Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Tree Nuts and Peanuts as a Source of Natural Antioxidants in our Daily Diet

Author(s): Ryszard Amarowicz* and Ronald B. Pegg

Volume 26, Issue 16, 2020

Page: [1898 - 1916] Pages: 19

DOI: 10.2174/1381612826666200318125620

Price: $65

conference banner
Abstract

Tree nuts and peanuts are healthy foods with a proven track record of helping to reduce the incidence of chronic diseases, most notably cardiovascular disease. At the point of consumption, all nuts contain low moisture and ≥ 50% lipid contents, but this is where similarities end. The levels of key nutrients and bioactives including vitamin C, vitamin E, L-arginine, minerals (such as selenium and zinc), and phenolics can differ markedly. Distinctions in the types and quantities of phenolic constituents for tree nut species, as well as the impact of digestion, will affect the nuts’ antioxidant potential in vivo. This work provides some insight into the different types of phenolics found in tree nuts and peanuts, the antioxidant potential of their phenolic extracts using in vitro chemical assays, the effect of thermal processing on the stability of the nuts’ endogenous phenolics, and the impact on biomarkers of human health arising from randomized clinical trials. Key biomarkers include measures in the reduction of LDL oxidation as well as increases in the levels of vitamin E and selected phenolic compounds in blood plasma postprandially from those of baseline.

Keywords: Nuts, phenolics, tocopherols, carotenoids, vitamin C, antioxidant activity, LDL oxidation, in vitro studies, in vivo studies, heat process.

[1]
Barreira JCM, Oliveira MBPP, Ferreira ICFR. Nuts as sources of nutrientsWild Plants, Mushrooms and Nuts Functional Food Properties. Chichester: John Wiley & Sons, Ltd. 2017; pp. 411-30.
[2]
Amarowicz R, Gong Y, Pegg RB. Recent advances in our knowledge of the biological properties of nuts Wild Plants, Mushrooms and Nuts Functional Food Properties. Chichester: John Wiley & Sons, Ltd. 2017; pp. 377-409.
[3]
O’Neil CE, Nicklas TA, Fulgoni VL III. Tree nut consumption is associated with better nutrient adequacy and diet quality in adults: National Health and Nutrition Examination Survey 2005-2010. Nutrients 2015; 7(1): 595-607.
[http://dx.doi.org/10.3390/nu7010595] [PMID: 25599274]
[4]
King JC, Blumberg J, Ingwersen L, Jenab M, Tucker KL. Tree nuts and peanuts as components of a healthy diet. J Nutr 2008; 138(9): 1736S-40S.
[http://dx.doi.org/10.1093/jn/138.9.1736S] [PMID: 18716178]
[5]
Bolling BW, Chen C-YO, McKay DL, Blumberg JB. Tree nut phytochemicals: composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr Res Rev 2011; 24(2): 244-75.
[http://dx.doi.org/10.1017/S095442241100014X] [PMID: 22153059]
[6]
Alasalvar C, Bolling BW. Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. Br J Nutr 2015; 113(113)(Suppl. 2): S68-78.
[http://dx.doi.org/10.1017/S0007114514003729] [PMID: 26148924]
[7]
Alasalvar C, Pelvan E. Fat-soluble bioactives in nuts. Eur J Lipid Sci Technol 2011; 113: 943-9.
[http://dx.doi.org/10.1002/ejlt.201100066]
[8]
Ocheja JO, Lablabe BC, Oguche HGE, et al. Vitamin composition and fibre fractions of cashew nut shell: Implication for animal nutrition. Pak J Nutr 2015; 14: 252-4.
[http://dx.doi.org/10.3923/pjn.2015.252.254]
[9]
Christian A, Ukhun ME. Nutritional potential of the nut of tropical almond (Terminalia catappia L). Pak J Nutr 2006; 5: 334-6.
[http://dx.doi.org/10.3923/pjn.2006.334.336]
[10]
Faruk MO, Amin MZ, Sana NK, Shaha RK, Biswas KK. Biochemical analysis of two varieties of water chestnuts (Trapa sp.). Pak J Biol Sci 2012; 15(21): 1019-26.
[http://dx.doi.org/10.3923/pjbs.2012.1019.1026] [PMID: 24163944]
[11]
Lutz M, Álvarez K, Loewe V. Chemical composition of pine nut (Pinus pinea L.) grown in three geographical macrozones in Chile. CYTA J Food 2017; 15: 284-90.
[http://dx.doi.org/10.1080/19476337.2016.1250109]
[12]
Sarkiyayi S, Hamman BM. Nutritional evaluation of some legumes and vegetables cultivated and consumed in Yola, Adamawa state, Nigeria. Adv J Food Sci 2015; 7: 657-67.
[http://dx.doi.org/10.19026/ajfst.7.1624]
[13]
USDA National Nutrient Database for Standard Reference, Release 27.
[14]
Moo-Huchin VM, Moo-Huchin MI, Estrada-León RJ, et al. Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico. Food Chem 2015; 166: 17-22.
[http://dx.doi.org/10.1016/j.foodchem.2014.05.127] [PMID: 25053022]
[15]
Gentile C, Tesoriere L, Butera D, et al. Antioxidant activity of Sicilian pistachio (Pistacia vera L. var. Bronte) nut extract and its bioactive components. J Agric Food Chem 2007; 55(3): 643-8.
[http://dx.doi.org/10.1021/jf062533i] [PMID: 17263455]
[16]
Santos J, Alvarez-Ortí M, Sena-Moreno E, Rabadán A, Pardo JE, Beatriz Pp Oliveira M. Effect of roasting conditions on the composition and antioxidant properties of defatted walnut flour. J Sci Food Agric 2018; 98(5): 1813-20.
[http://dx.doi.org/10.1002/jsfa.8657] [PMID: 28873230]
[17]
Verardo V, Bendini A, Cerretani L, et al. Capillary gas chromatography analysis of lipid composition and evaluation of phenolic compounds by micellar electrokinetic chromatography in Italian walnut (Juglans regia L.): Irrigation and fertilization influence. J Food Qual 2009; 32: 262-81.
[http://dx.doi.org/10.1111/j.1745-4557.2009.00249.x]
[18]
Beyhan O, Gozlekci S, Gundogdu M, et al. Physico-chemical and antioxidant characteristics in fruits of walnut (Juglans regia L.) genotypes from inner Anatolia. Not Bot Horti Agrobot Cluj-Napoca 2016; 44: 586-92.
[http://dx.doi.org/10.15835/nbha44210304]
[19]
Abdallah IB, Tlili N, Martinez-Force E, et al. Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties. Food Chem 2015; 173: 972-8.
[http://dx.doi.org/10.1016/j.foodchem.2014.10.095] [PMID: 25466114]
[20]
Delgado T, Pereira JA, Ramalhosa E, et al. Effect of hot air convective drying on the fatty acid and vitamin E composition of chestnut (Castanea sativa Mill.) slices. Eur Food Res Technol 2016; 242: 1299-306.
[http://dx.doi.org/10.1007/s00217-015-2633-5]
[21]
Trox J, Vadivel V, Vetter W, et al. Bioactive compounds in cashew nut (Anacardium occidentale L.) kernels: effect of different shelling methods. J Agric Food Chem 2010; 58(9): 5341-6.
[http://dx.doi.org/10.1021/jf904580k] [PMID: 20387832]
[22]
Wang W, Jung J, McGorrin RJ, et al. Investigation of drying conditions on bioactive compounds, lipid oxidation, and enzyme activity of Oregon hazelnuts (Corylus avellana L.). Lebensm Wiss Technol 2018; 90: 526-34.
[http://dx.doi.org/10.1016/j.lwt.2018.01.002]
[23]
Açurt F, Özdemir M, Biringen G, et al. Effects of geographical origin and variety on vitamin and mineral composition of hazelnut (Corylus avellana L.) varieties cultivated in Turkey. Food Chem 1999; 65: 309-13.
[http://dx.doi.org/10.1016/S0308-8146(98)00201-5]
[24]
Delgado-Zamarreño MM, Bustamante-Rangel M, Sánchez-Pérez A, Carabias-Martínez R. Pressurized liquid extraction prior to liquid chromatography with electrochemical detection for the analysis of vitamin E isomers in seeds and nuts. J Chromatogr A 2004; 1056(1-2): 249-52.
[http://dx.doi.org/10.1016/j.chroma.2004.09.033] [PMID: 15595558]
[25]
Schlörmann W, Birringer M, Böhm V, et al. Influence of roasting conditions on health-related compounds in different nuts. Food Chem 2015; 180: 77-85.
[http://dx.doi.org/10.1016/j.foodchem.2015.02.017] [PMID: 25766804]
[26]
Kornsteiner M, Wagner K-H, Elmadfa I. Tocopherols and total phenolics in 10 different nut types. Food Chem 2006; 98: 381-7.
[http://dx.doi.org/10.1016/j.foodchem.2005.07.033]
[27]
Lux S, Scharlau D, Schlörmann W, Birringer M, Glei M. In vitro fermented nuts exhibit chemopreventive effects in HT29 colon cancer cells. Br J Nutr 2012; 108(7): 1177-86.
[http://dx.doi.org/10.1017/S0007114511006647] [PMID: 22172380]
[28]
Robbins KS, Shin E-C, Shewfelt RL, Eitenmiller RR, Pegg RB. Update on the healthful lipid constituents of commercially important tree nuts. J Agric Food Chem 2011; 59(22): 12083-92.
[http://dx.doi.org/10.1021/jf203187v] [PMID: 21985331]
[29]
Bellomo MG, Fallico B. Anthocyanins, chlorophylls and xanthophylls in pistachio nuts (Pistacia vera) of different geographic origin. J Food Compos Anal 2007; 20: 352-9.
[http://dx.doi.org/10.1016/j.jfca.2006.04.002]
[30]
Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 1999; 299: 152-78.
[http://dx.doi.org/10.1016/S0076-6879(99)99017-1]
[31]
Christ B, Müller KH. Zur serienmäßigen Bestimmung des Gehaltes an Flavonol-Derivaten in Drogen. Arch Pharm 1960; 293: 1033-42.
[http://dx.doi.org/10.1002/ardp.19602931202]
[32]
Price ML, van Scoyoc S, Butler LG. A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J Agric Food Chem 1978; 26: 1214-8.
[http://dx.doi.org/10.1021/jf60219a031]
[33]
Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem 2004; 52(12): 4026-37.
[http://dx.doi.org/10.1021/jf049696w] [PMID: 15186133]
[34]
Yang J, Liu RH, Halim L. Antioxidant and antiproliferative activities of common edible nut seeds. Lebensm Wiss Technol 2009; 42: 1-8.
[http://dx.doi.org/10.1016/j.lwt.2008.07.007]
[35]
Pérez-Jiménez J, Neveu V, Vos F, Scalbert A. Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. Eur J Clin Nutr 2010; 64(Suppl. 3): S112-20.
[http://dx.doi.org/10.1038/ejcn.2010.221] [PMID: 21045839]
[36]
Herbello-Hermelo P, Lamas JP, Lores M, Domínguez-González R, Bermejo-Barrera P, Moreda-Piñeiro A. Polyphenol bioavailability in nuts and seeds by an in vitro dialyzability approach. Food Chem 2018; 254: 20-5.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.183] [PMID: 29548442]
[37]
Database for the flavonoid content of selected foods, release 21 2007.Available at: . http://www.ars.usda.gov/nutrientdata
[38]
Gu L, Kelm MA, Hammerstone JF, et al. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr 2004; 134(3): 613-7.
[http://dx.doi.org/10.1093/jn/134.3.613] [PMID: 14988456]
[39]
Venkatachalam M, Sathe SK. Chemical composition of selected edible nut seeds. J Agric Food Chem 2006; 54(13): 4705-14.
[http://dx.doi.org/10.1021/jf0606959] [PMID: 16787018]
[40]
Thompson LU, Boucher BA, Liu Z, Cotterchio M, Kreiger N. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr Cancer 2006; 54(2): 184-201.
[http://dx.doi.org/10.1207/s15327914nc5402_5] [PMID: 16898863]
[41]
Bolling BW, Dolnikowski G, Blumberg JB, Chen CO. Polyphenol content and antioxidant activity of California almonds depend on cultivar and harvest year. Food Chem 2010; 122(3): 819-25.
[http://dx.doi.org/10.1016/j.foodchem.2010.03.068] [PMID: 25544797]
[42]
Milbury PE, Chen C-Y, Dolnikowski GG, Blumberg JB. Determination of flavonoids and phenolics and their distribution in almonds. J Agric Food Chem 2006; 54(14): 5027-33.
[http://dx.doi.org/10.1021/jf0603937] [PMID: 16819912]
[43]
Amarowicz R, Troszyńska A, Shahidi F. Antioxidant activity of almond seed extract and its fractions. J Food Lipids 2005; 12: 344-58.
[http://dx.doi.org/10.1111/j.1745-4522.2005.00029.x]
[44]
Gonçalves B, Borges O, Costa HS, et al. Metabolite composition of chestnut (Castanea sativa Mill.) upon cooking: Proximate analysis, fibre, organic acids and phenolics. Food Chem 2010; 122: 154-60.
[http://dx.doi.org/10.1016/j.foodchem.2010.02.032]
[45]
Ballistreri G, Arena E, Fallico B. Influence of ripeness and drying process on the polyphenols and tocopherols of Pistacia vera L. Molecules 2009; 14(11): 4358-69.
[http://dx.doi.org/10.3390/molecules14114358] [PMID: 19924070]
[46]
Seeram NP, Zhang Y, Henning SM, et al. Pistachio skin phenolics are destroyed by bleaching resulting in reduced antioxidative capacities. J Agric Food Chem 2006; 54(19): 7036-40.
[http://dx.doi.org/10.1021/jf0614948] [PMID: 16968060]
[47]
Pinherdo do Prado AC, da Silva HS, da Silveira SM, et al. Effect of the extraction process on the phenolic compounds profile and the antioxidant and antimicrobial activity of extracts of pecan nut [Carya illinoinensis (Wangenh) C. Koch] shell. Ind Crops Prod 2014; 52: 552-61.
[http://dx.doi.org/10.1016/j.indcrop.2013.11.031]
[48]
Bolling BW, Blumberg JB, Chen CO. The influence of roasting, pasteurisation, and storage on the polyphenol content and antioxidant capacity of California almond skins. Food Chem 2010; 123(4): 1040-7.
[http://dx.doi.org/10.1016/j.foodchem.2010.05.058] [PMID: 28814821]
[49]
Mandalari G, Tomaino A, Arcoraci T, et al. Characterization of polyphenols, lipids and dietary fibre from almond skins (Amygdalus communis L.). J Food Comp Ana 2010; 23: 166-74.
[50]
Monagas M, Garrido I, Lebrón-Aguilar R, et al. Comparative flavan-3-ol profile and antioxidant capacity of roasted peanut, hazelnut, and almond skins. J Agric Food Chem 2009; 57(22): 10590-9.
[http://dx.doi.org/10.1021/jf901391a] [PMID: 19863084]
[51]
Smeds AI, Eklund PC, Sjöholm RE, et al. Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. J Agric Food Chem 2007; 55(4): 1337-46.
[http://dx.doi.org/10.1021/jf0629134] [PMID: 17261017]
[52]
Kuhnle GG, Dell’Aquila C, Aspinall SM, Runswick SA, Mulligan AA, Bingham SA. Phytoestrogen content of beverages, nuts, seeds, and oils. J Agric Food Chem 2008; 56(16): 7311-5.
[http://dx.doi.org/10.1021/jf801534g] [PMID: 18671400]
[53]
Ciemniewska-Żytkiewicz H, Verardo V, Pasini F, Bryś J, Koczoń P, Caboni MF. Determination of lipid and phenolic fraction in two hazelnut (Corylus avellana L.) cultivars grown in Poland. Food Chem 2015; 168: 615-22.
[http://dx.doi.org/10.1016/j.foodchem.2014.07.107] [PMID: 25172755]
[54]
Slatnar A, Mikulic-Petkovsek M, Stampar F, Veberic R, Solar A. HPLC-MSn identification and quantification of phenolic compounds in hazelnut kernels, oil and bagasse pellets. Food Res Int 2014; 64: 783-9.
[http://dx.doi.org/10.1016/j.foodres.2014.08.009] [PMID: 30011716]
[55]
Neveu V, Perez-Jiménez J, Vos F, et al. Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. In: Database. 2010. article ID bap024: 9.
[56]
Fukuda T, Ito H, Yoshida T. Antioxidative polyphenols from walnuts (Juglans regia L.). Phytochemistry 2003; 63(7): 795-801.
[http://dx.doi.org/10.1016/S0031-9422(03)00333-9] [PMID: 12877921]
[57]
Lin J-T, Liu S-C, Hu C-C, Shyu YS, Hsu CY, Yang DJ. Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel. Food Chem 2016; 190: 520-8.
[http://dx.doi.org/10.1016/j.foodchem.2015.06.004] [PMID: 26213005]
[58]
John JA, Shahidi F. Phenolic compounds and antioxidant activity of Brazil nut (Bertholletia excelsa). J Funct Foods 2010; 2: 196-209.
[http://dx.doi.org/10.1016/j.jff.2010.04.008]
[59]
Chandrasekara N, Shahidi F. Effect of roasting on phenolic content and antioxidant activities of whole cashew nuts, kernels, and testa. J Agric Food Chem 2011; 59(9): 5006-14.
[http://dx.doi.org/10.1021/jf2000772] [PMID: 21438525]
[60]
Kalogeropoulos N, Chiou A, Ioannou MS, Karathanos VT. Nutritional evaluation and health promoting activities of nuts and seeds cultivated in Greece. Int J Food Sci Nutr 2013; 64(6): 757-67.
[http://dx.doi.org/10.3109/09637486.2013.793298] [PMID: 23641668]
[61]
Schmitzer V, Slatnar A, Veberic R, Stampar F, Solar A. Roasting affects phenolic composition and antioxidative activity of hazelnuts (Corylus avellana L.). J Food Sci 2011; 76(1): S14-9.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01898.x] [PMID: 21535710]
[62]
Robbins KS, Gong Y, Wells ML, et al. Investigation of the antioxidant capacity and phenolic constituents of U.S. pecans. J Funct Foods 2015; 15: 11-22.
[http://dx.doi.org/10.1016/j.jff.2015.03.006]
[63]
Hoon LY, Choo C, Watawana MI, et al. Evaluation of the total antioxidant capacity and antioxidant compounds of different solvent extracts of Chilgoza pine nuts (Pinus gerardiana). J Funct Foods 2015; 18: 1014-21.
[http://dx.doi.org/10.1016/j.jff.2014.07.009]
[64]
Rodríguez-Bencomo JJ, Kelebek H, Sonmezdag AS, Rodríguez-Alcalá LM, Fontecha J, Selli S. Characterization of the aroma-active, phenolic, and lipid profiles of the pistachio (Pistacia vera L.) nut as affected by the single and double roasting process. J Agric Food Chem 2015; 63(35): 7830-9.
[http://dx.doi.org/10.1021/acs.jafc.5b02576] [PMID: 26301818]
[65]
Leopoldini M, Russo N, Toscano M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem 2011; 125: 288-306.
[http://dx.doi.org/10.1016/j.foodchem.2010.08.012]
[66]
Ma Y, Kosińska-Cagnazzo A, Kerr WL, Amarowicz R, Swanson RB, Pegg RB. Separation and characterization of phenolic compounds from dry-blanched peanut skins by liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A 2014; 1356: 64-81.
[http://dx.doi.org/10.1016/j.chroma.2014.06.027] [PMID: 25016324]
[67]
Xie L, Bolling BW. Characterisation of stilbenes in California almonds (Prunus dulcis) by UHPLC-MS. Food Chem 2014; 148: 300-6.
[http://dx.doi.org/10.1016/j.foodchem.2013.10.057] [PMID: 24262561]
[68]
Grippi F, Crosta L, Aiello G, et al. Determination of stilbenes in Sicilian pistachio by high-performance liquid chromatographic diode array (HPLC-DAD/FLD) and evaluation of eventually mycotoxin contamination. Food Chem 2008; 107: 483-8.
[http://dx.doi.org/10.1016/j.foodchem.2007.07.079]
[69]
Zhang Z, Liao L, Moore J, et al. Antioxidant phenolic compounds from walnut kernels (Juglans regia L). Food Chem 2009; 113: 160-5.
[http://dx.doi.org/10.1016/j.foodchem.2008.07.061]
[70]
Amarowicz R, Pegg RB. Natural antioxidants of plant origin. Adv Food Nutr Res 2019; 90: 1-81.
[http://dx.doi.org/10.1016/bs.afnr.2019.02.011] [PMID: 31445594]
[71]
Leiva E, Wehinger S, Guzmán L, et al. Role of oxidized LDL in atherosclerosisHypercholesterolemia. Rijeka: INTECH 2015; pp. 55-78.
[http://dx.doi.org/10.5772/59375]
[72]
de Camargo AC, Regitano-d’Arce MAB, Gallo CR, et al. Gamma-irradiation induced changes in microbiological status, phenolic profile and antioxidant activity of peanut skin. J Funct Foods 2015; 12: 129-43.
[http://dx.doi.org/10.1016/j.jff.2014.10.034]
[73]
Chandrasekara N, Shahidi F. Antioxidative potential of cashew phenolics in food and biological model systems as affected by roasting. Food Chem 2011; 129: 1388-96.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.075]
[74]
Shahidi F, Alasalvar C, Liyana-Pathirana CM. Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. J Agric Food Chem 2007; 55(4): 1212-20.
[http://dx.doi.org/10.1021/jf062472o] [PMID: 17249682]
[75]
Ros E, Núñez I, Pérez-Heras A, et al. A walnut diet improves endothelial function in hypercholesterolemic subjects: a randomized crossover trial. Circulation 2004; 109(13): 1609-14.
[http://dx.doi.org/10.1161/01.CIR.0000124477.91474.FF] [PMID: 15037535]
[76]
Iwamoto M, Imaizumi K, Sato M, et al. Serum lipid profiles in Japanese women and men during consumption of walnuts. Eur J Clin Nutr 2002; 56(7): 629-37.
[http://dx.doi.org/10.1038/sj.ejcn.1601400] [PMID: 12080402]
[77]
Muñoz S, Merlos M, Zambón D, et al. Walnut-enriched diet increases the association of LDL from hypercholesterolemic men with human HepG2 cells. J Lipid Res 2001; 42(12): 2069-76.
[PMID: 11734580]
[78]
Zambón D, Sabaté J, Muñoz S, et al. Substituting walnuts for monounsaturated fat improves the serum lipid profile of hypercholesterolemic men and women. A randomized crossover trial. Ann Intern Med 2000; 132(7): 538-46.
[http://dx.doi.org/10.7326/0003-4819-132-7-200004040-00005] [PMID: 10744590]
[79]
Tapsell LC, Gillen LJ, Patch CS, et al. Including walnuts in a low-fat/modified-fat diet improves HDL cholesterol-to-total cholesterol ratios in patients with type 2 diabetes. Diabetes Care 2004; 27(12): 2777-83.
[http://dx.doi.org/10.2337/diacare.27.12.2777] [PMID: 15562184]
[80]
Davis L, Stonehouse W, Loots T, et al. The effects of high walnut and cashew nut diets on the antioxidant status of subjects with metabolic syndrome. Eur J Nutr 2007; 46(3): 155-64.
[http://dx.doi.org/10.1007/s00394-007-0647-x] [PMID: 17377830]
[81]
McKay DL, Chen C-YO, Yeum K-J. et al.Chronic and acute effects of walnuts on antioxidant capacity and nutritional status in humans: a randomized, cross-over pilot study. In: Nutr J. 2010; 9: p. 10.
[82]
Liu J-F, Liu Y-H, Chen C-M, Chang WH, Chen CY. The effect of almonds on inflammation and oxidative stress in Chinese patients with type 2 diabetes mellitus: a randomized crossover controlled feeding trial. Eur J Nutr 2013; 52(3): 927-35.
[http://dx.doi.org/10.1007/s00394-012-0400-y] [PMID: 22722891]
[83]
Chen C-YO, Holbrook M, Duess M-A, et al. Effect of almond consumption on vascular function in patients with coronary artery disease: a randomized, controlled, cross-over trial. In: Nutr J. 2015; 14: p. 11.
[84]
Hyson DA, Schneeman BO, Davis PA. Almonds and almond oil have similar effects on plasma lipids and LDL oxidation in healthy men and women. J Nutr 2002; 132(4): 703-7.
[http://dx.doi.org/10.1093/jn/132.4.703] [PMID: 11925464]
[85]
Fitó M, Guxens M, Corella D, et al. Effect of a traditional Mediterranean diet on lipoprotein oxidation: a randomized controlled trial. Arch Intern Med 2007; 167(11): 1195-203.
[http://dx.doi.org/10.1001/archinte.167.11.1195] [PMID: 17563030]
[86]
Haddad E, Jambazian P, Karunia M, et al. A pecan-enriched diet increases γ-tocopherol/cholesterol and decreases thiobarbituric acid reactive substances in plasma of adults. Nutr Res 2006; 26: 397-402.
[http://dx.doi.org/10.1016/j.nutres.2006.06.022]
[87]
Durak I, Köksal I, Kaçmaz M, Büyükkoçak S, Cimen BM, Oztürk HS. Hazelnut supplementation enhances plasma antioxidant potential and lowers plasma cholesterol levels. Clin Chim Acta 1999; 284(1): 113-5.
[http://dx.doi.org/10.1016/S0009-8981(99)00066-2] [PMID: 10437650]
[88]
Yücesan FB, Örem A, Kural BV, Orem C, Turan I. Hazelnut consumption decreases the susceptibility of LDL to oxidation, plasma oxidized LDL level and increases the ratio of large/small LDL in normolipidemic healthy subjects. Anadolu Kardiyol Derg 2010; 10(1): 28-35.
[http://dx.doi.org/10.5152/akd.2010.007] [PMID: 20150001]
[89]
Kocyigit A, Koylu AA, Keles H. Effects of pistachio nuts consumption on plasma lipid profile and oxidative status in healthy volunteers. Nutr Metab Cardiovasc Dis 2006; 16(3): 202-9.
[http://dx.doi.org/10.1016/j.numecd.2005.08.004] [PMID: 16580587]
[90]
Jalali-Khanabadi B-A, Mozaffari-Khosravi H, Parsaeyan N. Effects of almond dietary supplementation on coronary heart disease lipid risk factors and serum lipid oxidation parameters in men with mild hyperlipidemia. J Altern Complement Med 2010; 16(12): 1279-83.
[http://dx.doi.org/10.1089/acm.2009.0693] [PMID: 21114415]
[91]
Jenkins DJA, Kendall CWC, Marchie A, et al. Almonds reduce biomarkers of lipid peroxidation in older hyperlipidemic subjects. J Nutr 2008; 138(5): 908-13.
[http://dx.doi.org/10.1093/jn/138.5.908] [PMID: 18424600]
[92]
Jenkins DJA, Kendall CWC, Marchie A, et al. Dose response of almonds on coronary heart disease risk factors: blood lipids, oxidized low-density lipoproteins, lipoprotein(a), homocysteine, and pulmonary nitric oxide: a randomized, controlled, crossover trial. Circulation 2002; 106(11): 1327-32.
[http://dx.doi.org/10.1161/01.CIR.0000028421.91733.20] [PMID: 12221048]
[93]
Stockler-Pinto MB, Mafra D, Farage NE, Boaventura GT, Cozzolino SM. Effect of Brazil nut supplementation on the blood levels of selenium and glutathione peroxidase in hemodialysis patients. Nutrition 2010; 26(11-12): 1065-9.
[http://dx.doi.org/10.1016/j.nut.2009.08.006] [PMID: 20018488]
[94]
Thomson CD, Chisholm A, McLachlan SK, Campbell JM. Brazil nuts: an effective way to improve selenium status. Am J Clin Nutr 2008; 87(2): 379-84.
[http://dx.doi.org/10.1093/ajcn/87.2.379] [PMID: 18258628]
[95]
Hudthagosol C, Haddad EH, McCarthy K, Wang P, Oda K, Sabaté J. Pecans acutely increase plasma postprandial antioxidant capacity and catechins and decrease LDL oxidation in humans. J Nutr 2011; 141(1): 56-62.
[http://dx.doi.org/10.3945/jn.110.121269] [PMID: 21106921]
[96]
Anderson KJ, Teuber SS, Gobeille A, Cremin P, Waterhouse AL, Steinberg FM. Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. J Nutr 2001; 131(11): 2837-42.
[http://dx.doi.org/10.1093/jn/131.11.2837] [PMID: 11694605]
[97]
Damavandi RD, Mousavi SN, Shidfar F, et al. Effects of daily consumption of cashews on oxidative stress and atherogenic indices in patients with type 2 diabetes: A randomized, controlled-feeding trial. In: Int J Endocrinol Metab. 2019; 17.(1) e70744, 7.
[98]
Huguenin GVB, Oliveira GMM, Moreira ASB, et al. Improvement of antioxidant status after Brazil nut intake in hypertensive and dyslipidemic subjects. Nutr J 2015; 14: 10.
[http://dx.doi.org/10.1186/s12937-015-0043-y]
[99]
Canales A, Benedí J, Nus M, Librelotto J, Sánchez-Montero JM, Sánchez-Muniz FJ. Effect of walnut-enriched restructured meat in the antioxidant status of overweight/obese senior subjects with at least one extra CHD-risk factor. J Am Coll Nutr 2007; 26(3): 225-32.
[http://dx.doi.org/10.1080/07315724.2007.10719605] [PMID: 17634167]
[100]
Chang SK, Alasalvar C, Bolling BW, et al. Nuts and their co-products: The impact of processing (roasting) on phenolics, bioavailability, and health benefits - A comprehensive review. J Funct Foods 2016; 26: 88-122.
[http://dx.doi.org/10.1016/j.jff.2016.06.029]
[101]
Yang J, Zhou F, Xiong L, et al. Comparison of phenolic compounds, tocopherols, phytosterols and antioxidant potential in Zhejiang pecan [Carya cathayensis] at different stir-frying steps. Lebensm Wiss Technol 2015; 62: 541-8.
[http://dx.doi.org/10.1016/j.lwt.2014.09.049]
[102]
Grosso G, Yang J, Marventano S, Micek A, Galvano F, Kales SN. Nut consumption on all-cause, cardiovascular, and cancer mortality risk: a systematic review and meta-analysis of epidemiologic studies. Am J Clin Nutr 2015; 101(4): 783-93.
[http://dx.doi.org/10.3945/ajcn.114.099515] [PMID: 25833976]
[103]
Pelvan E, Alasalvar C, Uzman S. Effects of roasting on the antioxidant status and phenolic profiles of commercial Turkish hazelnut varieties (Corylus avellana L.). J Agric Food Chem 2012; 60(5): 1218-23.
[http://dx.doi.org/10.1021/jf204893x] [PMID: 22224708]
[104]
Açar ÖÇ, Gökmen V, Pellegrini N, et al. Direct evaluation of the total antioxidant capacity of raw and roasted pulses, nuts, and seeds. Eur Food Res Technol 2009; 229: 961-9.
[http://dx.doi.org/10.1007/s00217-009-1131-z]
[105]
Goudarzi S, Sharifi TA, Ahmadi A, et al. Influence of different roasting conditions in the phenolic compounds and antioxidant capacity of the pistachio nuts. J Pharm Sci & Res 2017; 9: 991-3.
[106]
Mao S, Zhou F, Huang W, et al. The effect of traditional stir-frying process on hydrophilic and lipophilic antioxidant capacities of pine nut kernels. Int J Food Sci Nutr 2015; 66(8): 873-80.
[http://dx.doi.org/10.3109/09637486.2015.1102871] [PMID: 26507566]
[107]
Amaral JS, Casal S, Seabra RM, Oliveira BP. Effects of roasting on hazelnut lipids. J Agric Food Chem 2006; 54(4): 1315-21.
[http://dx.doi.org/10.1021/jf052287v] [PMID: 16478254]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy