Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Eradicating the Roots: Advanced Therapeutic Approaches Targeting Breast Cancer Stem Cells

Author(s): Lili He, Anran Yu, Li Deng and Hongwei Zhang*

Volume 26, Issue 17, 2020

Page: [2009 - 2021] Pages: 13

DOI: 10.2174/1381612826666200317132949

Price: $65

Abstract

Accumulating evidences have demonstrated that the existence of breast cancer-initiating cells, which drives the original tumorigenicity, local invasion and migration propensity of breast cancer. These cells, termed as breast cancer stem cells (BCSCs), possess properties including self-renewal, multidirectional differentiation and proliferative potential, and are believed to play important roles in the intrinsic drug resistance of breast cancer. One of the reasons why BCBCs cause difficulties in breast cancer treating is that BCBCs can control both genetic and non-genetic elements to keep their niches safe and sound, which allows BCSCs for constant self-renewal and differentiation. Therapeutic strategies designed to target BCSCs may ultimately result in effective interventions for the treatment of breast cancer. Novel strategies including nanomedicine, oncolytic virus therapy, immunotherapy and induced differentiation therapy are emerging and proved to be efficient in anti-BCSCs therapy. In this review, we summarized breast tumor biology and the current challenges of breast cancer therapies, focused on breast cancer stem cells, and introduced promising therapeutic strategies targeting BCSCs.

Keywords: Breast cancer stem cells, immunotherapy, nanomedicine, oncolytic virus therapy, breast tumor, targeted therapy.

[1]
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Bai X, Ni J, Beretov J, Graham P, Li Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev 2018; 69: 152-63.
[http://dx.doi.org/10.1016/j.ctrv.2018.07.004] [PMID: 30029203]
[3]
Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS. Stem cells in normal breast development and breast cancer. Cell Prolif 2003; 36(Suppl. 1): 59-72.
[http://dx.doi.org/10.1046/j.1365-2184.36.s.1.6.x] [PMID: 14521516]
[4]
Bozorgi A, Khazaei M, Khazaei MR. New findings on breast cancer stem cells: a review. J Breast Cancer 2015; 18(4): 303-12.
[http://dx.doi.org/10.4048/jbc.2015.18.4.303] [PMID: 26770236]
[5]
Chen D, Bhat-Nakshatri P, Goswami C, Badve S, Nakshatri H. ANTXR1, a stem cell-enriched functional biomarker, connects collagen signaling to cancer stem-like cells and metastasis in breast cancer. Cancer Res 2013; 73(18): 5821-33.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1080] [PMID: 23832666]
[6]
Geng SQ, Alexandrou AT, Li JJ. Breast cancer stem cells: Multiple capacities in tumor metastasis. Cancer Lett 2014; 349(1): 1-7.
[http://dx.doi.org/10.1016/j.canlet.2014.03.036] [PMID: 24727284]
[7]
Lu B, Huang X, Mo J, Zhao W. Drug delivery using nanoparticles for cancer stem-like cell targeting. Front Pharmacol 2016; 7: 84.
[http://dx.doi.org/10.3389/fphar.2016.00084] [PMID: 27148051]
[8]
Guo W, Keckesova Z, Donaher JL, et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 2012; 148(5): 1015-28.
[http://dx.doi.org/10.1016/j.cell.2012.02.008] [PMID: 22385965]
[9]
Green JE. Mouse models of human breast cancer: evolution or convolution? Breast Cancer Res 2003; 5
[http://dx.doi.org/10.1186/bcr660]
[10]
Boman BM, Wicha MS. Cancer stem cells: a step toward the cure. J Clin Oncol 2008; 26(17): 2795-9.
[http://dx.doi.org/10.1200/JCO.2008.17.7436] [PMID: 18539956]
[11]
Yang F, Xu J, Tang L, Guan X. Breast cancer stem cell: the roles and therapeutic implications. Cell Mol Life Sci 2017; 74(6): 951-66.
[http://dx.doi.org/10.1007/s00018-016-2334-7] [PMID: 27530548]
[12]
Dandawate PR, Subramaniam D, Jensen RA, Anant S. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. Semin Cancer Biol 2016; 40-41: 192-208.
[http://dx.doi.org/10.1016/j.semcancer.2016.09.001] [PMID: 27609747]
[13]
Zinzi L, Contino M, Cantore M, Capparelli E, Leopoldo M, Colabufo NA. ABC transporters in CSCs membranes as a novel target for treating tumor relapse. Front Pharmacol 2014; 5: 163.
[http://dx.doi.org/10.3389/fphar.2014.00163] [PMID: 25071581]
[14]
Coleman RE, Gregory W, Marshall H, Wilson C, Holen I. The metastatic microenvironment of breast cancer: clinical implications. Breast 2013; 22(Suppl. 2): S50-6.
[http://dx.doi.org/10.1016/j.breast.2013.07.010] [PMID: 24074793]
[15]
Macias H, Hinck L. Mammary gland development. Wiley Interdiscip Rev Dev Biol 2012; 1(4): 533-57.
[http://dx.doi.org/10.1002/wdev.35] [PMID: 22844349]
[16]
Mittal S, Brown NJ, Holen I. The breast tumor microenvironment: role in cancer development, progression and response to therapy. Expert Rev Mol Diagn 2018; 18(3): 227-43.
[http://dx.doi.org/10.1080/14737159.2018.1439382] [PMID: 29424261]
[17]
Mao Y, Keller ET, Garfield DH, Shen K, Wang J. Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev 2013; 32(1-2): 303-15.
[http://dx.doi.org/10.1007/s10555-012-9415-3] [PMID: 23114846]
[18]
Folgueira MA, Maistro S, Katayama ML, et al. Markers of breast cancer stromal fibroblasts in the primary tumour site associated with lymph node metastasis: a systematic review including our case series. Biosci Rep 2013; 33(6): 33.
[http://dx.doi.org/10.1042/BSR20130060] [PMID: 24229053]
[19]
Allen M, Louise Jones J. Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J Pathol 2011; 223(2): 162-76.
[http://dx.doi.org/10.1002/path.2803] [PMID: 21125673]
[20]
Houthuijzen JM, Jonkers J. Cancer-associated fibroblasts as key regulators of the breast cancer tumor microenvironment. Cancer Metastasis Rev 2018; 37(4): 577-97.
[http://dx.doi.org/10.1007/s10555-018-9768-3] [PMID: 30465162]
[21]
Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 2009; 86(5): 1065-73.
[http://dx.doi.org/10.1189/jlb.0609385] [PMID: 19741157]
[22]
Soysal SD, Tzankov A, Muenst SE. Role of the tumor microenvironment in breast cancer. Pathobiology 2015; 82(3-4): 142-52.
[http://dx.doi.org/10.1159/000430499] [PMID: 26330355]
[23]
Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 2012; 196(4): 395-406.
[http://dx.doi.org/10.1083/jcb.201102147] [PMID: 22351925]
[24]
Turashvili G, Brogi E. Tumor heterogeneity in breast cancer. Front Med (Lausanne) 2017; 4: 227.
[http://dx.doi.org/10.3389/fmed.2017.00227] [PMID: 29276709]
[25]
Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol 2007; 608: 1-22.
[http://dx.doi.org/10.1007/978-0-387-74039-3_1] [PMID: 17993229]
[26]
Mao Q, Unadkat JD. Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J 2005; 7(1): E118-33.
[http://dx.doi.org/10.1208/aapsj070112] [PMID: 16146333]
[27]
Natarajan K, Xie Y, Baer MR, Ross DD. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol 2012; 83(8): 1084-103.
[http://dx.doi.org/10.1016/j.bcp.2012.01.002] [PMID: 22248732]
[28]
Creighton CJ, Li X, Landis M, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 2009; 106(33): 13820-5.
[http://dx.doi.org/10.1073/pnas.0905718106] [PMID: 19666588]
[29]
Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol 2017; 14(10): 611-29.
[http://dx.doi.org/10.1038/nrclinonc.2017.44] [PMID: 28397828]
[30]
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119(6): 1420-8.
[http://dx.doi.org/10.1172/JCI39104] [PMID: 19487818]
[31]
Luo M, Brooks M, Wicha MS. Epithelial-mesenchymal plasticity of breast cancer stem cells: implications for metastasis and therapeutic resistance. Curr Pharm Des 2015; 21(10): 1301-10.
[http://dx.doi.org/10.2174/1381612821666141211120604] [PMID: 25506895]
[32]
Das S, Batra SK. Pancreatic cancer metastasis: are we being pre-EMTed? Curr Pharm Des 2015; 21(10): 1249-55.
[http://dx.doi.org/10.2174/1381612821666141211115234] [PMID: 25506899]
[33]
Liu R, Wang X, Chen GY, et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 2007; 356(3): 217-26.
[http://dx.doi.org/10.1056/NEJMoa063994] [PMID: 17229949]
[34]
Balic M, Lin H, Young L, et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 2006; 12(19): 5615-21.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0169] [PMID: 17020963]
[35]
Liu H, Patel MR, Prescher JA, et al. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci USA 2010; 107(42): 18115-20.
[http://dx.doi.org/10.1073/pnas.1006732107] [PMID: 20921380]
[36]
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(7): 3983-8.
[http://dx.doi.org/10.1073/pnas.0530291100] [PMID: 12629218]
[37]
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3(7): 730-7.
[http://dx.doi.org/10.1038/nm0797-730] [PMID: 9212098]
[38]
Saygin C, Matei D, Majeti R, Reizes O, Lathia JD. Targeting cancer stemness in the clinic: from hype to hope. Cell Stem Cell 2019; 24(1): 25-40.
[http://dx.doi.org/10.1016/j.stem.2018.11.017] [PMID: 30595497]
[39]
Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell 2012; 10(6): 717-28.
[http://dx.doi.org/10.1016/j.stem.2012.05.007] [PMID: 22704512]
[40]
Nassar D, Blanpain C. Cancer stem cells: basic concepts and therapeutic implications. Annu Rev Pathol 2016; 11: 47-76.
[http://dx.doi.org/10.1146/annurev-pathol-012615-044438] [PMID: 27193450]
[41]
Butti R, Gunasekaran VP, Kumar TVS, Banerjee P, Kundu GC. Breast cancer stem cells: Biology and therapeutic implications. Int J Biochem Cell Biol 2019; 107: 38-52.
[http://dx.doi.org/10.1016/j.biocel.2018.12.001] [PMID: 30529656]
[42]
Dontu G, El-Ashry D, Wicha MS. Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab 2004; 15(5): 193-7.
[http://dx.doi.org/10.1016/j.tem.2004.05.011] [PMID: 15223047]
[43]
Skibinski A, Kuperwasser C. The origin of breast tumor heterogeneity. Oncogene 2015; 34(42): 5309-16.
[http://dx.doi.org/10.1038/onc.2014.475] [PMID: 25703331]
[44]
Batlle E, Clevers H. Cancer stem cells revisited. Nat Med 2017; 23(10): 1124-34.
[http://dx.doi.org/10.1038/nm.4409] [PMID: 28985214]
[45]
Passegué E, Jamieson CH, Ailles LE, Weissman IL. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 2003; 100(Suppl. 1): 11842-9.
[http://dx.doi.org/10.1073/pnas.2034201100] [PMID: 14504387]
[46]
Lagadec C, Vlashi E, Della Donna L, Dekmezian C, Pajonk F. Radiation-induced reprogramming of breast cancer cells. Stem Cells 2012; 30(5): 833-44.
[http://dx.doi.org/10.1002/stem.1058] [PMID: 22489015]
[47]
Chaffer CL, Marjanovic ND, Lee T, et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 2013; 154(1): 61-74.
[http://dx.doi.org/10.1016/j.cell.2013.06.005] [PMID: 23827675]
[48]
Koren S, Reavie L, Couto JP, et al. PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours. Nature 2015; 525(7567): 114-8.
[http://dx.doi.org/10.1038/nature14669] [PMID: 26266975]
[49]
Brabletz T. To differentiate or not--routes towards metastasis. Nat Rev Cancer 2012; 12(6): 425-36.
[http://dx.doi.org/10.1038/nrc3265] [PMID: 22576165]
[50]
Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005; 434(7035): 843-50.
[http://dx.doi.org/10.1038/nature03319] [PMID: 15829953]
[51]
Merchant AA, Matsui W. Targeting Hedgehog--a cancer stem cell pathway. Clin Cancer Res 2010; 16(12): 3130-40.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2846] [PMID: 20530699]
[52]
Takebe N, Miele L, Harris PJ, et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol 2015; 12(8): 445-64.
[http://dx.doi.org/10.1038/nrclinonc.2015.61] [PMID: 25850553]
[53]
Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 2011; 8(2): 97-106.
[http://dx.doi.org/10.1038/nrclinonc.2010.196] [PMID: 21151206]
[54]
Velasco-Velázquez MA, Homsi N, De La Fuente M, Pestell RG. Breast cancer stem cells. Int J Biochem Cell Biol 2012; 44(4): 573-7.
[http://dx.doi.org/10.1016/j.biocel.2011.12.020] [PMID: 22249027]
[55]
Nalla LV, Kalia K, Khairnar A. Self-renewal signaling pathways in breast cancer stem cells. Int J Biochem Cell Biol 2019; 107: 140-53.
[http://dx.doi.org/10.1016/j.biocel.2018.12.017] [PMID: 30593953]
[56]
Santoro A, Vlachou T, Carminati M, Pelicci PG, Mapelli M. Molecular mechanisms of asymmetric divisions in mammary stem cells. EMBO Rep 2016; 17(12): 1700-20.
[http://dx.doi.org/10.15252/embr.201643021] [PMID: 27872203]
[57]
Tominaga K, Minato H, Murayama T, et al. Semaphorin signaling via MICAL3 induces symmetric cell division to expand breast cancer stem-like cells. Proc Natl Acad Sci USA 2019; 116(2): 625-30.
[http://dx.doi.org/10.1073/pnas.1806851116] [PMID: 30587593]
[58]
Dittmer J. Breast cancer stem cells: Features, key drivers and treatment options. Semin Cancer Biol 2018; 53: 59-74.
[http://dx.doi.org/10.1016/j.semcancer.2018.07.007] [PMID: 30059727]
[59]
Luo M, Clouthier SG, Deol Y, et al. Breast cancer stem cells: current advances and clinical implications. Methods Mol Biol 2015; 1293: 1-49.
[http://dx.doi.org/10.1007/978-1-4939-2519-3_1] [PMID: 26040679]
[60]
Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 1(5): 555-67.
[http://dx.doi.org/10.1016/j.stem.2007.08.014] [PMID: 18371393]
[61]
Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 2015; 16(3): 225-38.
[http://dx.doi.org/10.1016/j.stem.2015.02.015] [PMID: 25748930]
[62]
Valent P, Bonnet D, De Maria R, et al. Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer 2012; 12(11): 767-75.
[http://dx.doi.org/10.1038/nrc3368] [PMID: 23051844]
[63]
Li X, Lewis MT, Huang J, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008; 100(9): 672-9.
[http://dx.doi.org/10.1093/jnci/djn123] [PMID: 18445819]
[64]
Phillips TM, McBride WH, Pajonk F. The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 2006; 98(24): 1777-85.
[http://dx.doi.org/10.1093/jnci/djj495] [PMID: 17179479]
[65]
Heery R, Finn SP, Cuffe S, Gray SG. Long non-coding RNAs: key regulators of epithelial-mesenchymal transition, tumour drug resistance and cancer stem cells. Cancers (Basel) 2017; 9(4): 9.
[http://dx.doi.org/10.3390/cancers9040038] [PMID: 28430163]
[66]
Nantajit D, Lin D, Li JJ. The network of epithelial-mesenchymal transition: potential new targets for tumor resistance. J Cancer Res Clin Oncol 2015; 141(10): 1697-713.
[http://dx.doi.org/10.1007/s00432-014-1840-y] [PMID: 25270087]
[67]
Velasco-Velázquez MA, Popov VM, Lisanti MP, Pestell RG. The role of breast cancer stem cells in metastasis and therapeutic implications. Am J Pathol 2011; 179(1): 2-11.
[http://dx.doi.org/10.1016/j.ajpath.2011.03.005] [PMID: 21640330]
[68]
Vinogradov S, Wei X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond) 2012; 7(4): 597-615.
[http://dx.doi.org/10.2217/nnm.12.22] [PMID: 22471722]
[69]
Ocaña OH, Córcoles R, Fabra A, et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 2012; 22(6): 709-24.
[http://dx.doi.org/10.1016/j.ccr.2012.10.012] [PMID: 23201163]
[70]
Kim WT, Ryu CJ. Cancer stem cell surface markers on normal stem cells. BMB Rep 2017; 50(6): 285-98.
[http://dx.doi.org/10.5483/BMBRep.2017.50.6.039] [PMID: 28270302]
[71]
He L, Gu J, Lim LY, Yuan ZX, Mo J. Nanomedicine-mediated therapies to target breast cancer stem cells. Front Pharmacol 2016; 7: 313.
[http://dx.doi.org/10.3389/fphar.2016.00313] [PMID: 27679576]
[72]
Croker AK, Goodale D, Chu J, et al. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med 2009; 13(8B): 2236-52.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00455.x] [PMID: 18681906]
[73]
Misra S, Hascall VC, Markwald RR, Ghatak S. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front Immunol 2015; 6: 201.
[http://dx.doi.org/10.3389/fimmu.2015.00201] [PMID: 25999946]
[74]
Zhang H, Brown RL, Wei Y, et al. CD44 splice isoform switching determines breast cancer stem cell state. Genes Dev 2019; 33(3-4): 166-79.
[http://dx.doi.org/10.1101/gad.319889.118] [PMID: 30692202]
[75]
Zhou J, Chen Q, Zou Y, Chen H, Qi L, Chen Y. Stem cells and cellular origins of breast cancer: updates in the rationale, controversies, and therapeutic implications. Front Oncol 2019; 9: 820.
[http://dx.doi.org/10.3389/fonc.2019.00820] [PMID: 31555586]
[76]
Cochrane CR, Szczepny A, Watkins DN, Cain JE. Hedgehog signaling in the maintenance of cancer stem cells. Cancers (Basel) 2015; 7(3): 1554-85.
[http://dx.doi.org/10.3390/cancers7030851] [PMID: 26270676]
[77]
Corbeil D, Marzesco AM, Wilsch-Bräuninger M, Huttner WB. The intriguing links between prominin-1 (CD133), cholesterol-based membrane microdomains, remodeling of apical plasma membrane protrusions, extracellular membrane particles, and (neuro)epithelial cell differentiation. FEBS Lett 2010; 584(9): 1659-64.
[http://dx.doi.org/10.1016/j.febslet.2010.01.050] [PMID: 20122930]
[78]
Sin WC, Lim CL. Breast cancer stem cells-from origins to targeted therapy. Stem Cell Investig 2017; 4: 96.
[http://dx.doi.org/10.21037/sci.2017.11.03] [PMID: 29270422]
[79]
Kim HJ, Kim MJ, Ahn SH, et al. Different prognostic significance of CD24 and CD44 expression in breast cancer according to hormone receptor status. Breast 2011; 20(1): 78-85.
[http://dx.doi.org/10.1016/j.breast.2010.08.001] [PMID: 20810282]
[80]
Moreb JS, Ucar D, Han S, et al. The enzymatic activity of human aldehyde dehydrogenases 1A2 and 2 (ALDH1A2 and ALDH2) is detected by Aldefluor, inhibited by diethylaminobenzaldehyde and has significant effects on cell proliferation and drug resistance. Chem Biol Interact 2012; 195(1): 52-60.
[http://dx.doi.org/10.1016/j.cbi.2011.10.007] [PMID: 22079344]
[81]
Vaillant F, Asselin-Labat ML, Shackleton M, Forrest NC, Lindeman GJ, Visvader JE. The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 2008; 68(19): 7711-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1949] [PMID: 18829523]
[82]
Lo PK, Kanojia D, Liu X, et al. CD49f and CD61 identify Her2/neu-induced mammary tumor-initiating cells that are potentially derived from luminal progenitors and maintained by the integrin-TGFβ signaling. Oncogene 2012; 31(21): 2614-26.
[http://dx.doi.org/10.1038/onc.2011.439] [PMID: 21996747]
[83]
Desgrosellier JS, Lesperance J, Seguin L, et al. Integrin αvβ3 drives slug activation and stemness in the pregnant and neoplastic mammary gland. Dev Cell 2014; 30(3): 295-308.
[http://dx.doi.org/10.1016/j.devcel.2014.06.005] [PMID: 25117682]
[84]
Vassilopoulos A, Chisholm C, Lahusen T, Zheng H, Deng CX. A critical role of CD29 and CD49f in mediating metastasis for cancer-initiating cells isolated from a Brca1-associated mouse model of breast cancer. Oncogene 2014; 33(47): 5477-82.
[http://dx.doi.org/10.1038/onc.2013.516] [PMID: 24317509]
[85]
Paholak HJ, Stevers NO, Chen H, et al. Elimination of epithelial-like and mesenchymal-like breast cancer stem cells to inhibit metastasis following nanoparticle-mediated photothermal therapy. Biomaterials 2016; 104: 145-57.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.045] [PMID: 27450902]
[86]
Han NK, Shin DH, Kim JS, Weon KY, Jang CY, Kim JS. Hyaluronan-conjugated liposomes encapsulating gemcitabine for breast cancer stem cells. Int J Nanomedicine 2016; 11: 1413-25.
[http://dx.doi.org/10.2147/IJN.S95850] [PMID: 27103799]
[87]
Kim YJ, Liu Y, Li S, et al. Co-eradication of breast cancer cells and cancer stem cells by cross-linked multilamellar liposomes enhances tumor treatment. Mol Pharm 2015; 12(8): 2811-22.
[http://dx.doi.org/10.1021/mp500754r] [PMID: 26098197]
[88]
Xu Y, Wang J, Li X, et al. Selective inhibition of breast cancer stem cells by gold nanorods mediated plasmonic hyperthermia. Biomaterials 2014; 35(16): 4667-77.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.035] [PMID: 24630839]
[89]
Sadhukha T, Niu L, Wiedmann TS, Panyam J. Effective elimination of cancer stem cells by magnetic hyperthermia. Mol Pharm 2013; 10(4): 1432-41.
[http://dx.doi.org/10.1021/mp400015b] [PMID: 23432410]
[90]
Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C 2016; 60: 569-78.
[http://dx.doi.org/10.1016/j.msec.2015.11.067] [PMID: 26706565]
[91]
Rao W, Wang H, Han J, et al. Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano 2015; 9(6): 5725-40.
[http://dx.doi.org/10.1021/nn506928p] [PMID: 26004286]
[92]
Yin H, Xiong G, Guo S, et al. Delivery of anti-miRNA for triple-negative breast cancer therapy using RNA nanoparticles targeting stem cell marker CD133. Mol Ther 2019; 27(7): 1252-61.
[http://dx.doi.org/10.1016/j.ymthe.2019.04.018] [PMID: 31085078]
[93]
Das S, Mukherjee P, Chatterjee R, Jamal Z, Chatterji U. Enhancing chemosensitivity of breast cancer stem cells by downregulating SOX2 and ABCG2 using wedelolactone-encapsulated nanoparticles. Mol Cancer Ther 2019; 18(3): 680-92.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0409] [PMID: 30587555]
[94]
Jeong K, Kang CS, Kim Y, Lee YD, Kwon IC, Kim S. Development of highly efficient nanocarrier-mediated delivery approaches for cancer therapy. Cancer Lett 2016; 374(1): 31-43.
[http://dx.doi.org/10.1016/j.canlet.2016.01.050] [PMID: 26854717]
[95]
Gener P, Gouveia LP, Sabat GR, et al. Fluorescent CSC models evidence that targeted nanomedicines improve treatment sensitivity of breast and colon cancer stem cells. Nanomedicine (Lond) 2015; 11(8): 1883-92.
[http://dx.doi.org/10.1016/j.nano.2015.07.009] [PMID: 26238079]
[96]
Wei X, Senanayake TH, Warren G, Vinogradov SV. Hyaluronic acid-based nanogel-drug conjugates with enhanced anticancer activity designed for the targeting of CD44-positive and drug-resistant tumors. Bioconjug Chem 2013; 24(4): 658-68.
[http://dx.doi.org/10.1021/bc300632w] [PMID: 23547842]
[97]
Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater 2016; 1: 16014.
[http://dx.doi.org/10.1038/natrevmats.2016.14]
[98]
Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Mol Ther 2007; 15(4): 651-9.
[http://dx.doi.org/10.1038/sj.mt.6300108] [PMID: 17299401]
[99]
Tong AW, Senzer N, Cerullo V, Templeton NS, Hemminki A, Nemunaitis J. Oncolytic viruses for induction of anti-tumor immunity. Curr Pharm Biotechnol 2012; 13(9): 1750-60.
[http://dx.doi.org/10.2174/138920112800958913] [PMID: 21740355]
[100]
Schirrmacher V, Fournier P. Harnessing oncolytic virus-mediated anti-tumor immunity. Front Oncol 2014; 4: 337.
[http://dx.doi.org/10.3389/fonc.2014.00337] [PMID: 25505735]
[101]
Mullen JT, Tanabe KK. Viral oncolysis. Oncologist 2002; 7(2): 106-19.
[http://dx.doi.org/10.1634/theoncologist.7-2-106] [PMID: 11961194]
[102]
Breitbach CJ, De Silva NS, Falls TJ, et al. Targeting tumor vasculature with an oncolytic virus. Mol Ther 2011; 19(5): 886-94.
[http://dx.doi.org/10.1038/mt.2011.26] [PMID: 21364541]
[103]
Rhim JH, Tosato G. Targeting the tumor vasculature to improve the efficacy of oncolytic virus therapy. J Natl Cancer Inst 2007; 99(23): 1739-41.
[http://dx.doi.org/10.1093/jnci/djm234] [PMID: 18042930]
[104]
Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol 2012; 30(7): 658-70.
[http://dx.doi.org/10.1038/nbt.2287] [PMID: 22781695]
[105]
Malinzi J, Ouifki R, Eladdadi A, Torres DFM, White JKA. Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis. Math Biosci Eng 2018; 15(6): 1435-63.
[http://dx.doi.org/10.3934/mbe.2018066] [PMID: 30418793]
[106]
Nguyen A, Ho L, Wan Y. Chemotherapy and oncolytic virotherapy: advanced tactics in the war against cancer. Front Oncol 2014; 4: 145.
[http://dx.doi.org/10.3389/fonc.2014.00145] [PMID: 24967214]
[107]
Kottke T, Chester J, Ilett E, et al. Precise scheduling of chemotherapy primes VEGF-producing tumors for successful systemic oncolytic virotherapy. Mol Ther 2011; 19(10): 1802-12.
[http://dx.doi.org/10.1038/mt.2011.147] [PMID: 21792179]
[108]
Bergelson JM, Cunningham JA, Droguett G, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275(5304): 1320-3.
[http://dx.doi.org/10.1126/science.275.5304.1320] [PMID: 9036860]
[109]
Ben-Israel H, Kleinberger T. Adenovirus and cell cycle control. Front Biosci 2002; 7: d1369-95.
[http://dx.doi.org/10.2741/ben] [PMID: 11991831]
[110]
Eriksson M, Guse K, Bauerschmitz G, et al. Oncolytic adenoviruses kill breast cancer initiating CD44+CD24-/low cells. Mol Ther 2007; 15(12): 2088-93.
[http://dx.doi.org/10.1038/sj.mt.6300300] [PMID: 17848962]
[111]
Bauerschmitz GJ, Ranki T, Kangasniemi L, et al. Tissue-specific promoters active in CD44+CD24-/low breast cancer cells. Cancer Res 2008; 68(14): 5533-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5288] [PMID: 18632604]
[112]
Kanai R, Wakimoto H, Cheema T, Rabkin SD. Oncolytic herpes simplex virus vectors and chemotherapy: are combinatorial strategies more effective for cancer? Future Oncol 2010; 6(4): 619-34.
[http://dx.doi.org/10.2217/fon.10.18] [PMID: 20373873]
[113]
Andtbacka RHI, Collichio F, Harrington KJ, et al. Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J Immunother Cancer 2019; 7(1): 145.
[http://dx.doi.org/10.1186/s40425-019-0623-z] [PMID: 31171039]
[114]
Li J, Zeng W, Huang Y, et al. Treatment of breast cancer stem cells with oncolytic herpes simplex virus. Cancer Gene Ther 2012; 19(10): 707-14.
[http://dx.doi.org/10.1038/cgt.2012.49] [PMID: 22898897]
[115]
Zhuang X, Zhang W, Chen Y, et al. Doxorubicin-enriched, ALDH(br) mouse breast cancer stem cells are treatable to oncolytic herpes simplex virus type 1. BMC Cancer 2012; 12: 549.
[http://dx.doi.org/10.1186/1471-2407-12-549] [PMID: 23176143]
[116]
Hashiro G, Loh PC, Yau JT. The preferential cytotoxicity of reovirus for certain transformed cell lines. Arch Virol 1977; 54(4): 307-15.
[http://dx.doi.org/10.1007/BF01314776] [PMID: 562142]
[117]
Strong JE, Coffey MC, Tang D, Sabinin P, Lee PW. The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J 1998; 17(12): 3351-62.
[http://dx.doi.org/10.1093/emboj/17.12.3351] [PMID: 9628872]
[118]
Clements D, Helson E, Gujar SA, Lee PW. Reovirus in cancer therapy: an evidence-based review. Oncolytic Virother 2014; 3: 69-82.
[PMID: 27512664]
[119]
Marcato P, Dean CA, Giacomantonio CA, Lee PW. Oncolytic reovirus effectively targets breast cancer stem cells. Mol Ther 2009; 17(6): 972-9.
[http://dx.doi.org/10.1038/mt.2009.58] [PMID: 19293772]
[120]
Jacobs BL, Langland JO, Kibler KV, et al. Vaccinia virus vaccines: past, present and future. Antiviral Res 2009; 84(1): 1-13.
[http://dx.doi.org/10.1016/j.antiviral.2009.06.006] [PMID: 19563829]
[121]
Guo ZS, Lu B, Guo Z, et al. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J Immunother Cancer 2019; 7(1): 6.
[http://dx.doi.org/10.1186/s40425-018-0495-7] [PMID: 30626434]
[122]
Whitman ED, Tsung K, Paxson J, Norton JA. In vitro and in vivo kinetics of recombinant vaccinia virus cancer-gene therapy. Surgery 1994; 116(2): 183-8.
[PMID: 8047984]
[123]
Puhlmann M, Brown CK, Gnant M, et al. Vaccinia as a vector for tumor-directed gene therapy: biodistribution of a thymidine kinase-deleted mutant. Cancer Gene Ther 2000; 7(1): 66-73.
[http://dx.doi.org/10.1038/sj.cgt.7700075] [PMID: 10678358]
[124]
Peplinski GR, Tsung AK, Casey MJ, et al. In vivo murine tumor gene delivery and expression by systemic recombinant vaccinia virus encoding interleukin-1beta. Cancer J Sci Am 1996; 2(1): 21-7.
[PMID: 9166494]
[125]
Buller RM, Smith GL, Cremer K, Notkins AL, Moss B. Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature 1985; 317(6040): 813-5.
[http://dx.doi.org/10.1038/317813a0] [PMID: 4058585]
[126]
McCart JA, Ward JM, Lee J, et al. Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer Res 2001; 61(24): 8751-7.
[PMID: 11751395]
[127]
Wang H, Chen NG, Minev BR, Szalay AA. Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells. J Transl Med 2012; 10: 167.
[http://dx.doi.org/10.1186/1479-5876-10-167] [PMID: 22901246]
[128]
Pardoll D, Allison J. Cancer immunotherapy: breaking the barriers to harvest the crop. Nat Med 2004; 10(9): 887-92.
[http://dx.doi.org/10.1038/nm0904-887] [PMID: 15340404]
[129]
Sanmamed MF, Chen L. A Paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 2018; 175(2): 313-26.
[http://dx.doi.org/10.1016/j.cell.2018.09.035] [PMID: 30290139]
[130]
Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 2019; 18(3): 175-96.
[http://dx.doi.org/10.1038/s41573-018-0006-z] [PMID: 30622344]
[131]
Yang X, Zhang X, Zhang X Fu ML, et al. Targeting the tumor microenvironment with interferon-beta bridges innate and adaptive immune responses. Cancer Cell 2019; 25: 37-48.
[132]
Billard C, Sigaux F, Castaigne S, et al. Treatment of hairy cell leukemia with recombinant alpha interferon: II. In vivo down-regulation of alpha interferon receptors on tumor cells. Blood 1986; 67(3): 821-6.
[http://dx.doi.org/10.1182/blood.V67.3.821.821] [PMID: 2936410]
[133]
Yang X, Zhang X, Fu ML, et al. Targeting the tumor microenvironment with interferon-β bridges innate and adaptive immune responses. Cancer Cell 2014; 25(1): 37-48.
[http://dx.doi.org/10.1016/j.ccr.2013.12.004] [PMID: 24434209]
[134]
Doherty MR, Cheon H, Junk DJ, et al. Interferon-beta represses cancer stem cell properties in triple-negative breast cancer. Proc Natl Acad Sci USA 2017; 114(52): 13792-7.
[http://dx.doi.org/10.1073/pnas.1713728114] [PMID: 29229854]
[135]
Lanzardo S, Conti L, Rooke R, et al. Immunotargeting of antigen xct attenuates stem-like cell behavior and metastatic progression in breast cancer. Cancer Res 2016; 76(1): 62-72.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1208] [PMID: 26567138]
[136]
Witt K, Ligtenberg MA, Conti L, et al. Cripto-1 plasmid DNA vaccination targets metastasis and cancer stem cells in murine mammary carcinoma. Cancer Immunol Res 2018; 6(11): 1417-25.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0572] [PMID: 30143536]
[137]
Marangoni E, Lecomte N, Durand L, et al. CD44 targeting reduces tumour growth and prevents post-chemotherapy relapse of human breast cancers xenografts. Br J Cancer 2009; 100(6): 918-22.
[http://dx.doi.org/10.1038/sj.bjc.6604953] [PMID: 19240712]
[138]
López-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of Metastasis by NK Cells. Cancer Cell 2017; 32(2): 135-54.
[http://dx.doi.org/10.1016/j.ccell.2017.06.009] [PMID: 28810142]
[139]
Sun JC, Lanier LL. NK cell development, homeostasis and function: parallels with CD8+ T cells. Nat Rev Immunol 2011; 11(10): 645-57.
[http://dx.doi.org/10.1038/nri3044] [PMID: 21869816]
[140]
Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. Nat Immunol 2016; 17(9): 1025-36.
[http://dx.doi.org/10.1038/ni.3518] [PMID: 27540992]
[141]
Rezvani K, Rouce R, Liu E, Shpall E. Engineering natural killer cells for cancer immunotherapy. Mol Ther 2017; 25(8): 1769-81.
[http://dx.doi.org/10.1016/j.ymthe.2017.06.012] [PMID: 28668320]
[142]
Ames E, Canter RJ, Grossenbacher SK, et al. NK cells preferentially target tumor cells with a cancer stem cell phenotype. J Immunol 2015; 195(8): 4010-9.
[http://dx.doi.org/10.4049/jimmunol.1500447] [PMID: 26363055]
[143]
Yin T, Wang G, He S, Liu Q, Sun J, Wang Y. Human cancer cells with stem cell-like phenotype exhibit enhanced sensitivity to the cytotoxicity of IL-2 and IL-15 activated natural killer cells. Cell Immunol 2016; 300: 41-5.
[http://dx.doi.org/10.1016/j.cellimm.2015.11.009] [PMID: 26677760]
[144]
Tallerico R, Conti L, Lanzardo S, et al. NK cells control breast cancer and related cancer stem cell hematological spread. OncoImmunology 2017; 6(3) e1284718
[http://dx.doi.org/10.1080/2162402X.2017.1284718] [PMID: 28405511]
[145]
Pauza CD, Liou ML, Lahusen T, et al. Gamma delta t cell therapy for cancer: it is good to be local. Front Immunol 2018; 9: 1305.
[http://dx.doi.org/10.3389/fimmu.2018.01305] [PMID: 29937769]
[146]
Maniar A, Zhang X, Lin W, et al. Human gammadelta T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement. Blood 2010; 116(10): 1726-33.
[http://dx.doi.org/10.1182/blood-2009-07-234211] [PMID: 20519625]
[147]
Song Y, Wang Y, Tong C, et al. A unified model of the hierarchical and stochastic theories of gastric cancer. Br J Cancer 2017; 116(8): 973-89.
[http://dx.doi.org/10.1038/bjc.2017.54] [PMID: 28301871]
[148]
Barnes TA, Amir E. HYPE or HOPE: the prognostic value of infiltrating immune cells in cancer. Br J Cancer 2017; 117(4): 451-60.
[http://dx.doi.org/10.1038/bjc.2017.220] [PMID: 28704840]
[149]
Lotem J, Sachs L. In vivo control of differentiation of myeloid leukemic cells by recombinant granulocyte-macrophage colony-stimulating factor and interleukin 3. Blood 1988; 71(2): 375-82.
[http://dx.doi.org/10.1182/blood.V71.2.375.375] [PMID: 2447982]
[150]
Sachs L. The control of hematopoiesis and leukemia: from basic biology to the clinic. Proc Natl Acad Sci USA 1996; 93(10): 4742-9.
[http://dx.doi.org/10.1073/pnas.93.10.4742] [PMID: 8643473]
[151]
de Thé H. Differentiation therapy revisited. Nat Rev Cancer 2018; 18(2): 117-27.
[http://dx.doi.org/10.1038/nrc.2017.103] [PMID: 29192213]
[152]
Lo-Coco F, Avvisati G, Vignetti M, et al. Gruppo Italiano Malattie Ematologiche dell’Adulto German-Austrian Acute Myeloid Leukemia Study Group Study Alliance Leukemia. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med 2013; 369(2): 111-21.
[http://dx.doi.org/10.1056/NEJMoa1300874] [PMID: 23841729]
[153]
Ginestier C, Wicinski J, Cervera N, et al. Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle 2009; 8(20): 3297-302.
[http://dx.doi.org/10.4161/cc.8.20.9761] [PMID: 19806016]
[154]
Li RJ, Ying X, Zhang Y, et al. All-trans retinoic acid stealth liposomes prevent the relapse of breast cancer arising from the cancer stem cells. J Control Release 2011; 149(3): 281-91.
[http://dx.doi.org/10.1016/j.jconrel.2010.10.019] [PMID: 20971141]
[155]
Roy RWP, Clarke R, Farnie G. Differentiation therapy: targeting breast cancer stem cells to reduce resistance to radiotherapy and chemotherapy. Breast Cancer Res 2010; 12(Suppl. 1).
[http://dx.doi.org/10.1186/bcr2496]
[156]
Merino VF, Nguyen N, Jin K, et al. Combined treatment with epigenetic, differentiating, and chemotherapeutic agents cooperatively targets tumor-initiating cells in triple-negative breast cancer. Cancer Res 2016; 76(7): 2013-24.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1619] [PMID: 26787836]
[157]
Gupta PB, Onder TT, Jiang G, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009; 138(4): 645-59.
[http://dx.doi.org/10.1016/j.cell.2009.06.034] [PMID: 19682730]
[158]
Gong C, Yao H, Liu Q, et al. Markers of tumor-initiating cells predict chemoresistance in breast cancer. PLoS One 2010; 5(12) e15630
[http://dx.doi.org/10.1371/journal.pone.0015630] [PMID: 21187973]
[159]
Zhang Y, Zhang H, Wang X, Wang J, Zhang X, Zhang Q. The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials 2012; 33(2): 679-91.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.072] [PMID: 22019123]
[160]
Oak PS, Kopp F, Thakur C, et al. Combinatorial treatment of mammospheres with trastuzumab and salinomycin efficiently targets HER2-positive cancer cells and cancer stem cells. Int J Cancer 2012; 131(12): 2808-19.
[http://dx.doi.org/10.1002/ijc.27595] [PMID: 22511343]
[161]
Matsumori N, Morooka A, Murata M. Conformation and location of membrane-bound salinomycin-sodium complex deduced from NMR in isotropic bicelles. J Am Chem Soc 2007; 129(48): 14989-95.
[http://dx.doi.org/10.1021/ja075024l] [PMID: 17994744]
[162]
Lu D, Choi MY, Yu J, Castro JE, Kipps TJ, Carson DA. Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. Proc Natl Acad Sci USA 2011; 108(32): 13253-7.
[http://dx.doi.org/10.1073/pnas.1110431108] [PMID: 21788521]
[163]
Yue W, Hamaï A, Tonelli G, et al. Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance. Autophagy 2013; 9(5): 714-29.
[http://dx.doi.org/10.4161/auto.23997] [PMID: 23519090]
[164]
Naujokat C, Steinhart R. Salinomycin as a drug for targeting human cancer stem cells. J Biomed Biotechnol 2012; 2012 950658
[http://dx.doi.org/10.1155/2012/950658] [PMID: 23251084]
[165]
Takehara M, Hoshino T, Namba T, Yamakawa N, Mizushima T. Acetaminophen-induced differentiation of human breast cancer stem cells and inhibition of tumor xenograft growth in mice. Biochem Pharmacol 2011; 81(9): 1124-35.
[http://dx.doi.org/10.1016/j.bcp.2011.02.012] [PMID: 21371442]
[166]
Pham PV, Phan NL, Nguyen NT, et al. Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy. J Transl Med 2011; 9: 209.
[http://dx.doi.org/10.1186/1479-5876-9-209] [PMID: 22152097]
[167]
Abraham RT. Chemokine to the rescue: interleukin-8 mediates resistance to PI3K-pathway-targeted therapy in breast cancer. Cancer Cell 2012; 22(6): 703-5.
[http://dx.doi.org/10.1016/j.ccr.2012.11.012] [PMID: 23238010]
[168]
Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res 2008; 14(21): 6735-41.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4843] [PMID: 18980965]
[169]
Charafe-Jauffret E, Ginestier C, Iovino F, et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 2009; 69(4): 1302-13.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2741] [PMID: 19190339]
[170]
Ginestier C, Liu S, Diebel ME, et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 2010; 120(2): 485-97.
[http://dx.doi.org/10.1172/JCI39397] [PMID: 20051626]
[171]
Musetti S, Huang L. Nanoparticle-mediated remodeling of the tumor microenvironment to enhance immunotherapy. ACS Nano 2018; 12(12): 11740-55.
[http://dx.doi.org/10.1021/acsnano.8b05893] [PMID: 30508378]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy