Review Article

用于肝癌成像的放射性标记的肽探针

卷 27, 期 41, 2020

页: [6968 - 6986] 页: 19

弟呕挨: 10.2174/0929867327666200320153837

价格: $65

摘要

肝癌/肝细胞癌(HCC)是导致癌症死亡的主要原因,并且是全球范围内重要的死亡原因。 肝癌中有几种生物标志物过表达,例如Glypican 3(GPC3)和表皮生长因子受体(EGFR)。 这些生物标志物在肿瘤的进展中起着重要的作用,并且可以作为该疾病的成像和治疗靶标。 具有足够稳定性,受体结合特性和生物动力学行为的肽已被广泛研究用于肝癌成像。 它们中的许多已经用临床相关的放射性核素进行了放射性标记,可用于肝癌的诊断,并且许多有望用于临床翻译的影像学和治疗性候选物。 在本文中,我们总结了放射性标记肽在肝癌靶向成像中的进展。

关键词: 肝癌,GPC3,EGFR,c-Met,VEGF,放射性标记的肽。

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med., 2019, 380(15), 1450-1462.
[http://dx.doi.org/10.1056/NEJMra1713263] [PMID: 30970190]
[3]
Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet, 2018, 391(10127), 1301-1314.
[http://dx.doi.org/10.1016/S0140-6736(18)30010-2] [PMID: 29307467]
[4]
Sayan, M.; Yegya-Raman, N.; Greco, S.H.; Gui, B.; Zhang, A.; Chundury, A.; Grandhi, M.S.; Hochster, H.S.; Kennedy, T.J.; Langan, R.C.; Malhotra, U.; Rustgi, V.K.; Shah, M.M.; Spencer, K.R.; Carpizo, D.R.; Nosher, J.L.; Jabbour, S.K. Rethinking the role of radiation therapy in the treatment of unresectable hepatocellular carcinoma: a data driven treatment algorithm for optimizing outcomes. Front. Oncol., 2019, 9, 345.
[http://dx.doi.org/10.3389/fonc.2019.00345] [PMID: 31275846]
[5]
Zhuang, P.Y.; Wang, J.D.; Tang, Z.H.; Zhou, X.P.; Yang, Y.; Quan, Z.W.; Liu, Y.B.; Shen, J. Peritumoral Neuropilin-1 and VEGF receptor-2 expression increases time to recurrence in hepatocellular carcinoma patients undergoing curative hepatectomy. Oncotarget, 2014, 5(22), 11121-11132.
[http://dx.doi.org/10.18632/oncotarget.2553] [PMID: 25333267]
[6]
Farazi, P.A.; DePinho, R.A. The genetic and environmental basis of hepatocellular carcinoma. Discov. Med., 2006, 6(35), 182-186.
[PMID: 17234139]
[7]
Gomaa, A.I.; Khan, S.A.; Toledano, M.B.; Waked, I.; Taylor-Robinson, S.D. Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J. Gastroenterol., 2008, 14(27), 4300-4308.
[http://dx.doi.org/10.3748/wjg.14.4300] [PMID: 18666317]
[8]
Romagnoli, R.; Mazzaferro, V.; Bruix, J. Surgical resection for hepatocellular carcinoma: Moving from what can be done to what is worth doing. Hepatology, 2015, 62(2), 340-342.
[http://dx.doi.org/10.1002/hep.27831] [PMID: 25846953]
[9]
Forner, A.; Vilana, R.; Ayuso, C.; Bianchi, L.; Solé, M.; Ayuso, J.R.; Boix, L.; Sala, M.; Varela, M.; Llovet, J.M.; Brú, C.; Bruix, J. Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: Prospective validation of the noninvasive diagnostic criteria for hepatocel-lular carcinoma. Hepatology, 2008, 47(1), 97-104.
[http://dx.doi.org/10.1002/hep.21966] [PMID: 18069697]
[10]
Maluccio, M.; Covey, A. Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma. CA Cancer J. Clin., 2012, 62(6), 394-399.
[http://dx.doi.org/10.3322/caac.21161] [PMID: 23070690]
[11]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[12]
Hindupur, S.K.; Colombi, M.; Fuhs, S.R.; Matter, M.S.; Guri, Y.; Adam, K.; Cornu, M.; Piscuoglio, S.; Ng, C.K.Y.; Betz, C.; Liko, D.; Quagliata, L.; Moes, S.; Jenoe, P.; Terracciano, L.M.; Heim, M.H.; Hunter, T.; Hall, M.N. The protein histidine phosphatase LHPP is a tumour suppressor. Nature, 2018, 555(7698), 678-682.
[http://dx.doi.org/10.1038/nature26140] [PMID: 29562234]
[13]
Llovet, J.M.; Montal, R.; Sia, D.; Finn, R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol., 2018, 15(10), 599-616.
[http://dx.doi.org/10.1038/s41571-018-0073-4] [PMID: 30061739]
[14]
Pinna, A.D.; Yang, T.; Mazzaferro, V.; De Carlis, L.; Zhou, J.; Roayaie, S.; Shen, F.; Sposito, C.; Cescon, M.; Di Sandro, S.; Yi-Feng, H. Liver transplantation and hepatic resection can achieve cure for hepatocellular carcinoma. Ann. Surg., 2019, 269(4)e59
[http://dx.doi.org/10.1097/SLA.0000000000002889] [PMID: 30080736]
[15]
Bruix, J.; Fuster, J. A snapshot of the effective indications and results of surgery for hepatocellular carcinoma in tertiary referral centers: is it adherent to the EASL/AASLD recommendations? an observational study of the HCC East-West study group. Ann. Surg., 2015, 262(1)e30
[http://dx.doi.org/10.1097/SLA.0000000000000381] [PMID: 24374519]
[16]
Wang, J.H.; Wang, C.C.; Hung, C.H.; Chen, C.L.; Lu, S.N. Survival comparison between surgical resection and radiofrequency ablation for patients in BCLC very early/early stage hepatocellular carcinoma. J. Hepatol., 2012, 56(2), 412-418.
[http://dx.doi.org/10.1016/j.jhep.2011.05.020] [PMID: 21756858]
[17]
Forner, A.; Llovet, J.M.; Bruix, J. Hepatocellular carcinoma. Lancet, 2012, 379(9822), 1245-1255.
[http://dx.doi.org/10.1016/S0140-6736(11)61347-0] [PMID: 22353262]
[18]
Ng, K.K.; Lo, C.M.; Chan, S.C.; Chok, K.S.; Cheung, T.T.; Fan, S.T. Liver transplantation for hepatocellular carcinoma: the Hong Kong experience. J. Hepatobiliary Pancreat. Sci., 2010, 17(5), 548-554.
[http://dx.doi.org/10.1007/s00534-009-0165-8] [PMID: 19760139]
[19]
Poon, R.T.; Fan, S.T. Hepatectomy for hepatocellular carcinoma: patient selection and postoperative outcome. Liver Transpl., 2004, 10(2)(Suppl. 1), S39-S45.
[http://dx.doi.org/10.1002/lt.20040] [PMID: 14762838]
[20]
Qi, X.; Ng, K.T.; Lian, Q.Z.; Liu, X.B.; Li, C.X.; Geng, W.; Ling, C.C.; Ma, Y.Y.; Yeung, W.H.; Tu, W.W.; Fan, S.T.; Lo, C.M.; Man, K. Clinical significance and therapeutic value of glutathione peroxidase 3 (GPx3) in hepatocellular carcinoma. Oncotarget, 2014, 5(22), 11103-11120.
[http://dx.doi.org/10.18632/oncotarget.2549] [PMID: 25333265]
[21]
Ling, S.; Tian, Y.; Zhang, H.; Jia, K.; Feng, T.; Sun, D.; Gao, Z.; Xu, F.; Hou, Z.; Li, Y.; Wang, L. Metformin reverses multidrug resistance in human hepatocellular carcinoma Bel 7402/5 fluorouracil cells. Mol. Med. Rep., 2014, 10(6), 2891-2897.
[http://dx.doi.org/10.3892/mmr.2014.2614] [PMID: 25310259]
[22]
Jackson, I.M.; Scott, P.J.H.; Thompson, S. Clinical applications of radiolabeled peptides for PET. Semin. Nucl. Med., 2017, 47(5), 493-523.
[http://dx.doi.org/10.1053/j.semnuclmed.2017.05.007] [PMID: 28826523]
[23]
Krenning, E.P.; Bakker, W.H.; Breeman, W.A.; Koper, J.W.; Kooij, P.P.; Ausema, L.; Lameris, J.S.; Reubi, J.C.; Lamberts, S.W. Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet, 1989, 1(8632), 242-244.
[http://dx.doi.org/10.1016/S0140-6736(89)91258-0] [PMID: 2563413]
[24]
Tatarinov, Ius Detection of embryo-specific alpha-globulin in the blood serum of a patient with primary liver cancer. Vopr. Med. Khim., 1964, 10, 90-91.
[PMID: 14207501]
[25]
Chayvialle, J.A.; Ganguli, P.C. Radioimmunoassay of alpha-fetoprotein in human plasma. Lancet, 1973, 1(7816), 1355-1357.
[http://dx.doi.org/10.1016/S0140-6736(73)91676-0] [PMID: 4122743]
[26]
Waldmann, T.A.; McIntire, K.R. The use of a radioimmunoassay for alpha-fetoprotein in the diagnosis of malignancy. cancer, 1974, 34(4), 1510-1515.
[http://dx.doi.org/10.1002/1097-0142(197410)34:8+<1510::aid-cncr2820340824>3.0.co;2-y] [PMID: 4138906]
[27]
Tafreshi, N.K.; Enkemann, S.A.; Bui, M.M.; Lloyd, M.C.; Abrahams, D.; Huynh, A.S.; Kim, J.; Grobmyer, S.R.; Carter, W.B.; Vagner, J.; Gillies, R.J.; Morse, D.L. A mammaglobin-A targeting agent for noninvasive detection of breast cancer metastasis in lymph nodes. Cancer Res., 2011, 71(3), 1050-1059.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3091] [PMID: 21169406]
[28]
Attwa, M.H.; El-Etreby, S.A. Guide for diagnosis and treatment of hepatocellular carcinoma. World J. Hepatol., 2015, 7(12), 1632-1651.
[http://dx.doi.org/10.4254/wjh.v7.i12.1632] [PMID: 26140083]
[29]
Mirschberger, C.; Schiller, C.B.; Schräml, M.; Dimoudis, N.; Friess, T.; Gerdes, C.A.; Reiff, U.; Lifke, V.; Hoelzlwimmer, G.; Kolm, I.; Hopfner, K.P.; Niederfellner, G.; Bossenmaier, B. RG7116, a therapeutic antibody that binds the inactive HER3 receptor and is optimized for immune effector activation. Cancer Res., 2013, 73(16), 5183-5194.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0099] [PMID: 23780344]
[30]
Ho, M.; Kim, H. Glypican-3: a new target for cancer immunotherapy. Eur. J. Cancer, 2011, 47(3), 333-338.
[http://dx.doi.org/10.1016/j.ejca.2010.10.024] [PMID: 21112773]
[31]
Galluzzi, L.; Kepp, O.; Vander Heiden, M.G.; Kroemer, G. Metabolic targets for cancer therapy. Nat. Rev. Drug Discov., 2013, 12(11), 829-846.
[http://dx.doi.org/10.1038/nrd4145] [PMID: 24113830]
[32]
Hoelder, S.; Clarke, P.A.; Workman, P. Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol. Oncol., 2012, 6(2), 155-176.
[http://dx.doi.org/10.1016/j.molonc.2012.02.004] [PMID: 22440008]
[33]
Ahlgren, S. Targeting of HER2-expressing tumors with a site-specifically 99mTc-labeled recombinant affibody molecule, ZHER2:2395, with C-terminally engineered cysteine. J. Nucl. Med., 2009, 50(5), 781-789.
[http://dx.doi.org/10.2967/jnumed.108.056929] [PMID: 19372467]
[34]
Berndorff, D.; Borkowski, S.; Moosmayer, D.; Viti, F.; Muller-Tiemann, B.; Sieger, S.; Friebe, M.; Hilger, C.S.; Zardi, L.; Neri, D.; Dinkelborg, L.M. Imaging of tumor angiogenesis using 99mTc-labeled human recombinant anti-ED-B fibronectin antibody fragments. J. Society Nucl. Med., 2006, 47(10), 1707-1716.
[PMID: 17015908]
[35]
Wallberg, H.; Orlova, A.; Altai, M.; Hosseinimehr, S.J.; Widstrom, C.; Malmberg, J.; Stahl, S.; Tolmachev, V. Molecular design and optimization of 99mTc-labeled recombinant affibody molecules improves their biodistribution and imaging properties. J. Nucl. Med., 2011, 52(3), 461-469.
[http://dx.doi.org/10.2967/jnumed.110.083592] [PMID: 21321280]
[36]
Langer, M.; Beck-Sickinger, A.G. Peptides as carrier for tumor diagnosis and treatment. Curr. Med. Chem. Anticancer Agents, 2001, 1(1), 71-93.
[http://dx.doi.org/10.2174/1568011013354877] [PMID: 12678771]
[37]
Filmus, J.; Capurro, M.; Rast, J. Glypicans. Genome Biol., 2008, 9(5), 224.
[http://dx.doi.org/10.1186/gb-2008-9-5-224] [PMID: 18505598]
[38]
Haruyama, Y.; Kataoka, H. Glypican-3 is a prognostic factor and an immunotherapeutic target in hepatocellular carcinoma. World J. Gastroenterol., 2016, 22(1), 275-283.
[http://dx.doi.org/10.3748/wjg.v22.i1.275] [PMID: 26755876]
[39]
Wu, Y.; Liu, H.; Ding, H. GPC-3 in hepatocellular carcinoma: current perspectives. J. Hepatocell. Carcinoma, 2016, 3, 63-67.
[http://dx.doi.org/10.2147/JHC.S116513] [PMID: 27878117]
[40]
Li, N.; Gao, W.; Zhang, Y.F.; Ho, M. Glypicans as cancer therapeutic targets. Trends Cancer, 2018, 4(11), 741-754.
[http://dx.doi.org/10.1016/j.trecan.2018.09.004] [PMID: 30352677]
[41]
Capurro, M.; Wanless, I.R.; Sherman, M.; Deboer, G.; Shi, W.; Miyoshi, E.; Filmus, J. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology, 2003, 125(1), 89-97.
[http://dx.doi.org/10.1016/S0016-5085(03)00689-9] [PMID: 12851874]
[42]
Hsu, H.C.; Cheng, W.; Lai, P.L. Cloning and expression of a developmentally regulated transcript MXR7 in hepatocellular carcinoma: biological significance and temporospatial distribution. Cancer Res., 1997, 57(22), 5179-5184.
[PMID: 9371521]
[43]
Liu, X.; Wang, S.K.; Zhang, K.; Zhang, H.; Pan, Q.; Liu, Z.; Pan, H.; Xue, L.; Yen, Y.; Chu, P.G. Expression of glypican 3 enriches hepatocellular carcinoma development-related genes and associates with carcinogenesis in cirrhotic livers. Carcinogenesis, 2015, 36(2), 232-242.
[http://dx.doi.org/10.1093/carcin/bgu245] [PMID: 25542894]
[44]
Midorikawa, Y.; Ishikawa, S.; Iwanari, H.; Imamura, T.; Sakamoto, H.; Miyazono, K.; Kodama, T.; Makuuchi, M.; Aburatani, H. Glypican-3, overexpressed in hepatocellular carcinoma, modulates FGF2 and BMP-7 signaling. Int. J. Cancer, 2003, 103(4), 455-465.
[http://dx.doi.org/10.1002/ijc.10856] [PMID: 12478660]
[45]
Hippo, Y.; Watanabe, K.; Watanabe, A.; Midorikawa, Y.; Yamamoto, S.; Ihara, S.; Tokita, S.; Iwanari, H.; Ito, Y.; Nakano, K.; Nezu, J.; Tsunoda, H.; Yoshino, T.; Ohizumi, I.; Tsuchiya, M.; Ohnishi, S.; Makuuchi, M.; Hamakubo, T.; Kodama, T.; Aburatani, H. Identi-fication of soluble NH2-terminal fragment of glypican-3 as a serological marker for early-stage hepatocellular carcinoma. Cancer Res., 2004, 64(7), 2418-2423.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2191] [PMID: 15059894]
[46]
Jin, M.; Zhou, X.; Yearsley, M.; Frankel, W.L. Liver metastases of neuroendocrine tumors rarely show overlapping immunoprofile with hepatocellular carcinomas. Endocr. Pathol., 2016, 27(3), 253-258.
[http://dx.doi.org/10.1007/s12022-016-9442-7] [PMID: 27300354]
[47]
Gao, W.; Kim, H.; Feng, M.; Phung, Y.; Xavier, C.P.; Rubin, J.S.; Ho, M. Inactivation of Wnt signaling by a human antibody that recognizes the heparan sulfate chains of glypican-3 for liver cancer therapy. Hepatology, 2014, 60(2), 576-587.
[http://dx.doi.org/10.1002/hep.26996] [PMID: 24492943]
[48]
Miao, H.L.; Pan, Z.J.; Lei, C.J.; Wen, J.Y.; Li, M.Y.; Liu, Z.K.; Qiu, Z.D.; Lin, M.Z.; Chen, N.P.; Chen, M. Knockdown of GPC3 inhibits the proliferation of Huh7 hepatocellular carcinoma cells through down-regulation of YAP. J. Cell. Biochem., 2013, 114(3), 625-631.
[http://dx.doi.org/10.1002/jcb.24404] [PMID: 23060277]
[49]
Capurro, M.; Martin, T.; Shi, W.; Filmus, J. Glypican-3 binds to Frizzled and plays a direct role in the stimulation of canonical Wnt signaling. J. Cell Sci., 2014, 127(Pt 7), 1565-1575.
[http://dx.doi.org/10.1242/jcs.140871] [PMID: 24496449]
[50]
Zittermann, S.I.; Capurro, M.I.; Shi, W.; Filmus, J. Soluble glypican 3 inhibits the growth of hepatocellular carcinoma in vitro and in vivo. Int. J. Cancer, 2010, 126(6), 1291-1301.
[http://dx.doi.org/10.1002/ijc.24941] [PMID: 19816934]
[51]
Feng, M.; Gao, W.; Wang, R.; Chen, W.; Man, Y.G.; Figg, W.D.; Wang, X.W.; Dimitrov, D.S.; Ho, M. Therapeutically targeting glypican-3 via a conformation-specific single-domain antibody in hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA, 2013, 110(12), E1083-E1091.
[http://dx.doi.org/10.1073/pnas.1217868110] [PMID: 23471984]
[52]
Nakatsura, T.; Yoshitake, Y.; Senju, S.; Monji, M.; Komori, H.; Motomura, Y.; Hosaka, S.; Beppu, T.; Ishiko, T.; Kamohara, H.; Ash-ihara, H.; Katagiri, T.; Furukawa, Y.; Fujiyama, S.; Ogawa, M.; Nakamura, Y.; Nishimura, Y. Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem. Biophys. Res. Commun., 2003, 306(1), 16-25.
[http://dx.doi.org/10.1016/S0006-291X(03)00908-2] [PMID: 12788060]
[53]
Chen, L.; Wu, L.L.; Zhang, Z.L.; Hu, J.; Tang, M.; Qi, C.B.; Li, N.; Pang, D.W. Biofunctionalized magnetic nanospheres-based cell sorting strategy for efficient isolation, detection and subtype analyses of heterogeneous circulating hepatocellular carcinoma cells. Biosens. Bioelectron., 2016, 85, 633-640.
[http://dx.doi.org/10.1016/j.bios.2016.05.071] [PMID: 27240010]
[54]
Wang, X.Y.; Degos, F.; Dubois, S.; Tessiore, S.; Allegretta, M.; Guttmann, R.D.; Jothy, S.; Belghiti, J.; Bedossa, P.; Paradis, V. Glypican-3 expression in hepatocellular tumors: diagnostic value for preneoplastic lesions and hepatocellular carcinomas. Hum. Pathol., 2006, 37(11), 1435-1441.
[http://dx.doi.org/10.1016/j.humpath.2006.05.016] [PMID: 16949914]
[55]
Kandil, D.H.; Cooper, K. Glypican-3: a novel diagnostic marker for hepatocellular carcinoma and more. Adv. Anat. Pathol., 2009, 16(2), 125-129.
[http://dx.doi.org/10.1097/PAP.0b013e3181992455] [PMID: 19550373]
[56]
Chen, I.P.; Ariizumi, S.; Nakano, M.; Yamamoto, M. Positive glypican-3 expression in early hepatocellular carcinoma predicts recur-rence after hepatectomy. J. Gastroenterol., 2014, 49(1), 117-125.
[http://dx.doi.org/10.1007/s00535-013-0793-2] [PMID: 23532638]
[57]
Wang, H.L.; Anatelli, F.; Zhai, Q.J.; Adley, B.; Chuang, S.T.; Yang, X.J. Glypican-3 as a useful diagnostic marker that distinguishes hepatocellular carcinoma from benign hepatocellular mass lesions. Arch. Pathol. Lab. Med., 2008, 132(11), 1723-1728.
[http://dx.doi.org/10.1043/1543-2165-132.11.1723] [PMID: 18976006]
[58]
Zhou, F.; Shang, W.; Yu, X.; Tian, J. Glypican-3: A promising biomarker for hepatocellular carcinoma diagnosis and treatment. Med. Res. Rev., 2018, 38(2), 741-767.
[http://dx.doi.org/10.1002/med.21455] [PMID: 28621802]
[59]
Song, X.; Shang, W.; Peng, L.; Jiang, H.; Wang, K.; Fang, C.; Tian, J. Novel GPC3-binding WS2-Ga3+-PEG-peptide nanosheets for in vivo bimodal imaging-guided photothermal therapy. Nanomedicine (Lond.), 2018, 13(14), 1681-1693.
[http://dx.doi.org/10.2217/nnm-2017-0367] [PMID: 30091395]
[60]
Yang, X.; Liu, H.; Sun, C.K.; Natarajan, A.; Hu, X.; Wang, X.; Allegretta, M.; Guttmann, R.D.; Gambhir, S.S.; Chua, M.S.; Cheng, Z.; So, S.K. Imaging of hepatocellular carcinoma patient-derived xenografts using 89Zr-labeled anti-glypican-3 monoclonal antibody. Biomaterials, 2014, 35(25), 6964-6971.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.089] [PMID: 24836949]
[61]
Sham, J.G.; Kievit, F.M.; Grierson, J.R.; Miyaoka, R.S.; Yeh, M.M.; Zhang, M.; Yeung, R.S.; Minoshima, S.; Park, J.O. Glypican-3-targeted 89Zr PET imaging of hepatocellular carcinoma. J. Nucl. Med., 2014, 55(6), 799-804.
[http://dx.doi.org/10.2967/jnumed.113.132118] [PMID: 24627434]
[62]
Sham, J.G.; Kievit, F.M.; Grierson, J.R.; Chiarelli, P.A.; Miyaoka, R.S.; Zhang, M.; Yeung, R.S.; Minoshima, S.; Park, J.O. Glypican-3-targeting F(ab’)2 for 89Zr PET of hepatocellular carcinoma. J. Nucl. Med., 2014, 55(12), 2032-2037.
[http://dx.doi.org/10.2967/jnumed.114.145102 ] [PMID: 25359880]
[63]
Wang, Z.; Han, Y.J.; Huang, S.; Wang, M.; Zhou, W.L.; Li, H.S.; Wang, Q.S.; Wu, H.B. Imaging the expression of glypican-3 in hepatocellular carcinoma by PET. Amino Acids, 2018, 50(2), 309-320.
[http://dx.doi.org/10.1007/s00726-017-2517-z] [PMID: 29204748]
[64]
Zhu, D.; Qin, Y.; Wang, J.; Zhang, L.; Zou, S.; Zhu, X.; Zhu, L. Novel glypican-3-binding peptide for in vivo hepatocellular carcinoma fluorescent imaging. Bioconjug. Chem., 2016, 27(3), 831-839.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00030] [PMID: 26850086]
[65]
Lee, Y.L.; Ahn, B.C.; Lee, Y.; Lee, S.W.; Cho, J.Y.; Lee, J. Targeting of hepatocellular carcinoma with glypican-3- targeting peptide ligand. J. Eur. Pept. Sci., 2011, 17(11), 763-769.
[http://dx.doi.org/10.1002/psc.1400P] [PMID: 21976137]
[66]
Zhang, Q.; Han, Z.; Tao, J.; Zhao, M.; Zhang, W.; Li, P.; Tang, L.; Gu, Y. An innovative peptide with high affinity to GPC3 for hepa-tocellular carcinoma diagnosis. Biomater. Sci., 2018, 7(1), 159-167.
[http://dx.doi.org/10.1039/C8BM01016A] [PMID: 30417190]
[67]
Qin, Z.; Wang, J.; Wang, Y.; Wang, G.; Wang, X.; Zhou, Z.; Liu, G.; Gao, S.; Zhu, L. Identification of a glypican-3-binding peptide for in vivo non-invasive human hepatocellular carcinoma detection. Macromol. Biosci., 2017, 17(4)
[http://dx.doi.org/10.1002/mabi.201600335] [PMID: 27862961]
[68]
Schlessinger, J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell, 2002, 110(6), 669-672.
[http://dx.doi.org/10.1016/S0092-8674(02)00966-2] [PMID: 12297041]
[69]
Herbst, R.S.; Hong, W.K. IMC-C225, an anti-epidermal growth factor receptor monoclonal antibody for treatment of head and neck cancer. Semin. Oncol., 2002, 29(5)(Suppl. 14), 18-30.
[http://dx.doi.org/10.1016/S0093-7754(02)70087-0] [PMID: 12422310]
[70]
Neal, D.E.; Mellon, K. Epidermal growth factor receptor and bladder cancer: a review. Urol. Int., 1992, 48(4), 365-371.
[http://dx.doi.org/10.1159/000282357] [PMID: 1357809]
[71]
Kim, Y.B.; Kim, G.E.; Cho, N.H.; Pyo, H.R.; Shim, S.J.; Chang, S.K.; Park, H.C.; Suh, C.O.; Park, T.K.; Kim, B.S. Overexpression of cyclooxygenase-2 is associated with a poor prognosis in patients with squamous cell carcinoma of the uterine cervix treated with radiation and concurrent chemotherapy. Cancer, 2002, 95(3), 531-539.
[http://dx.doi.org/10.1002/cncr.10684] [PMID: 12209745]
[72]
Alper, O.; Bergmann-Leitner, E.S.; Bennett, T.A.; Hacker, N.F.; Stromberg, K.; Stetler-Stevenson, W.G. Epidermal growth factor receptor signaling and the invasive phenotype of ovarian carcinoma cells. J. Natl. Cancer Inst., 2001, 93(18), 1375-1384.
[http://dx.doi.org/10.1093/jnci/93.18.1375] [PMID: 11562388]
[73]
Salomon, D.S.; Brandt, R.; Ciardiello, F.; Normanno, N. Epidermal growth factor-related peptides and their receptors in human ma-lignancies. Crit. Rev. Oncol. Hematol., 1995, 19(3), 183-232.
[http://dx.doi.org/10.1016/1040-8428(94)00144-I] [PMID: 7612182]
[74]
Slichenmyer, W.J.; Fry, D.W. Anticancer therapy targeting the erbB family of receptor tyrosine kinases. Semin. Oncol., 2001, 28(5)(Suppl. 16), 67-79.
[http://dx.doi.org/10.1016/S0093-7754(01)90284-2] [PMID: 11706398]
[75]
Liu, X.; Wang, P.; Zhang, C.; Ma, Z. Epidermal growth factor receptor (EGFR): a rising star in the era of precision medicine of lung cancer. Oncotarget, 2017, 8(30), 50209-50220.
[http://dx.doi.org/10.18632/oncotarget.16854] [PMID: 28430586]
[76]
Abedi, S.M.; Mardanshahi, A.; Shahhosseini, R.; Hosseinimehr, S.J. Nuclear medicine for imaging of epithelial ovarian cancer. Future Oncol., 2016, 12(9), 1165-1177.
[http://dx.doi.org/10.2217/fon.16.19] [PMID: 26984362]
[77]
Liu, S.; Edwards, D.S. 99mTc-labeled small peptides as diagnostic radiopharmaceuticals. Chem. Rev., 1999, 99(9), 2235-2268.
[http://dx.doi.org/10.1021/cr980436l] [PMID: 11749481]
[78]
Mishani, E.; Hagooly, A. Strategies for molecular imaging of epidermal growth factor receptor tyrosine kinase in cancer. J. Nucl. Med., 2009, 50(8), 1199-1202.
[http://dx.doi.org/10.2967/jnumed.109.062117 ] [PMID: 19617320]
[79]
Song, S.; Liu, D.; Peng, J.; Deng, H.; Guo, Y.; Xu, L.X.; Miller, A.D.; Xu, Y. Novel peptide ligand directs liposomes toward EGF-R high-expressing cancer cells in vitro and in vivo. FASEB J., 2009, 23(5), 1396-1404.
[http://dx.doi.org/10.1096/fj.08-117002] [PMID: 19124558]
[80]
Kazemi, Z.; Zahmatkesh, M.H.; Abedi, S.M.; Hosseinimehr, S.J. Biological Evaluation of 99mTc-HYNIC-EDDA/tricine-(Ser)-D4 peptide for tumor targeting. Curr. Radiopharm., 2017, 10(2), 123-130.
[http://dx.doi.org/10.2174/1874471010666170519165430] [PMID: 28530534]
[81]
Zahmatkesh, M.H.; Abedi, S.M.; Hosseinimehr, S.J. 99mTc-HYNIC-D4 peptide: a new small radiolabeled peptide for non small cell lung tumor targeting. Anticancer. Agents Med. Chem., 2017, 17(5), 734-740.
[http://dx.doi.org/10.2174/1871520616666160907142130] [PMID: 27604575]
[82]
Haddad Zahmatkesh, M.; Abedi, S.M.; Hosseinimehr, S.J. Preparation and biological evaluation of 99mTc-HYNIC-(Ser)3-D4 peptide for targeting and imaging of non-small-cell lung cancer. Future Oncol., 2017, 13(10), 893-905.
[http://dx.doi.org/10.2217/fon-2016-0426] [PMID: 28110557]
[83]
Li, Z.; Zhao, R.; Wu, X.; Sun, Y.; Yao, M.; Li, J.; Xu, Y.; Gu, J. Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. FASEB J., 2005, 19(4), 1978-1985.
[http://dx.doi.org/10.2217/fon-2016-0426] [PMID: 28110557]
[84]
Song, S.; Liu, D.; Peng, J.; Sun, Y.; Li, Z.; Gu, J.R.; Xu, Y. Peptide ligand-mediated liposome distribution and targeting to EGFR expressing tumor in vivo. Int. J. Pharm., 2008, 363(1-2), 155-161.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.012] [PMID: 18692120]
[85]
Master, A.; Malamas, A.; Solanki, R.; Clausen, D.M.; Eiseman, J.L.; Sen Gupta, A. A cell-targeted photodynamic nanomedicine strategy for head and neck cancers. Mol. Pharm., 2013, 10(5), 1988-1997.
[http://dx.doi.org/10.1021/mp400007k] [PMID: 23531079]
[86]
Talekar, M.; Ganta, S.; Singh, A.; Amiji, M.; Kendall, J.; Denny, W.A.; Garg, S. Phosphatidylinositol 3-kinase inhibitor (PIK75) con-taining surface functionalized nanoemulsion for enhanced drug delivery, cytotoxicity and pro-apoptotic activity in ovarian cancer cells. Pharm. Res., 2012, 29(10), 2874-2886.
[http://dx.doi.org/10.1007/s11095-012-0793-6] [PMID: 22653667]
[87]
Ren, H.; Gao, C.; Zhou, L.; Liu, M.; Xie, C.; Lu, W. EGFR-targeted poly(ethylene glycol)-distearoylphosphatidyl-ethanolamine micelle loaded with paclitaxel for laryngeal cancer: preparation, characterization and in vitro evaluation. Drug Deliv., 2015, 22(6), 785-794.
[http://dx.doi.org/10.3109/10717544.2014.896057] [PMID: 24670093]
[88]
Grünwald, G.K.; Vetter, A.; Klutz, K.; Willhauck, M.J.; Schwenk, N.; Senekowitsch-Schmidtke, R.; Schwaiger, M.; Zach, C.; Wagner, E.; Göke, B.; Holm, P.S.; Ogris, M.; Spitzweg, C. EGFR-targeted adenovirus dendrimer coating for improved systemic delivery of the theranostic NIS gene. Mol. Ther. Nucleic Acids, 2013.
[http://dx.doi.org/10.1038/mtna.2013.58] [PMID: 24193032]
[89]
Rahmanian, N.; Hosseinimehr, S.J.; Khalaj, A.; Noaparast, Z.; Abedi, S.M.; Sabzevari, O. 99mTc-radiolabeled GE11-modified peptide for ovarian tumor targeting. Daru, 2017, 25(1), 13.
[http://dx.doi.org/10.1186/s40199-017-0179-8] [PMID: 28464952]
[90]
Yu, H.M.; Chen, J.H.; Lin, K.L.; Lin, W.J. Synthesis of (68)Ga-labeled NOTA-RGD-GE11 heterodimeric peptide for dual integrin and epidermal growth factor receptor-targeted tumor imaging. J. Labelled Comp. Radiopharm., 2015, 58(7), 299-303.
[http://dx.doi.org/10.1002/jlcr.3296] [PMID: 25997858]
[91]
Chen, C.J.; Chan, C.H.; Lin, K.L.; Chen, J.H.; Tseng, C.H.; Wang, P.Y.; Chien, C.Y.; Yu, H.M.; Lin, W.J. 68Ga-labelled NOTA-RGD-GE11 peptide for dual integrin and EGFR-targeted tumour imaging. Nucl. Med. Biol., 2019, 68-69, 22-30.
[http://dx.doi.org/10.1016/j.nucmedbio.2018.11.003] [PMID: 30578136]
[92]
Striese, F.; Sihver, W.; Gao, F.; Bergmann, R.; Walther, M.; Pietzsch, J.; Steinbach, J.; Pietzsch, H.J. Exploring pitfalls of 64Cu-labeled EGFR-targeting peptide GE11 as a potential PET tracer. Amino Acids, 2018, 50(10), 1415-1431.
[http://dx.doi.org/10.1007/s00726-018-2616-5] [PMID: 30039310]
[93]
Kumar, S.R.; Quinn, T.P.; Deutscher, S.L. Evaluation of an 111In-radiolabeled peptide as a targeting and imaging agent for ErbB-2 receptor expressing breast carcinomas. Clin. Cancer Res., 2007, 13(20), 6070-6079.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0160] [PMID: 17947470]
[94]
Kumar, S.R.; Gallazzi, F.A.; Ferdani, R.; Anderson, C.J.; Quinn, T.P.; Deutscher, S.L. In vitro and in vivo evaluation of 6 4Cu-radiolabeled KCCYSL peptides for targeting epidermal growth factor receptor-2 in breast carcinomas. Cancer Biother. Radiopharm., 2010, 25(6), 693-703.
[http://dx.doi.org/10.1089/cbr.2010.0820] [PMID: 21204764]
[95]
Choi, K.J.; Baik, I.H.; Ye, S.K.; Lee, Y.H. Molecular targeted therapy for hepatocellular carcinoma: present status and future directions. Biol. Pharm. Bull., 2015, 38(7), 986-991.
[http://dx.doi.org/10.1248/bpb.b15-00231] [PMID: 26133708]
[96]
Bouattour, M.; Raymond, E.; Qin, S.; Cheng, A.L.; Stammberger, U.; Locatelli, G.; Faivre, S. Recent developments of c-Met as a therapeutic target in hepatocellular carcinoma. Hepatology, 2018, 67(3), 1132-1149.
[http://dx.doi.org/10.1002/hep.29496] [PMID: 28862760]
[97]
Ma, P.C.; Tretiakova, M.S.; MacKinnon, A.C.; Ramnath, N.; Johnson, C.; Dietrich, S.; Seiwert, T.; Christensen, J.G.; Jagadeeswaran, R.; Krausz, T.; Vokes, E.E.; Husain, A.N.; Salgia, R. Expression and mutational analysis of MET in human solid cancers. Genes Chromosomes Cancer, 2008, 47(12), 1025-1037.
[http://dx.doi.org/10.1002/gcc.20604] [PMID: 18709663]
[98]
Okuma, H.S.; Kondo, S. Trends in the development of MET inhibitors for hepatocellular carcinoma. Future Oncol., 2016, 12(10), 1275-1286.
[http://dx.doi.org/10.2217/fon.16.3] [PMID: 26984595]
[99]
Qi, X.S.; Guo, X.Z.; Han, G.H.; Li, H.Y.; Chen, J. MET inhibitors for treatment of advanced hepatocellular carcinoma: A review. World J. Gastroenterol., 2015, 21(18), 5445-5453.
[http://dx.doi.org/10.3748/wjg.v21.i18.5445] [PMID: 25987766]
[100]
Giordano, S.; Columbano, A. Met as a therapeutic target in HCC: facts and hopes. J. Hepatol., 2014, 60(2), 442-452.
[http://dx.doi.org/10.1016/j.jhep.2013.09.009] [PMID: 24045150]
[101]
Goyal, L.; Muzumdar, M.D.; Zhu, A.X. Targeting the HGF/c-MET pathway in hepatocellular carcinoma. Clin. Cancer Res., 2013, 19(9), 2310-2318.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2791] [PMID: 23388504]
[102]
Fasolo, A.; Sessa, C.; Gianni, L.; Broggini, M. Seminars in clinical pharmacology: an introduction to MET inhibitors for the medical oncologist. Ann. Oncol., 2013, 24(1), 14-20.
[http://dx.doi.org/10.1093/annonc/mds520] [PMID: 23110808]
[103]
Trusolino, L.; Bertotti, A.; Comoglio, P.M. MET signalling: principles and functions in development, organ regeneration and cancer. Nat. Rev. Mol. Cell Biol., 2010, 11(12), 834-848.
[http://dx.doi.org/10.1038/nrm3012] [PMID: 21102609]
[104]
Jagoda, E.M.; Lang, L.; Bhadrasetty, V.; Histed, S.; Williams, M.; Kramer-Marek, G.; Mena, E.; Rosenblum, L.; Marik, J.; Tinianow, J.N.; Merchant, M.; Szajek, L.; Paik, C.; Cecchi, F.; Raffensperger, K.; Jose-Dizon, J.M.; Bottaro, D.P.; Choyke, P. Immuno-PET of the hepatocyte growth factor receptor Met using the 1-armed antibody onartuzumab. J. Nucl. Med., 2012, 53(10), 1592-1600.
[http://dx.doi.org/10.2967/jnumed.111.102293] [PMID: 22917884]
[105]
Terwisscha van Scheltinga, A.G.; Lub-de Hooge, M.N.; Hinner, M.J.; Verheijen, R.B.; Allersdorfer, A.; Hulsmeyer, M.; Nagengast, W.B.; Schroder, C.P.; Kosterink, J.G.; de Vries, E.G.; Audoly, L.; Olwill, S.A. In vivo visualization of MET tumor expression and an-ticalin biodistribution with the MET-specific anticalin 89Zr-PRS-110 PET tracer. J. Nucl. Med., 2014, 55(4), 665-671.
[http://dx.doi.org/10.2967/jnumed.113.124941] [PMID: 24614223]
[106]
Zhao, P.; Grabinski, T.; Gao, C.; Skinner, R.S.; Giambernardi, T.; Su, Y.; Hudson, E.; Resau, J.; Gross, M.; Vande Woude, G.F.; Hay, R.; Cao, B. Identification of a met-binding peptide from a phage display library. Clin. Cancer Res., 2007, 13(20), 6049-6055.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0035 ] [PMID: 17947467]
[107]
Li, W.; Zheng, H.; Xu, J.; Cao, S.; Xu, X.; Xiao, P. Imaging c-Met expression using 18F-labeled binding peptide in human cancer xenografts. PLoS One, 2018, 13(6)e0199024
[http://dx.doi.org/10.1371/journal.pone.0199024] [PMID: 29894497]
[108]
Arulappu, A.; Battle, M.; Eisenblaetter, M.; McRobbie, G.; Khan, I.; Monypenny, J.; Weitsman, G.; Galazi, M.; Hoppmann, S.; Gazinska, P.; Wulaningsih, W.; Dalsgaard, G.T.; Macholl, S.; Ng, T. c-Met PET imaging detects early-stage locoregional recurrence of basal-like breast cancer. J. Nucl. Med., 2016, 57(5), 765-770.
[http://dx.doi.org/10.2967/jnumed.115.164384] [PMID: 26635342]
[109]
Kim, K.; Hur, Y.; Ryu, E.K.; Rhim, J.H.; Choi, C.Y.; Baek, C.M.; Lee, J.H.; Chung, J. A neutralizable epitope is induced on HGF upon its interaction with its receptor cMet. Biochem. Biophys. Res. Commun., 2007, 354(1), 115-121.
[http://dx.doi.org/10.1016/j.bbrc.2006.12.164] [PMID: 17214965]
[110]
Kim, E.M.; Park, E.H.; Cheong, S.J.; Lee, C.M.; Jeong, H.J.; Kim, D.W.; Lim, S.T.; Sohn, M.H. In vivo imaging of mesenchymal-epithelial transition factor (c-Met) expression using an optical imaging system. Bioconjug. Chem., 2009, 20(7), 1299-1306.
[http://dx.doi.org/10.1021/bc8005539] [PMID: 19534520]
[111]
Kim, E.M.; Joung, M.H.; Lee, C.M.; Jeong, H.J.; Lim, S.T.; Sohn, M.H.; Kim, D.W. Synthesis of Tc-99m labeled 1,2,3-triazole-4-yl c-met binding peptide as a potential c-met receptor kinase positive tumor imaging agent. Bioorg. Med. Chem. Lett., 2010, 20(14), 4240-4243.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.036] [PMID: 20538463]
[112]
Han, Z.; Xiao, Y.; Wang, K.; Yan, J.; Xiao, Z.; Fang, F.; Jin, Z.; Liu, Y.; Sun, X.; Shen, B. Development of a SPECT tracer to image c-Met expression in a xenograft model of non-small cell lung cancer. J. Nucl. Med., 2018, 59(11), 1686-1691.
[http://dx.doi.org/10.2967/jnumed.117.206730] [PMID: 29777004]
[113]
Katsila, T.; Siskos, A.P.; Tamvakopoulos, C. Peptide and protein drugs: the study of their metabolism and catabolism by mass spec-trometry. Mass Spectrom. Rev., 2012, 31(1), 110-133.
[http://dx.doi.org/10.1002/mas.20340] [PMID: 21698655]
[114]
Ebenhan, T.; Schoeman, I.; Rossouw, D.D.; Grobler, A.; Marjanovic-Painter, B.; Wagener, J.; Kruger, H.G.; Sathekge, M.M.; Zeevaart, J.R. Evaluation of a flexible NOTA-RGD kit solution using Gallium-68 from different 68Ge/68Ga-Generators: pharmacokinetics and biodistribution in nonhuman primates and demonstration of solitary pulmonary nodule imaging in humans. Mol. Imaging Biol., 2017, 19(3), 469-482.
[http://dx.doi.org/10.1007/s11307-016-1014-1] [PMID: 27743211]
[115]
Burggraaf, J.; Kamerling, I.M.; Gordon, P.B.; Schrier, L.; de Kam, M.L.; Kales, A.J.; Bendiksen, R.; Indrevoll, B.; Bjerke, R.M.; Moestue, S.A.; Yazdanfar, S.; Langers, A.M.; Swaerd-Nordmo, M.; Torheim, G.; Warren, M.V.; Morreau, H.; Voorneveld, P.W.; Buckle, T.; van Leeuwen, F.W.; Ødegårdstuen, L.I.; Dalsgaard, G.T.; Healey, A.; Hardwick, J.C. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nat. Med., 2015, 21(8), 955-961.
[http://dx.doi.org/10.1038/nm.3641] [PMID: 26168295]
[116]
Greten, T.F.; Korangy, F.; Manns, M.P.; Malek, N.P. Molecular therapy for the treatment of hepatocellular carcinoma. Br. J. Cancer, 2009, 100(1), 19-23.
[http://dx.doi.org/10.1038/sj.bjc.6604784] [PMID: 19018262]
[117]
Chuma, M.; Terashita, K.; Sakamoto, N. New molecularly targeted therapies against advanced hepatocellular carcinoma: from molecular pathogenesis to clinical trials and future directions. Hepatol. Res., 2015, 45(10), E1-E11.
[http://dx.doi.org/10.1111/hepr.12459] [PMID: 25472913]
[118]
Lee, Y.H.; Seo, D.; Choi, K.J.; Andersen, J.B.; Won, M.A.; Kitade, M.; Gómez-Quiroz, L.E.; Judge, A.D.; Marquardt, J.U.; Raggi, C.; Conner, E.A.; MacLachlan, I.; Factor, V.M.; Thorgeirsson, S.S. Antitumor effects in hepatocarcinoma of isoform-selective inhibition of HDAC2. Cancer Res., 2014, 74(17), 4752-4761.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3531] [PMID: 24958469]
[119]
Jain, R.K.; Tong, R.T.; Munn, L.L. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res., 2007, 67(6), 2729-2735.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4102] [PMID: 17363594]
[120]
Lichtenberger, B.M.; Tan, P.K.; Niederleithner, H.; Ferrara, N.; Petzelbauer, P.; Sibilia, M. Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell, 2010, 140(2), 268-279.
[http://dx.doi.org/10.1016/j.cell.2009.12.046] [PMID: 20141840]
[121]
Fukumura, D.; Xu, L.; Chen, Y.; Gohongi, T.; Seed, B.; Jain, R.K. Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res., 2001, 61(16), 6020-6024.
[PMID: 11507045]
[122]
Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature, 2000, 407(6801), 249-257.
[http://dx.doi.org/10.1038/35025220] [PMID: 11001068]
[123]
Dvorak, H.F. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J. Clin. Oncol., 2002, 20(21), 4368-4380.
[http://dx.doi.org/10.1200/JCO.2002.10.088] [PMID: 12409337]
[124]
Fukumura, D.; Kashiwagi, S.; Jain, R.K. The role of nitric oxide in tumour progression. Nat. Rev. Cancer, 2006, 6(7), 521-534.
[http://dx.doi.org/10.1038/nrc1910] [PMID: 16794635]
[125]
Fan, F.; Wey, J.S.; McCarty, M.F.; Belcheva, A.; Liu, W.; Bauer, T.W.; Somcio, R.J.; Wu, Y.; Hooper, A.; Hicklin, D.J.; Ellis, L.M. Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene, 2005, 24(16), 2647-2653.
[http://dx.doi.org/10.1038/sj.onc.1208246] [PMID: 15735759]
[126]
Wu, Y.; Hooper, A.T.; Zhong, Z.; Witte, L.; Bohlen, P.; Rafii, S.; Hicklin, D.J. The vascular endothelial growth factor receptor (VEGFR-1) supports growth and survival of human breast carcinoma. Int. J. Cancer, 2006, 119(7), 1519-1529.
[http://dx.doi.org/10.1002/ijc.21865] [PMID: 16671089]
[127]
Carrillo de Santa Pau, E.; Arias, F.C.; Caso Peláez, E.; Muñoz Molina, G.M.; Sánchez Hernández, I.; Muguruza Trueba, I.; Moreno Balsalobre, R.; Sacristán López, S.; Gómez Pinillos, A.; del Val Toledo Lobo, M. Prognostic significance of the expression of vascular endothelial growth factors A, B, C, and D and their receptors R1, R2, and R3 in patients with nonsmall cell lung cancer. Cancer, 2009, 115(8), 1701-1712.
[http://dx.doi.org/10.1002/cncr.24193] [PMID: 19197998]
[128]
Wey, J.S.; Fan, F.; Gray, M.J.; Bauer, T.W.; McCarty, M.F.; Somcio, R.; Liu, W.; Evans, D.B.; Wu, Y.; Hicklin, D.J.; Ellis, L.M. Vascular endothelial growth factor receptor-1 promotes migration and invasion in pancreatic carcinoma cell lines. Cancer, 2005, 104(2), 427-438.
[http://dx.doi.org/10.1002/cncr.21145] [PMID: 15952180]
[129]
Giordano, R.J.; Cardó-Vila, M.; Salameh, A.; Anobom, C.D.; Zeitlin, B.D.; Hawke, D.H.; Valente, A.P.; Almeida, F.C.; Nör, J.E.; Sidman, R.L.; Pasqualini, R.; Arap, W. From combinatorial peptide selection to drug prototype (I): targeting the vascular endothelial growth factor receptor pathway. Proc. Natl. Acad. Sci. USA, 2010, 107(11), 5112-5117.
[http://dx.doi.org/10.1073/pnas.0915141107] [PMID: 20190181]
[130]
Rezazadeh, F.; Sadeghzadeh, N.; Abedi, S.M.; Abediankenari, S. 99mTc labeled D(LPR): A novel retro-inverso peptide for VEGF re-ceptor-1 targeted tumor imaging. Nucl. Med. Biol., 2018, 62-63, 54-62.
[http://dx.doi.org/10.1016/j.nucmedbio.2018.05.005] [PMID: 29885559]
[131]
Pallai, P.V.; Richman, S.; Struthers, R.S.; Goodman, M. Approaches to the synthesis of retro-inverso peptides. Int. J. Pept. Protein Res., 1983, 21(1), 84-92.
[http://dx.doi.org/10.1111/j.1399-3011.1983.tb03081.x] [PMID: 6826285]
[132]
Chorev, M. The partial retro-inverso modification: a road traveled together. Biopolymers, 2005, 80(2-3), 67-84.
[http://dx.doi.org/10.1002/bip.20219] [PMID: 15729688]
[133]
Ma, Y.; Liang, S.; Guo, J.; Guo, R.; Wang, H. (18) F labeled RGD-A7R peptide for dual integrin and VEGF-targeted tumor imaging in mice bearing U87MG tumors. J. Labelled Comp. Radiopharm., 2014, 57(11), 627-631.
[http://dx.doi.org/10.1002/jlcr.3222] [PMID: 25294311]
[134]
Lo, A.; Lin, C.T.; Wu, H.C. Hepatocellular carcinoma cell-specific peptide ligand for targeted drug delivery. Mol. Cancer Ther., 2008, 7(3), 579-589.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2359] [PMID: 18347144]
[135]
Ashley, C.E.; Carnes, E.C.; Phillips, G.K.; Durfee, P.N.; Buley, M.D.; Lino, C.A.; Padilla, D.P.; Phillips, B.; Carter, M.B.; Willman, C.L.; Brinker, C.J. Caldeira, Jdo.C.; Chackerian, B.; Wharton, W.; Peabody, D.S. Cell-specific delivery of diverse cargos by bacteri-ophage MS2 virus-like particles. ACS Nano, 2011, 5(7), 5729-5745.
[http://dx.doi.org/10.1021/nn201397z] [PMID: 21615170]
[136]
Li, Y.; Hu, Y.; Xiao, J.; Liu, G.; Li, X.; Zhao, Y.; Tan, H.; Shi, H.; Cheng, D. Investigation of SP94 peptide as a specific probe for hepatocellular carcinoma imaging and therapy. Sci. Rep., 2016, 6, 33511.
[http://dx.doi.org/10.1038/srep33511] [PMID: 27649935]
[137]
Du, Y.Z.; Cai, L.L.; Liu, P.; You, J.; Yuan, H.; Hu, F.Q. Tumor cells-specific targeting delivery achieved by A54 peptide functionalized polymeric micelles. Biomaterials, 2012, 33(34), 8858-8867.
[http://dx.doi.org/10.1016/j.biomaterials.2012.08.043] [PMID: 22959183]
[138]
Gan, Z.F.; Jiang, J.S.; Yang, Y.; Du, B.; Qian, M.; Zhang, P. Immobilization of homing peptide on magnetite nanoparticles and its specificity in vitro. J. Biomed. Mater. Res. A, 2008, 84(1), 10-18.
[http://dx.doi.org/10.1002/jbm.a.31181] [PMID: 17600321]
[139]
Yang, Y.; Jiang, J.S.; Du, B.; Gan, Z.F.; Qian, M.; Zhang, P. Preparation and properties of a novel drug delivery system with both magnetic and biomolecular targeting. J. Mater. Sci. Mater. Med., 2009, 20(1), 301-307.
[http://dx.doi.org/10.1007/s10856-008-3577-0] [PMID: 18791664]
[140]
Du, B.; Han, H.; Wang, Z.; Kuang, L.; Wang, L.; Yu, L.; Wu, M.; Zhou, Z.; Qian, M. targeted drug delivery to hepatocarcinoma in vivo by phage-displayed specific binding peptide. Mol. Cancer Res., 2010, 8(2), 135-144.
[http://dx.doi.org/10.1158/1541-7786.MCR-09-0339] [PMID: 20145035]
[141]
Jing, R.; Zhou, X.; Zhao, J.; Wei, Y.; Zuo, B.; You, A.; Rao, Q.; Gao, X.; Yang, R.; Chen, L.; Lu, Z.; Zhou, Q.; Zhang, N.; Yin, H. Fluorescent peptide highlights micronodules in murine hepatocellular carcinoma models and humans in vitro. Hepatology, 2018, 68(4), 1391-1411.
[http://dx.doi.org/10.1002/hep.29829] [PMID: 29405333]
[142]
Ma, Y.; Yang, M.; Gao, H.; Niu, G.; Yan, Y.; Lang, L.; Kiesewetter, D.O.; Chen, X. Evaluation of fluorine-labeled gastrin-releasing peptide receptor (GRPR) agonists and antagonists by LC/MS. Amino Acids, 2012, 43(4), 1625-1632.
[http://dx.doi.org/10.1007/s00726-012-1238-6] [PMID: 22354143]
[143]
Niedermoser, S.; Chin, J.; Wangler, C.; Kostikov, A.; Bernard-Gauthier, V.; Vogler, N.; Soucy, J.P.; McEwan, A.J.; Schirrmacher, R.; Wangler, B. In vivo evaluation of (1)(8)F-SiFAlin-modified TATE: a potential challenge for (6)(8)Ga-DOTATATE, the clinical Gold standard for somatostatin receptor imaging with PET. J. Nucl. Med., 2015, 56(7), 1100-1105.
[http://dx.doi.org/10.2967/jnumed.114.149583] [PMID: 25977461]
[144]
Hosseinimehr, S.J.; Tolmachev, V.; Orlova, A. Liver uptake of radiolabeled targeting proteins and peptides: considerations for targeting peptide conjugate design. Drug Discov. Today, 2012, 17(21-22), 1224-1232.
[http://dx.doi.org/10.1016/j.drudis.2012.07.002] [PMID: 22781499]
[145]
Fani, M.; Maecke, H.R.; Okarvi, S.M. Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics, 2012, 2(5), 481-501.
[http://dx.doi.org/10.7150/thno.4024] [PMID: 22737187]
[146]
Al-Nahhas, A.; Win, Z.; Szyszko, T.; Singh, A.; Nanni, C.; Fanti, S.; Rubello, D. Gallium-68 PET: a new frontier in receptor cancer imaging. Anticancer Res., 2007, 27(6B), 4087-4094.
[PMID: 18225576]
[147]
Chen, K.; Conti, P.S. Target-specific delivery of peptide-based probes for PET imaging. Adv. Drug Deliv. Rev., 2010, 62(11), 1005-1022.
[http://dx.doi.org/10.1016/j.addr.2010.09.004] [PMID: 20851156]
[148]
Shah, M.; Da Silva, R.; Gravekamp, C.; Libutti, S.K.; Abraham, T.; Dadachova, E. Targeted radionuclide therapies for pancreatic cancer. Cancer Gene Ther., 2015, 22(8), 375-379.
[http://dx.doi.org/10.1038/cgt.2015.32] [PMID: 26227823]
[149]
Jin, Y.; Wang, K.; Tian, J. Preoperative examination and intraoperative identification of hepatocellular carcinoma using a targeted bimodal imaging probe. Bioconjug. Chem., 2018, 29(4), 1475-1484.
[http://dx.doi.org/10.1038/cgt.2015.32] [PMID: 26227823]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy