2018, 23(1), 101-114.
[http://dx.doi.org/10.1016/j.drudis.2017.09.018] [PMID: 28988994]
[66]
Stephenson, M.L.; Zamecnik, P.C. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc. Natl. Acad. Sci. U.S.A., 1978, 75(1), 285-288.
[http://dx.doi.org/10.1073/pnas.75.1.285] [PMID: 75546]
[67]
Raal, F.J.; Santos, R.D.; Blom, D.J.; Marais, A.D.; Charng, M.J.; Cromwell, W.C.; Lachmann, R.H.; Gaudet, D.; Tan, J.L.; Chasan-Taber, S.; Tribble, D.L.; Flaim, J.D.; Crooke, S.T. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet, 2010, 375(9719), 998-1006.
[http://dx.doi.org/10.1016/S0140-6736(10)60284-X] [PMID: 20227758]
[68]
Finkel, R.S.; Mercuri, E.; Darras, B.T.; Connolly, A.M.; Kuntz, N.L.; Kirschner, J.; Chiriboga, C.A.; Saito, K.; Servais, L.; Tizzano, E.; Topaloglu, H.; Tulinius, M.; Montes, J.; Glanzman, A.M.; Bishop, K.; Zhong, Z.J.; Gheuens, S.; Bennett, C.F.; Schneider, E.; Farwell, W.; De Vivo, D.C.; Group, E.S. ENDEAR Study Group. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med., 2017, 377(18), 1723-1732.
[http://dx.doi.org/10.1056/NEJMoa1702752] [PMID: 29091570]
[69]
Khvorova, A.; Watts, J.K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol., 2017, 35(3), 238-248.
[http://dx.doi.org/10.1038/nbt.3765] [PMID: 28244990]
[70]
Eckstein, F. Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them? Antisense Nucleic Acid Drug Dev., 2000, 10(2), 117-121.
[http://dx.doi.org/10.1089/oli.1.2000.10.117] [PMID: 10805163]
[71]
Vitravene Study Group. A randomized controlled clinical trial of intravitreous fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with AIDS. Am. J. Ophthalmol., 2002, 133(4), 467-474.
[http://dx.doi.org/10.1016/s0002-9394(02)01327-2] [PMID: 11931780]
[72]
Wilk, A.; Stec, W.J. Analysis of oligo(deoxynucleoside phosphorothioate)s and their diastereomeric composition. Nucleic Acids Res., 1995, 23(3), 530-534.
[http://dx.doi.org/10.1093/nar/23.3.530] [PMID: 7885850]
[73]
Koziolkiewicz, M.; Krakowiak, A.; Kwinkowski, M.; Boczkowska, M.; Stec, W.J. Stereodifferentiation--the effect of P chirality of oligo(nucleoside phosphorothioates) on the activity of bacterial RNase H. Nucleic Acids Res., 1995, 23(24), 5000-5005.
[http://dx.doi.org/10.1093/nar/23.24.5000] [PMID: 8559657]
[74]
Koziołkiewicz, M.; Wójcik, M.; Kobylańska, A.; Karwowski, B.; Rebowska, B.; Guga, P.; Stec, W.J. Stability of stereoregular oligo(nucleoside phosphorothioate)s in human plasma: diastereoselectivity of plasma 3′-exonuclease. Antisense Nucleic Acid Drug Dev., 1997, 7(1), 43-48.
[http://dx.doi.org/10.1089/oli.1.1997.7.43] [PMID: 9055038]
[75]
Crooke, S.T. Progress in antisense technology: the end of the beginning. Methods Enzymol., 2000, 313, 3-45.
[http://dx.doi.org/10.1016/S0076-6879(00)13003-4] [PMID: 10595347]
[76]
Prakash, T.P.; Bhat, B. 2′-Modified oligonucleotides for antisense therapeutics. Curr. Top. Med. Chem., 2007, 7(7), 641-649.
[http://dx.doi.org/10.2174/156802607780487713] [PMID: 17430205]
[77]
DeVos, S.L.; Miller, T.M. Antisense oligonucleotides: treating neurodegeneration at the level of RNA. Neurotherapeutics, 2013, 10(3), 486-497.
[http://dx.doi.org/10.1007/s13311-013-0194-5] [PMID: 23686823]
[78]
Kurreck, J. Antisense technologies. Improvement through novel chemical modifications. Eur. J. Biochem., 2003, 270(8), 1628-1644.
[http://dx.doi.org/10.1046/j.1432-1033.2003.03555.x] [PMID: 12694176]
[79]
Ishige, T.; Itoga, S.; Matsushita, K. Locked nucleic acid technology for highly sensitive detection of somatic mutations in cancer. Adv. Clin. Chem., 2018, 83, 53-72.
[http://dx.doi.org/10.1016/bs.acc.2017.10.002] [PMID: 29304903]
[80]
Singh, S.K.; Wengel, J. Universality of LNA-mediated high-affinity nucleic acid recognition. Chem. Commun. (Camb.), 1998, (12), 1247-1248.
[http://dx.doi.org/10.1039/a801571f]
[81]
Hughesman, C.B.; Turner, R.F.; Haynes, C.A. Role of the heat capacity change in understanding and modeling melting thermodynamics of complementary duplexes containing standard and nucleobase-modified LNA. Biochemistry, 2011, 50(23), 5354-5368.
[http://dx.doi.org/10.1021/bi200223s] [PMID: 21548576]
[82]
Kurreck, J.; Wyszko, E.; Gillen, C.; Erdmann, V.A. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res., 2002, 30(9), 1911-1918.
[http://dx.doi.org/10.1093/nar/30.9.1911] [PMID: 11972327]
[83]
Sackner-Bernstein, J. FDA approval of eteplirsen for muscular dystrophy. JAMA, 2017, 317(14), 1480-1481.
[http://dx.doi.org/10.1001/jama.2017.2597] [PMID: 28399244]
[84]
Witztum, J.L.; Gaudet, D.; Freedman, S.D.; Alexander, V.J.; Digenio, A.; Williams, K.R.; Yang, Q.; Hughes, S.G.; Geary, R.S.; Arca, M.; Stroes, E.S.G.; Bergeron, J.; Soran, H.; Civeira, F.; Hemphill, L.; Tsimikas, S.; Blom, D.J.; O’Dea, L.; Bruckert, E. Volanesorsen and triglyceride levels in familial chylomicronemia syndrome. N. Engl. J. Med., 2019, 381(6), 531-542.
[http://dx.doi.org/10.1056/NEJMoa1715944] [PMID: 31390500]
[85]
Viney, N.J.; van Capelleveen, J.C.; Geary, R.S.; Xia, S.; Tami, J.A.; Yu, R.Z.; Marcovina, S.M.; Hughes, S.G.; Graham, M.J.; Crooke, R.M.; Crooke, S.T.; Witztum, J.L.; Stroes, E.S.; Tsimikas, S. Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet, 2016, 388(10057), 2239-2253.
[http://dx.doi.org/10.1016/S0140-6736(16)31009-1] [PMID: 27665230]
[86]
Graham, M.J.; Lee, R.G.; Brandt, T.A.; Tai, L.J.; Fu, W.; Peralta, R.; Yu, R.; Hurh, E.; Paz, E.; McEvoy, B.W.; Baker, B.F.; Pham, N.C.; Digenio, A.; Hughes, S.G.; Geary, R.S.; Witztum, J.L.; Crooke, R.M.; Tsimikas, S. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N. Engl. J. Med., 2017, 377(3), 222-232.
[http://dx.doi.org/10.1056/NEJMoa1701329] [PMID: 28538111]
[87]
Akdim, F.; Tribble, D.L.; Flaim, J.D.; Yu, R.; Su, J.; Geary, R.S.; Baker, B.F.; Fuhr, R.; Wedel, M.K.; Kastelein, J.J. Efficacy of apolipoprotein B synthesis inhibition in subjects with mild-to-moderate hyperlipidaemia. Eur. Heart J., 2011, 32(21), 2650-2659.
[http://dx.doi.org/10.1093/eurheartj/ehr148] [PMID: 21593041]
[88]
Akdim, F.; Stroes, E.S.; Sijbrands, E.J.; Tribble, D.L.; Trip, M.D.; Jukema, J.W.; Flaim, J.D.; Su, J.; Yu, R.; Baker, B.F.; Wedel, M.K.; Kastelein, J.J. Efficacy and safety of mipomersen, an antisense inhibitor of apolipoprotein B, in hypercholesterolemic subjects receiving stable statin therapy. J. Am. Coll. Cardiol., 2010, 55(15), 1611-1618.
[http://dx.doi.org/10.1016/j.jacc.2009.11.069] [PMID: 20378080]
[89]
Boffa, M.B.; Koschinsky, M.L. Oxidized phospholipids as a unifying theory for lipoprotein(a) and cardiovascular disease. Nat. Rev. Cardiol., 2019, 16(5), 305-318.
[http://dx.doi.org/10.1038/s41569-018-0153-2] [PMID: 30675027]
[90]
Tsimikas, S.; Viney, N.J.; Hughes, S.G.; Singleton, W.; Graham, M.J.; Baker, B.F.; Burkey, J.L.; Yang, Q.; Marcovina, S.M.; Geary, R.S.; Crooke, R.M.; Witztum, J.L. Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study. Lancet, 2015, 386(10002), 1472-1483.
[http://dx.doi.org/10.1016/S0140-6736(15)61252-1] [PMID: 26210642]
[91]
Dewey, F.E.; Gusarova, V.; Dunbar, R.L.; O’Dushlaine, C.; Schurmann, C.; Gottesman, O.; McCarthy, S.; Van Hout, C.V.; Bruse, S.; Dansky, H.M.; Leader, J.B.; Murray, M.F.; Ritchie, M.D.; Kirchner, H.L.; Habegger, L.; Lopez, A.; Penn, J.; Zhao, A.; Shao, W.; Stahl, N.; Murphy, A.J.; Hamon, S.; Bouzelmat, A.; Zhang, R.; Shumel, B.; Pordy, R.; Gipe, D.; Herman, G.A.; Sheu, W.H.H.; Lee, I.T.; Liang, K.W.; Guo, X.; Rotter, J.I.; Chen, Y.I.; Kraus, W.E.; Shah, S.H.; Damrauer, S.; Small, A.; Rader, D.J.; Wulff, A.B.; Nordestgaard, B.G.; Tybjærg-Hansen, A.; van den Hoek, A.M.; Princen, H.M.G.; Ledbetter, D.H.; Carey, D.J.; Overton, J.D.; Reid, J.G.; Sasiela, W.J.; Banerjee, P.; Shuldiner, A.R.; Borecki, I.B.; Teslovich, T.M.; Yancopoulos, G.D.; Mellis, S.J.; Gromada, J.; Baras, A. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N. Engl. J. Med., 2017, 377(3), 211-221.
[http://dx.doi.org/10.1056/NEJMoa1612790] [PMID: 28538136]
[92]
Xu, J.; Deng, Y.; Wang, Y.; Sun, X.; Chen, S.; Fu, G. SPAG5-AS1 inhibited autophagy and aggravated apoptosis of podocytes via SPAG5/AKT/mTOR pathway. Cell Prolif., 2020, 53(2), e12738.
[http://dx.doi.org/10.1111/cpr.12738] [PMID: 31957155]
[93]
Zeng, R.; Song, X.J.; Liu, C.W.; Ye, W. LncRNA ANRIL promotes angiogenesis and thrombosis by modulating microRNA-99a and microRNA-449a in the autophagy pathway. Am. J. Transl. Res., 2019, 11(12), 7441-7448.
[PMID: 31934291]
[94]
Zhang, Y.F.; Li, C.S.; Zhou, Y.; Lu, X.H. Propofol facilitates cisplatin sensitivity via lncRNA MALAT1/miR-30e/ATG5 axis through suppressing autophagy in gastric cancer. Life Sci., 2020, 244, 117280.
[http://dx.doi.org/10.1016/j.lfs.2020.117280] [PMID: 31926239]
[95]
Wang, I.K.; Palanisamy, K.; Sun, K.T.; Yu, S.H.; Yu, T.M.; Li, C.H.; Lin, F.Y.; Chou, A.K.; Wang, G.J.; Chen, K.B.; Li, C.Y. The functional interplay of lncRNA EGOT and HuR regulates hypoxia-induced autophagy in renal tubular cells. J. Cell. Biochem., 2020, 121(11), 4522-4534.
[http://dx.doi.org/10.1002/jcb.29669] [PMID: 32030803]
[96]
Pan, Z.; Wu, C.; Li, Y.; Li, H.; An, Y.; Wang, G.; Dai, J.; Wang, Q. LncRNA DANCR silence inhibits SOX5-medicated progression and autophagy in osteosarcoma via regulating miR-216a-5p. Biomed. Pharmacother., 2020., 122109707.
[http://dx.doi.org/10.1016/j.biopha.2019.109707] [PMID: 31918278]
[97]
Kang, Y.; Jia, Y.; Wang, Q.; Zhao, Q.; Song, M.; Ni, R.; Wang, J. Long noncoding RNA KCNQ1OT1 promotes the progression of non-small cell lung cancer via regulating miR-204-5p/ATG3 Axis. OncoTargets Ther., 2019, 12, 10787-10797.
[http://dx.doi.org/10.2147/OTT.S226044] [PMID: 31849486]
[98]
Wang, S.; Yao, T.; Deng, F.; Yu, W.; Song, Y.; Chen, J.; Ruan, Z. LncRNA MALAT1 promotes oxygen-glucose deprivation and reoxygenation induced cardiomyocytes injury through sponging miR-20b to enhance beclin1-mediated autophagy. Cardiovasc. Drugs Ther., 2019, 33(6), 675-686.
[http://dx.doi.org/10.1007/s10557-019-06902-z] [PMID: 31823095]
[99]
Wang, L.L.; Zhang, L.; Cui, X.F. Downregulation of long noncoding RNA LINC01419 inhibits cell migration, invasion and tumor growth and promotes autophagy via inactivation of the PI3K/Akt1/mTOR pathway in gastric cancer. Ther. Adv. Med. Oncol., 2019, 11, 1758835919874651.
[http://dx.doi.org/10.1177/1758835919874651] [PMID: 31579114]
[100]
Li, P.; He, J.; Yang, Z.; Ge, S.; Zhang, H.; Zhong, Q.; Fan, X. ZNNT1 long noncoding RNA induces autophagy to inhibit tumorigenesis of uveal melanoma by regulating key autophagy gene expression. Autophagy, 2020, 16(7), 1186-1199.
[http://dx.doi.org/10.1080/15548627.2019.1659614] [PMID: 31462126]
[101]
Guo, J.; Ma, Y.; Peng, X.; Jin, H.; Liu, J. LncRNA CCAT1 promotes autophagy via regulating ATG7 by sponging miR-181 in hepatocellular carcinoma. J. Cell. Biochem., 2019, 120(10), 17975-17983.
[http://dx.doi.org/10.1002/jcb.29064] [PMID: 31218739]
[102]
Guo, Z.; Li, L.; Gao, Y.; Zhang, X.; Cheng, M. Overexpression of lncRNA ANRIL aggravated hydrogen peroxide-disposed injury in PC-12 cells via inhibiting miR-499a/PDCD4 axis-mediated PI3K/Akt/mTOR/p70S6K pathway. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2624-2633.
[http://dx.doi.org/10.1080/21691401.2019.1629953] [PMID: 31220946]
[103]
Yu, S.; Yu, M.; He, X.; Wen, L.; Bu, Z.; Feng, J. KCNQ1OT1 promotes autophagy by regulating miR-200a/FOXO3/ATG7 pathway in cerebral ischemic stroke. Aging Cell, 2019, 18(3), e12940.
[http://dx.doi.org/10.1111/acel.12940] [PMID: 30945454]
[104]
Cai, Q.; Wang, S.; Jin, L.; Weng, M.; Zhou, D.; Wang, J.; Tang, Z.; Quan, Z. Long non-coding RNA GBCDRlnc1 induces chemoresistance of gallbladder cancer cells by activating autophagy. Mol. Cancer, 2019, 18(1), 82.
[http://dx.doi.org/10.1186/s12943-019-1016-0] [PMID: 30953511]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy