Review Article

氧甾醇与相关疾病综述

卷 28, 期 1, 2021

发表于: 16 March, 2020

页: [110 - 136] 页: 27

弟呕挨: 10.2174/0929867327666200316142659

价格: $65

摘要

本综述旨在对目前有关氧甾醇及其相关疾病的文献进行完整而全面的综述。胆固醇的氧化导致形成大量的氧化产物,一般称为氧甾醇。它们是胆汁酸、类固醇激素和1,25-二羟基维生素D3生物合成的中间体。虽然氧甾醇被认为是代谢中间体,但越来越多的证据表明其中许多是生物活性的,它们的缺乏或过量可能是疾病表型的一部分原因。这些化合物来源于胆固醇的酶或非酶氧化。这项研究提供了关于氧甾醇结构、形成和类型的全面信息,即使涉及到某些疾病状态,重点关注它们对代谢的影响以及与这些疾病的联系。特定的氧甾醇作为介质在各种疾病中的作用,如退行性(年龄相关)和癌症相关的疾病,现在已经越来越清楚。氧甾醇水平可作为诊断特定疾病或预测疾病发病率的合适指标,如糖尿病、阿尔茨海默病、多发性硬化症、骨质疏松症、肺癌、乳腺癌和不孕症。但是,可能需要进一步的调查来证实这些可能性。

关键词: 氧甾醇,胆固醇,分子靶标,疾病,病理生理学,羟基胆固醇,胆固醇排泄途径。

[1]
Kandutsch, A.A.; Chen, H.W.; Heiniger, H-J. Biological activity of some oxygenated sterols. Science, 1978, 201(4355), 498-501.
[http://dx.doi.org/10.1126/science.663671] [PMID: 663671]
[2]
Griffiths, W.J.; Wang, Y. An update on oxysterol biochemistry: new discoveries in lipidomics. Biochem. Biophys. Res. Commun., 2018, 504(3), 617-622.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.019] [PMID: 29421651]
[3]
Duc, D.; Vigne, S.; Pot, C. Oxysterols in Autoimmunity. Int. J. Mol. Sci., 2019, 20(18)E4522
[http://dx.doi.org/10.3390/ijms20184522] [PMID: 31547302]
[4]
Kovač, U.; Skubic, C.; Bohinc, L.; Rozman, D.; Režen, T. Oxysterols and gastrointestinal cancers around the clock. Front. Endocrinol. (Lausanne), 2019, 10, 483.
[http://dx.doi.org/10.3389/fendo.2019.00483] [PMID: 31379749]
[5]
Malaguti, M.; Cardenia, V.; Rodriguez-Estrada, M.T.; Hrelia, S. Nutraceuticals and physical activity: their role on oxysterols-mediated neurodegeneration. J. Steroid Biochem. Mol. Biol., 2019, 193105430
[http://dx.doi.org/10.1016/j.jsbmb.2019.105430] [PMID: 31325497]
[6]
Björkhem, I. Do oxysterols control cholesterol homeostasis? J. Clin. Invest., 2002, 110(6), 725-730.
[http://dx.doi.org/10.1172/JCI0216388] [PMID: 12235099]
[7]
Guillemot-Legris, O.; Mutemberezi, V.; Muccioli, G.G. Oxysterols in metabolic syndrome: from bystander molecules to bioactive lipids. Trends Mol. Med., 2016, 22(7), 594-614.
[http://dx.doi.org/10.1016/j.molmed.2016.05.006] [PMID: 27286741]
[8]
Vaya, J.; Schipper, H.M. Oxysterols, cholesterol homeostasis, and Alzheimer disease. J. Neurochem., 2007, 102(6), 1727-1737.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04689.x] [PMID: 17573819]
[9]
Olkkonen, V.M.; Béaslas, O.; Nissilä, E. Oxysterols and their cellular effectors. Biomolecules, 2012, 2(1), 76-103.
[http://dx.doi.org/10.3390/biom2010076] [PMID: 24970128]
[10]
Mutemberezi, V.; Guillemot-Legris, O.; Muccioli, G.G. Oxysterols: from cholesterol metabolites to key mediators. Prog. Lipid Res., 2016, 64, 152-169.
[http://dx.doi.org/10.1016/j.plipres.2016.09.002] [PMID: 27687912]
[11]
Iuliano, L. Pathways of cholesterol oxidation via non-enzymatic mechanisms. Chem. Phys. Lipids, 2011, 164(6), 457-468.
[http://dx.doi.org/10.1016/j.chemphyslip.2011.06.006] [PMID: 21703250]
[12]
Wafula, W.G.; Arnold, O.; Calvin, O.; Moses, M. Reactive oxygen species (ROS) generation, impacts on tissue oxidation and dietary management of non-communicable diseases: A review. Afr. J. Biochem. Res., 2017, 11(12), 79-90.
[http://dx.doi.org/10.5897/AJBR2017.0967]
[13]
Ghosh, S.; Khare, S.K. Biodegradation of cytotoxic 7-Ketocholesterol by Pseudomonas aeruginosa PseA. Bioresour. Technol., 2016, 213, 44-49.
[http://dx.doi.org/10.1016/j.biortech.2016.03.079] [PMID: 27020128]
[14]
Ghosh, S.; Khare, S.K. Biodegradation of 7- Ketocholesterol by Rhodococcus erythropolis MTCC 3951: Process optimization and enzymatic insights. Chem. Phys. Lipids 2017, 207(B), 253-259.
[http://dx.doi.org/10.1016/j.chemphyslip.2017.05.008] [PMID: 28571786]
[15]
Chistiakov, D.A.; Bobryshev, Y.V.; Kozarov, E.; Sobenin, I.A.; Orekhov, A.N. Role of gut microbiota in the modulation of atherosclerosis-associated immune response. Front. Microbiol., 2015, 6, 671-671.
[http://dx.doi.org/10.3389/fmicb.2015.00671] [PMID: 26175728]
[16]
Marsheck, W.J.; Kraychy, S.; Muir, R.D. Microbial degradation of sterols. Appl. Microbiol., 1972, 23(1), 72-77.
[http://dx.doi.org/10.1128/AEM.23.1.72-77.1972] [PMID: 5059623]
[17]
Schoenheimer, R. New contributions in sterol metabolism. Science, 1931, 74(1928), 579-584.
[http://dx.doi.org/10.1126/science.74.1928.579] [PMID: 17752469]
[18]
Molinero, N.; Ruiz, L.; Sánchez, B.; Margolles, A.; Delgado, S. Intestinal bacteria interplay with bile and cholesterol metabolism: implications on host physiology. Front. Physiol., 2019, 10, 185.
[http://dx.doi.org/10.3389/fphys.2019.00185] [PMID: 30923502]
[19]
Willinger, T. Oxysterols in intestinal immunity and inflammation. J. Intern. Med., 2019, 285(4), 367-380.
[http://dx.doi.org/10.1111/joim.12855] [PMID: 30478861]
[20]
Zhang, T. Discovery of bioactive lipids and lipid pathways in cell death and disease. PhD dissertation, Harvard University, Massachusetts,, 2014.
[21]
Lu, R.; Ito, J.; Iwamoto, N.; Nishimaki-Mogami, T.; Yokoyama, S. FGF-1 induces expression of LXRalpha and production of 25-hydroxycholesterol to upregulate the apoE gene in rat astrocytes. J. Lipid Res., 2009, 50(6), 1156-1164.
[http://dx.doi.org/10.1194/jlr.M800594-JLR200] [PMID: 19229075]
[22]
Holy, P.; Kloudova, A.; Soucek, P. Importance of genetic background of oxysterol signaling in cancer. Biochimie, 2018, 153, 109-138.
[http://dx.doi.org/10.1016/j.biochi.2018.04.023] [PMID: 29746893]
[23]
Rutkowska, A.; Dev, K.K.; Sailer, A.W. The role of the oxysterol/EBI2 pathway in the immune and central nervous systems. Curr. Drug Targets, 2016, 17(16), 1851-1860.
[http://dx.doi.org/10.2174/1389450117666160217123042] [PMID: 26898310]
[24]
Zhu, Z.; Hu, Y.; Zhou, Y.; Zhang, Y.; Yu, L.; Tao, L.; Guo, A.; Fang, Q. Macrophage migration inhibitory factor promotes chemotaxis of astrocytes through regulation of cholesterol 25-hydroxylase following rat spinal cord injury. Neuroscience, 2019, 408, 349-360.
[http://dx.doi.org/10.1016/j.neuroscience.2019.04.022] [PMID: 31026565]
[25]
Töröcsik, D.; Szanto, A.; Nagy, L. Oxysterol signaling links cholesterol metabolism and inflammation via the liver X receptor in macrophages. Mol. Aspects Med., 2009, 30(3), 134-152.
[http://dx.doi.org/10.1016/j.mam.2009.02.002] [PMID: 19248804]
[26]
Baranowski, M. Biological role of liver X receptors. J. Physiol. Pharmacol., 2008, 59(Suppl. 7), 31-55.
[PMID: 19258656]
[27]
Sharpe, H.J.; de Sauvage, F.J. Signaling: an oxysterol ligand for smoothened. Nat. Chem. Biol., 2012, 8(2), 139-140.
[http://dx.doi.org/10.1038/nchembio.774] [PMID: 22257852]
[28]
Nedelcu, D.; Liu, J.; Xu, Y.; Jao, C.; Salic, A. Oxysterol binding to the extracellular domain of smoothened in hedgehog signaling. Nat. Chem. Biol., 2013, 9(9), 557-564.
[http://dx.doi.org/10.1038/nchembio.1290] [PMID: 23831757]
[29]
Zarrouk, A.; Debbabi, M.; Bezine, M.; Karym, E.M.; Badreddine, A.; Rouaud, O.; Moreau, T.; Cherkaoui-Malki, M.; El Ayeb, M.; Nasser, B.; Hammami, M.; Lizard, G. Lipid biomarkers in alzheimer’s disease. Curr. Alzheimer Res., 2018, 15(4), 303-312.
[http://dx.doi.org/10.2174/1567205014666170505101426] [PMID: 28474568]
[30]
Griffiths, W.J.; Abdel-Khalik, J.; Crick, P.J.; Yutuc, E.; Wang, Y. New methods for analysis of oxysterols and related compounds by LC-MS. J. Steroid Biochem. Mol. Biol., 2016, 162, 4-26.
[http://dx.doi.org/10.1016/j.jsbmb.2015.11.017] [PMID: 26639636]
[31]
Brown, A.J.; Jessup, W. Oxysterols: sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis. Mol. Aspects Med., 2009, 30(3), 111-122.
[http://dx.doi.org/10.1016/j.mam.2009.02.005] [PMID: 19248801]
[32]
Ostlund, R.E., Jr Phytosterols and cholesterol metabolism. Curr. Opin. Lipidol., 2004, 15(1), 37-41.
[http://dx.doi.org/10.1097/00041433-200402000-00008] [PMID: 15166807]
[33]
Zarrouk, A.; Vejux, A.; Mackrill, J.; O’Callaghan, Y.; Hammami, M.; O’Brien, N.; Lizard, G. Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res. Rev., 2014, 18, 148-162.
[http://dx.doi.org/10.1016/j.arr.2014.09.006] [PMID: 25305550]
[34]
Lund, E.; Bjoerkhem, I. Role of oxysterols in the regulation of cholesterol homeostasis: a critical evaluation. Acc. Chem. Res., 1995, 28(6), 241-249.
[http://dx.doi.org/10.1021/ar00054a001]
[35]
Zmysłowski, A.; Szterk, A. Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of oxysterols. Lipids Health Dis., 2017, 16(1), 188.
[http://dx.doi.org/10.1186/s12944-017-0579-2] [PMID: 28969682]
[36]
Vaya, J.; Szuchman, A.; Tavori, H.; Aluf, Y. Oxysterols formation as a reflection of biochemical pathways: summary of in vitro and in vivo studies. Chem. Phys. Lipids, 2011, 164(6), 438-442.
[http://dx.doi.org/10.1016/j.chemphyslip.2011.03.005] [PMID: 21514284]
[37]
Massey, J.B. Membrane and protein interactions of oxysterols. Curr. Opin. Lipidol., 2006, 17(3), 296-301.
[http://dx.doi.org/10.1097/01.mol.0000226123.17629.ab] [PMID: 16680036]
[38]
Schroepfer, G.J. Jr. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol. Rev., 2000, 80(1), 361-554.
[http://dx.doi.org/10.1152/physrev.2000.80.1.361] [PMID: 10617772]
[39]
Jessup, W.; Brown, A.J. Novel routes for metabolism of 7-ketocholesterol. Rejuvenation Res., 2005, 8(1), 9-12.
[http://dx.doi.org/10.1089/rej.2005.8.9] [PMID: 15798369]
[40]
Murphy, R.C.; Johnson, K.M. Cholesterol, reactive oxygen species, and the formation of biologically active mediators. J. Biol. Chem., 2008, 283(23), 15521-15525.
[http://dx.doi.org/10.1074/jbc.R700049200] [PMID: 18285330]
[41]
Luu, W.; Sharpe, L.J.; Capell-Hattam, I.; Gelissen, I.C.; Brown, A.J. Oxysterols: old tale, new twists. Annu. Rev. Pharmacol. Toxicol., 2016, 56, 447-467.
[http://dx.doi.org/10.1146/annurev-pharmtox-010715-103233] [PMID: 26738477]
[42]
Russell, D.W. Oxysterol biosynthetic enzymes. Biochim. Biophys. Acta, 2000, 1529(1-3), 126-135.
[http://dx.doi.org/10.1016/S1388-1981(00)00142-6] [PMID: 11111082]
[43]
Luoma, P.V. Cytochrome P450--physiological key factor against cholesterol accumulation and the atherosclerotic vascular process. Ann. Med., 2007, 39(5), 359-370.
[http://dx.doi.org/10.1080/07853890701379767] [PMID: 17701478]
[44]
Otaegui-Arrazola, A.; Menéndez-Carreño, M.; Ansorena, D.; Astiasarán, I. Oxysterols: a world to explore. Food Chem. Toxicol., 2010, 48(12), 3289-3303.
[http://dx.doi.org/10.1016/j.fct.2010.09.023] [PMID: 20870006]
[45]
Jusakul, A.; Yongvanit, P.; Loilome, W.; Namwat, N.; Kuver, R. Mechanisms of oxysterol-induced carcinogenesis. Lipids Health Dis., 2011, 10(1), 44.
[http://dx.doi.org/10.1186/1476-511X-10-44] [PMID: 21388551]
[46]
Dyer, R.G.; Stewart, M.W.; Mitcheson, J.; George, K.; Alberti, M.M.; Laker, M.F. 7-ketocholesterol, a specific indicator of lipoprotein oxidation, and malondialdehyde in non-insulin dependent diabetes and peripheral vascular disease. Clin. Chim. Acta, 1997, 260(1), 1-13.
[http://dx.doi.org/10.1016/S0009-8981(96)06499-6] [PMID: 9101096]
[47]
Vejux, A.; Lizard, G. Cytotoxic effects of oxysterols associated with human diseases: induction of cell death (apoptosis and/or oncosis), oxidative and inflammatory activities, and phospholipidosis. Mol. Aspects Med., 2009, 30(3), 153-170.
[http://dx.doi.org/10.1016/j.mam.2009.02.006] [PMID: 19248805]
[48]
Ryan, E.; Chopra, J.; McCarthy, F.; Maguire, A.R.; O’Brien, N.M. Qualitative and quantitative comparison of the cytotoxic and apoptotic potential of phytosterol oxidation products with their corresponding cholesterol oxidation products. Br. J. Nutr., 2005, 94(3), 443-451.
[http://dx.doi.org/10.1079/BJN20051500] [PMID: 16176617]
[49]
Gill, S.; Chow, R.; Brown, A.J. Sterol regulators of cholesterol homeostasis and beyond: the oxysterol hypothesis revisited and revised. Prog. Lipid Res., 2008, 47(6), 391-404.
[http://dx.doi.org/10.1016/j.plipres.2008.04.002] [PMID: 18502209]
[50]
Björkhem, I. Rediscovery of cerebrosterol. Lipids, 2007, 42(1), 5-14.
[http://dx.doi.org/10.1007/s11745-006-1003-2] [PMID: 17393206]
[51]
Björkhem, I.; Eggertsen, G. Genes involved in initial steps of bile acid synthesis. Curr. Opin. Lipidol., 2001, 12(2), 97-103.
[http://dx.doi.org/10.1097/00041433-200104000-00002] [PMID: 11264980]
[52]
Heverin, M.; Meaney, S.; Lütjohann, D.; Diczfalusy, U.; Wahren, J.; Björkhem, I. Crossing the barrier: net flux of 27-hydroxycholesterol into the human brain. J. Lipid Res., 2005, 46(5), 1047-1052.
[http://dx.doi.org/10.1194/jlr.M500024-JLR200] [PMID: 15741649]
[53]
Shafaati, M.; Marutle, A.; Pettersson, H.; Lövgren-Sandblom, A.; Olin, M.; Pikuleva, I.; Winblad, B.; Nordberg, A.; Björkhem, I. Marked accumulation of 27-hydroxycholesterol in the brains of Alzheimer’s patients with the Swedish APP 670/671 mutation. J. Lipid Res., 2011, 52(5), 1004-1010.
[http://dx.doi.org/10.1194/jlr.M014548] [PMID: 21335619]
[54]
Bodin, K.; Andersson, U.; Rystedt, E.; Ellis, E.; Norlin, M.; Pikuleva, I.; Eggertsen, G.; Björkhem, I.; Diczfalusy, U. Metabolism of 4 β -hydroxycholesterol in humans. J. Biol. Chem., 2002, 277(35), 31534-31540.
[http://dx.doi.org/10.1074/jbc.M201712200] [PMID: 12077124]
[55]
Diczfalusy, U.; Nylén, H.; Elander, P.; Bertilsson, L. 4β-Hydroxycholesterol, an endogenous marker of CYP3A4/5 activity in humans. Br. J. Clin. Pharmacol., 2011, 71(2), 183-189.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03773.x] [PMID: 21219398]
[56]
Nelson, J.A.; Steckbeck, S.R.; Spencer, T.A. Biosynthesis of 24,25-epoxycholesterol from squalene 2,3;22,23-dioxide. J. Biol. Chem., 1981, 256(3), 1067-1068.
[PMID: 7451488]
[57]
Brown, A.J.; Leong, S.L.; Dean, R.T.; Jessup, W. 7-Hydroperoxycholesterol and its products in oxidized low density lipoprotein and human atherosclerotic plaque. J. Lipid Res., 1997, 38(9), 1730-1745.
[PMID: 9323583]
[58]
Brown, A.J.; Jessup, W. Oxysterols and atherosclerosis. Atherosclerosis, 1999, 142(1), 1-28.
[http://dx.doi.org/10.1016/S0021-9150(98)00196-8] [PMID: 9920502]
[59]
Lordan, S.; Mackrill, J.J.; O’Brien, N.M. Oxysterols and mechanisms of apoptotic signaling: implications in the pathology of degenerative diseases. J. Nutr. Biochem., 2009, 20(5), 321-336.
[http://dx.doi.org/10.1016/j.jnutbio.2009.01.001] [PMID: 19345313]
[60]
Zhang, H.F.; Basra, H.J.; Steinbrecher, U.P. Effects of oxidatively modified LDL on cholesterol esterification in cultured macrophages. J. Lipid Res., 1990, 31(8), 1361-1369.
[PMID: 2280179]
[61]
Miyoshi, N. Biochemical properties of cholesterol aldehyde secosterol and its derivatives. J. Clin. Biochem. Nutr., 2018, 62(2), 107-114.
[http://dx.doi.org/10.3164/jcbn.17-109] [PMID: 29610549]
[62]
Wentworth, P., Jr; Nieva, J.; Takeuchi, C.; Galve, R.; Wentworth, A.D.; Dilley, R.B.; DeLaria, G.A.; Saven, A.; Babior, B.M.; Janda, K.D.; Eschenmoser, A.; Lerner, R.A. Evidence for ozone formation in human atherosclerotic arteries. Science, 2003, 302(5647), 1053-1056.
[http://dx.doi.org/10.1126/science.1089525] [PMID: 14605372]
[63]
Miyoshi, N.; Iuliano, L.; Tomono, S.; Ohshima, H. Implications of cholesterol autoxidation products in the pathogenesis of inflammatory diseases. Biochem. Biophys. Res. Commun., 2014, 446(3), 702-708.
[http://dx.doi.org/10.1016/j.bbrc.2013.12.107] [PMID: 24412245]
[64]
Stewart, C.R.; Wilson, L.M.; Zhang, Q.; Pham, C.L.; Waddington, L.J.; Staples, M.K.; Stapleton, D.; Kelly, J.W.; Howlett, G.J. Oxidized cholesterol metabolites found in human atherosclerotic lesions promote apolipoprotein C-II amyloid fibril formation. Biochemistry, 2007, 46(18), 5552-5561.
[http://dx.doi.org/10.1021/bi602554z] [PMID: 17429947]
[65]
Guardiola, F.; Dutta, P.C.; Codony, R.; Savage, G.P., Eds.; Cholesterol and phytosterol oxidation products: analysis, occurrence, and biological effects; The American Oil Chemists Society, AOCS press, 2002.
[66]
Krut, L.H.; Yang, J.W.; Schonfeld, G.; Ostlund, R.E. Jr. The effect of oxidizing cholesterol on gastrointestinal absorption, plasma clearance, tissue distribution, and processing by endothelial cells. Arterioscler. Thromb. Vasc. Biol., 1997, 17(4), 778-785.
[http://dx.doi.org/10.1161/01.ATV.17.4.778] [PMID: 9108794]
[67]
van Reyk, D.M.; Brown, A.J.; Hult’en, L.M.; Dean, R.T.; Jessup, W. Oxysterols in biological systems: sources, metabolism and pathophysiological relevance. Redox Rep., 2006, 11(6), 255-262.
[http://dx.doi.org/10.1179/135100006X155003] [PMID: 17207307]
[68]
Morgan, J.; Armstrong, D. Quantification of cholesterol oxidation products in egg yolk powder spray‐dried with direct heating. J. Food Sci., 1992, 57(1), 43-45.
[http://dx.doi.org/10.1111/j.1365-2621.1992.tb05420.x]
[69]
Valenzuela, A.; Sanhueza, J.; Nieto, S. Cholesterol oxidized products in foods: potential health hazards and the role of antioxidants in prevention. Grasas Aceites, 2004, 55(3), 312-320.
[http://dx.doi.org/10.3989/GYA.2004.V55.I3.194]]
[70]
Derewiaka, D.; Obiedzinski, M. Oxysterol content in selected meats and meat products. Acta Sci. Pol. Technol. Aliment., 2009, 8(3), 5-13.
[71]
Babiker, A.; Diczfalusy, U. Transport of side-chain oxidized oxysterols in the human circulation. Biochim. Biophys. Acta, 1998, 1392(2-3), 333-339.
[http://dx.doi.org/10.1016/S0005-2760(98)00047-2] [PMID: 9630709]
[72]
Wang, J. Megha; London, E. Relationship between sterol/steroid structure and participation in ordered lipid domains (lipid rafts): implications for lipid raft structure and function. Biochemistry, 2004, 43(4), 1010-1018.
[http://dx.doi.org/10.1021/bi035696y] [PMID: 14744146]
[73]
Szedlacsek, S.E.; Wasowicz, E.; Hulea, S.A.; Nishida, H.I.; Kummerow, F.A.; Nishida, T. Esterification of oxysterols by human plasma lecithin-cholesterol acyltransferase. J. Biol. Chem., 1995, 270(20), 11812-11819.
[http://dx.doi.org/10.1074/jbc.270.20.11812] [PMID: 7744831]
[74]
Zhang, Y.; Yu, C.; Liu, J.; Spencer, T.A.; Chang, C.C.; Chang, T-Y. Cholesterol is superior to 7-ketocholesterol or 7 α-hydroxycholesterol as an allosteric activator for acyl-coenzyme A:cholesterol acyltransferase 1. J. Biol. Chem., 2003, 278(13), 11642-11647.
[http://dx.doi.org/10.1074/jbc.M211559200] [PMID: 12533546]
[75]
Javitt, N.B. Oxysterols: novel biologic roles for the 21st century. Steroids, 2008, 73(2), 149-157.
[http://dx.doi.org/10.1016/j.steroids.2007.10.004] [PMID: 18068744]
[76]
Brown, A.J.; Watts, G.F.; Burnett, J.R.; Dean, R.T.; Jessup, W. Sterol 27-hydroxylase acts on 7-ketocholesterol in human atherosclerotic lesions and macrophages in culture. J. Biol. Chem., 2000, 275(36), 27627-27633.
[http://dx.doi.org/10.1074/jbc.m004060200] [PMID: 10869358]
[77]
Nes, W.D. Biosynthesis of cholesterol and other sterols. Chem. Rev., 2011, 111(10), 6423-6451.
[http://dx.doi.org/10.1021/cr200021m] [PMID: 21902244]
[78]
Chen, W.; Chen, G.; Head, D.L.; Mangelsdorf, D.J.; Russell, D.W. Enzymatic reduction of oxysterols impairs LXR signaling in cultured cells and the livers of mice. Cell Metab., 2007, 5(1), 73-79.
[http://dx.doi.org/10.1016/j.cmet.2006.11.012] [PMID: 17189208]
[79]
Fuda, H.; Javitt, N.B.; Mitamura, K.; Ikegawa, S.; Strott, C.A. Oxysterols are substrates for cholesterol sulfotransferase. J. Lipid Res., 2007, 48(6), 1343-1352.
[http://dx.doi.org/10.1194/jlr.M700018-JLR200] [PMID: 17347498]
[80]
Jessup, W.; Gelissen, I.C.; Gaus, K.; Kritharides, L. Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Curr. Opin. Lipidol., 2006, 17(3), 247-257.
[http://dx.doi.org/10.1097/01.mol.0000226116.35555.eb] [PMID: 16680029]
[81]
Ruan, B.; Wilson, W.K.; Schroepfer, G.J. Jr. An improved synthesis of (20R,22R)-cholest-5-ene-3β,20,22-triol, an intermediate in steroid hormone formation and an activator of nuclear orphan receptor LXR α. Steroids, 1999, 64(6), 385-395.
[http://dx.doi.org/10.1016/S0039-128X(98)00116-0] [PMID: 10433175]
[82]
Björkhem, I.; Diczfalusy, U. Oxysterols: friends, foes, or just fellow passengers? Arterioscler. Thromb. Vasc. Biol., 2002, 22(5), 734-742.
[http://dx.doi.org/10.1161/01.ATV.0000013312.32196.49] [PMID: 12006384]
[83]
Matysik, S.; Klünemann, H.H.; Schmitz, G. Gas chromatography-tandem mass spectrometry method for the simultaneous determination of oxysterols, plant sterols, and cholesterol precursors. Clin. Chem., 2012, 58(11), 1557-1564.
[http://dx.doi.org/10.1373/clinchem.2012.189605] [PMID: 22997279]
[84]
Leonarduzzi, G.; Sottero, B.; Poli, G. Oxidized products of cholesterol: dietary and metabolic origin, and proatherosclerotic effects. (review) J. Nutr. Biochem., 2002, 13(12), 700-710.
[http://dx.doi.org/10.1016/S0955-2863(02)00222-X] [PMID: 12550054]
[85]
Kuver, R. Mechanisms of oxysterol-induced disease: insights from the biliary system. Clin. Lipidol., 2012, 7(5), 537-548.
[http://dx.doi.org/10.2217/clp.12.53] [PMID: 23630545]
[86]
De Boussac, H.; Alioui, A.; Viennois, E.; Dufour, J.; Trousson, A.; Vega, A.; Guy, L.; Volle, D.H.; Lobaccaro, J-M.A.; Baron, S. Oxysterol receptors and their therapeutic applications in cancer conditions. Expert Opin. Ther. Targets, 2013, 17(9), 1029-1038.
[http://dx.doi.org/10.1517/14728222.2013.820708] [PMID: 23875732]
[87]
Griffiths, W.J.; Crick, P.J.; Wang, Y. Methods for oxysterol analysis: past, present and future. Biochem. Pharmacol., 2013, 86(1), 3-14.
[http://dx.doi.org/10.1016/j.bcp.2013.01.027] [PMID: 23395696]
[88]
Poli, G.; Biasi, F.; Leonarduzzi, G. Oxysterols in the pathogenesis of major chronic diseases. Redox Biol., 2013, 1, 125-130.
[http://dx.doi.org/10.1016/j.redox.2012.12.001] [PMID: 24024145]
[89]
Javitt, N.B. Oxysteroids: a new class of steroids with autocrine and paracrine functions. Trends Endocrinol. Metab., 2004, 15(8), 393-397.
[http://dx.doi.org/10.1016/j.tem.2004.08.009] [PMID: 15380811]
[90]
Aghaloo, T.L.; Amantea, C.M.; Cowan, C.M.; Richardson, J.A.; Wu, B.M.; Parhami, F.; Tetradis, S. Oxysterols enhance osteoblast differentiation in vitro and bone healing in vivo. J. Orthop. Res., 2007, 25(11), 1488-1497.
[http://dx.doi.org/10.1002/jor.20437] [PMID: 17568450]
[91]
Richardson, J.A.; Amantea, C.M.; Kianmahd, B.; Tetradis, S.; Lieberman, J.R.; Hahn, T.J.; Parhami, F. Oxysterol-induced osteoblastic differentiation of pluripotent mesenchymal cells is mediated through a PKC- and PKA-dependent pathway. J. Cell. Biochem., 2007, 100(5), 1131-1145.
[http://dx.doi.org/10.1002/jcb.21112] [PMID: 17031848]
[92]
Meynier, A.; Andre, A.; Lherminier, J.; Grandgirard, A.; Demaison, L. Dietary oxysterols induce in vivo toxicity of coronary endothelial and smooth muscle cells. Eur. J. Nutr., 2005, 44(7), 393-405.
[http://dx.doi.org/10.1007/s00394-005-0539-x] [PMID: 15668746]
[93]
Wielkoszyński, T.; Gawron, K.; Strzelczyk, J.; Bodzek, P.; Zalewska-Ziob, M.; Trapp, G.; Srebniak, M.; Wiczkowski, A. Cellular toxicity of oxycholesterols. BioEssays, 2006, 28(4), 387-398.
[http://dx.doi.org/10.1002/bies.20383] [PMID: 16547953]
[94]
Ikonen, E.; Vainio, S. Lipid microdomains and insulin resistance: is there a connection? Sci. STKE, 2005, 2005(268), pe3.
[http://dx.doi.org/10.1126/stke.2682005pe3] [PMID: 15671480]
[95]
Patra, S.K. Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim. Biophys. Acta, 2008, 1785(2), 182-206.
[http://dx.doi.org/10.1016/j.bbcan.2007.11.002] [PMID: 18166162]
[96]
Olkkonen, V.M.; Hynynen, R. Interactions of oxysterols with membranes and proteins. Mol. Aspects Med., 2009, 30(3), 123-133.
[http://dx.doi.org/10.1016/j.mam.2009.02.004] [PMID: 19248802]
[97]
Kha, H.T.; Basseri, B.; Shouhed, D.; Richardson, J.; Tetradis, S.; Hahn, T.J.; Parhami, F. Oxysterols regulate differentiation of mesenchymal stem cells: pro-bone and anti-fat. J. Bone Miner. Res., 2004, 19(5), 830-840.
[http://dx.doi.org/10.1359/jbmr.040115] [PMID: 15068507]
[98]
Panini, S.R.; Sinensky, M.S. Mechanisms of oxysterol-induced apoptosis. Curr. Opin. Lipidol., 2001, 12(5), 529-533.
[http://dx.doi.org/10.1097/00041433-200110000-00008] [PMID: 11561172]
[99]
Li, W.; Dalen, H.; Eaton, J.W.; Yuan, X-M. Apoptotic death of inflammatory cells in human atheroma. Arterioscler. Thromb. Vasc. Biol., 2001, 21(7), 1124-1130.
[http://dx.doi.org/10.1161/hq0701.092145] [PMID: 11451740]
[100]
Malvitte, L.; Montange, T.; Vejux, A.; Joffre, C.; Bron, A.; Creuzot-Garcher, C.; Lizard, G. Activation of a caspase-3-independent mode of cell death associated with lysosomal destabilization in cultured human retinal pigment epithelial cells (ARPE-19) exposed to 7β-hydroxycholesterol. Curr. Eye Res., 2008, 33(9), 769-781.
[http://dx.doi.org/10.1080/02713680802337397] [PMID: 18798080]
[101]
Lange, Y.; Ory, D.S.; Ye, J.; Lanier, M.H.; Hsu, F-F.; Steck, T.L. Effectors of rapid homeostatic responses of endoplasmic reticulum cholesterol and 3-hydroxy-3-methylglutaryl-CoA reductase. J. Biol. Chem., 2008, 283(3), 1445-1455.
[http://dx.doi.org/10.1074/jbc.M706967200] [PMID: 18024962]
[102]
Sever, N.; Yang, T.; Brown, M.S.; Goldstein, J.L.; DeBose-Boyd, R.A. Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-sensing domain. Mol. Cell, 2003, 11(1), 25-33.
[http://dx.doi.org/10.1016/S1097-2765(02)00822-5] [PMID: 12535518]
[103]
Goldstein, J.L.; DeBose-Boyd, R.A.; Brown, M.S. Protein sensors for membrane sterols. Cell, 2006, 124(1), 35-46.
[http://dx.doi.org/10.1016/j.cell.2005.12.022] [PMID: 16413480]
[104]
Radhakrishnan, A.; Ikeda, Y.; Kwon, H.J.; Brown, M.S.; Goldstein, J.L. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc. Natl. Acad. Sci. USA, 2007, 104(16), 6511-6518.
[http://dx.doi.org/10.1073/pnas.0700899104] [PMID: 17428920]
[105]
Cummins, C.L.; Mangelsdorf, D.J. Liver X receptors and cholesterol homoeostasis: spotlight on the adrenal gland. Biochem. Soc. Trans., 2006, 34(6), 1110-1113.
[http://dx.doi.org/10.1042/bst0341110] [PMID: 17073762]
[106]
Ito, A.; Hong, C.; Rong, X.; Zhu, X.; Tarling, E.J.; Hedde, P.N.; Gratton, E.; Parks, J.; Tontonoz, P. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. eLife, 2015, 4e08009
[http://dx.doi.org/10.7554/elife.08009] [PMID: 26173179]
[107]
Wada, T.; Kang, H.S.; Jetten, A.M.; Xie, W. The emerging role of nuclear receptor RORalpha and its crosstalk with LXR in xeno- and endobiotic gene regulation. Exp. Biol. Med. (Maywood), 2008, 233(10), 1191-1201.
[http://dx.doi.org/10.3181/0802-MR-50] [PMID: 18535165]
[108]
Lee, W.-R.; Ishikawa, T.; Umetani, M. The interaction between metabolism, cancer and cardiovascular disease, connected by 27-hydroxycholesterol. 2014, 9(6), 617-624.
[http://dx.doi.org/10.2217/clp.14.53] [PMID: 25632306]
[109]
Carmona, B. G. Oxysterols: implication in biological processes and diseases., 2015.
[110]
Nelson, E.R.; Wardell, S.E.; Jasper, J.S.; Park, S.; Suchindran, S.; Howe, M.K.; Carver, N.J.; Pillai, R.V.; Sullivan, P.M.; Sondhi, V.; Umetani, M.; Geradts, J.; McDonnell, D.P. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science, 2013, 342(6162), 1094-1098.
[http://dx.doi.org/10.1126/science.1241908] [PMID: 24288332]
[111]
Wu, Q.; Ishikawa, T.; Sirianni, R.; Tang, H.; McDonald, J.G.; Yuhanna, I.S.; Thompson, B.; Girard, L.; Mineo, C.; Brekken, R.A.; Umetani, M.; Euhus, D.M.; Xie, Y.; Shaul, P.W. 27-Hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth. Cell Rep., 2013, 5(3), 637-645.
[http://dx.doi.org/10.1016/j.celrep.2013.10.006] [PMID: 24210818]
[112]
Wudy, S.A.; Schuler, G.; Sánchez-Guijo, A.; Hartmann, M.F. The art of measuring steroids: Principles and practice of current hormonal steroid analysis. J. Steroid Biochem. Mol. Biol., 2018, 179, 88-103.
[http://dx.doi.org/10.1016/j.jsbmb.2017.09.003] [PMID: 28962971]
[113]
Nachtergaele, S.; Mydock, L.K.; Krishnan, K.; Rammohan, J.; Schlesinger, P.H.; Covey, D.F.; Rohatgi, R. Oxysterols are allosteric activators of the oncoprotein Smoothened. Nat. Chem. Biol., 2012, 8(2), 211-220.
[http://dx.doi.org/10.1038/nchembio.765] [PMID: 22231273]
[114]
Sitarska, D.; Ługowska, A. Laboratory diagnosis of the Niemann-Pick type C disease: an inherited neurodegenerative disorder of cholesterol metabolism. Metab. Brain Dis., 2019, 34(5), 1253-1260.
[http://dx.doi.org/10.1007/s11011-019-00445-w] [PMID: 31197681]
[115]
Mashima, R.; Maekawa, M.; Narita, A.; Okuyama, T.; Mano, N. Elevation of plasma lysosphingomyelin-509 and urinary bile acid metabolite in Niemann-Pick disease type C-affected individuals. Mol. Genet. Metab. Rep., 2018, 15, 90-95.
[http://dx.doi.org/10.1016/j.ymgmr.2018.03.005] [PMID: 30023294]
[116]
Polo, G.; Burlina, A.; Furlan, F.; Kolamunnage, T.; Cananzi, M.; Giordano, L.; Zaninotto, M.; Plebani, M.; Burlina, A. High level of oxysterols in neonatal cholestasis: a pitfall in analysis of biochemical markers for Niemann-Pick type C disease. Clin. Chem. Lab. Med., 2016, 54(7), 1221-1229.
[http://dx.doi.org/10.1515/cclm-2015-0669] [PMID: 26650075]
[117]
Lum, L.; Beachy, P.A. The Hedgehog response network: sensors, switches, and routers. Science, 2004, 304(5678), 1755-1759.
[http://dx.doi.org/10.1126/science.1098020] [PMID: 15205520]
[118]
Dwyer, J.R.; Sever, N.; Carlson, M.; Nelson, S.F.; Beachy, P.A.; Parhami, F. Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells. J. Biol. Chem., 2007, 282(12), 8959-8968.
[http://dx.doi.org/10.1074/jbc.M611741200] [PMID: 17200122]
[119]
Kim, W.K.; Meliton, V.; Amantea, C.M.; Hahn, T.J.; Parhami, F. 20(S)-hydroxycholesterol inhibits PPARgamma expression and adipogenic differentiation of bone marrow stromal cells through a hedgehog-dependent mechanism. J. Bone Miner. Res., 2007, 22(11), 1711-1719.
[http://dx.doi.org/10.1359/jbmr.070710] [PMID: 17638575]
[120]
Vihervaara, T.; Jansen, M.; Uronen, R-L.; Ohsaki, Y.; Ikonen, E.; Olkkonen, V.M. Cytoplasmic oxysterol-binding proteins: sterol sensors or transporters? Chem. Phys. Lipids, 2011, 164(6), 443-450.
[http://dx.doi.org/10.1016/j.chemphyslip.2011.03.002] [PMID: 21419754]
[121]
Prunet, C.; Montange, T.; Véjux, A.; Laubriet, A.; Rohmer, J.F.; Riedinger, J.M.; Athias, A.; Lemaire-Ewing, S.; Néel, D.; Petit, J.M.; Steinmetz, E.; Brenot, R.; Gambert, P.; Lizard, G. Multiplexed flow cytometric analyses of pro- and anti-inflammatory cytokines in the culture media of oxysterol-treated human monocytic cells and in the sera of atherosclerotic patients. Cytometry A, 2006, 69(5), 359-373.
[http://dx.doi.org/10.1002/cyto.a.20272] [PMID: 16604541]
[122]
Erridge, C.; Webb, D.J.; Spickett, C.M. 25-Hydroxycholesterol, 7β-hydroxycholesterol and 7-ketocholesterol upregulate interleukin-8 expression independently of Toll-like receptor 1, 2, 4 or 6 signalling in human macrophages. Free Radic. Res., 2007, 41(3), 260-266.
[http://dx.doi.org/10.1080/10715760601070091] [PMID: 17364953]
[123]
Castrillo, A.; Joseph, S.B.; Marathe, C.; Mangelsdorf, D.J.; Tontonoz, P. Liver X receptor-dependent repression of matrix metalloproteinase-9 expression in macrophages. J. Biol. Chem., 2003, 278(12), 10443-10449.
[http://dx.doi.org/10.1074/jbc.M213071200] [PMID: 12531895]
[124]
Joseph, S.B.; Castrillo, A.; Laffitte, B.A.; Mangelsdorf, D.J.; Tontonoz, P. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat. Med., 2003, 9(2), 213-219.
[http://dx.doi.org/10.1038/nm820] [PMID: 12524534]
[125]
Poli, G.; Sottero, B.; Gargiulo, S.; Leonarduzzi, G. Cholesterol oxidation products in the vascular remodeling due to atherosclerosis. Mol. Aspects Med., 2009, 30(3), 180-189.
[http://dx.doi.org/10.1016/j.mam.2009.02.003] [PMID: 19248806]
[126]
Anticoli, S.; Arciello, M.; Mancinetti, A.; Martinis, M.D.; Ginaldi, L.; Iuliano, L.; Balsano, C. 7‐Ketocholesterol and 5, 6‐secosterol modulate differently the stress‐activated mitogen‐activated protein kinases (MAPKs) in liver cells. J. Cell. Physiol., 2015, 230(5), 1160-1161.
[http://dx.doi.org/10.1002/jcp.24866] [PMID: 19937729]
[127]
Palozza, P.; Serini, S.; Verdecchia, S.; Ameruso, M.; Trombino, S.; Picci, N.; Monego, G.; Ranelletti, F.O. Redox regulation of 7-ketocholesterol-induced apoptosis by β-carotene in human macrophages. Free Radic. Biol. Med., 2007, 42(10), 1579-1590.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.02.023] [PMID: 17448905]
[128]
Kim, Y.J.; Lee, C.S. Tyrosine kinase inhibitor AG126 reduces 7-ketocholesterol-induced cell death by suppressing mitochondria-mediated apoptotic process. Neurochem. Res., 2010, 35(4), 603-612.
[http://dx.doi.org/10.1007/s11064-009-0105-7] [PMID: 19957203]
[129]
Testa, G.; Staurenghi, E.; Zerbinati, C.; Gargiulo, S.; Iuliano, L.; Giaccone, G.; Fantò, F.; Poli, G.; Leonarduzzi, G.; Gamba, P. Changes in brain oxysterols at different stages of Alzheimer’s disease: their involvement in neuroinflammation. Redox Biol., 2016, 10, 24-33.
[http://dx.doi.org/10.1016/j.redox.2016.09.001] [PMID: 27687218]
[130]
Brown, J., III; Theisler, C.; Silberman, S.; Magnuson, D.; Gottardi-Littell, N.; Lee, J.M.; Yager, D.; Crowley, J.; Sambamurti, K.; Rahman, M.M.; Reiss, A.B.; Eckman, C.B.; Wolozin, B. Differential expression of cholesterol hydroxylases in Alzheimer’s disease. J. Biol. Chem., 2004, 279(33), 34674-34681.
[http://dx.doi.org/10.1074/jbc.M402324200] [PMID: 15148325]
[131]
Mukhutdinova, K.A.; Kasimov, M.R.; Giniatullin, A.R.; Zakyrjanova, G.F.; Petrov, A.M. 24S-hydroxycholesterol suppresses neuromuscular transmission in SOD1(G93A) mice: a possible role of NO and lipid rafts. Mol. Cell. Neurosci., 2018, 88, 308-318.
[http://dx.doi.org/10.1016/j.mcn.2018.03.006] [PMID: 29550246]
[132]
Kasimov, M.R.; Fatkhrakhmanova, M.R.; Mukhutdinova, K.A.; Petrov, A.M. 24S-Hydroxycholesterol enhances synaptic vesicle cycling in the mouse neuromuscular junction: implication of glutamate NMDA receptors and nitric oxide. Neuropharmacology, 2017, 117, 61-73.
[http://dx.doi.org/10.1016/j.neuropharm.2017.01.030] [PMID: 28153530]
[133]
He, S.; Nelson, E.R. 27-Hydroxycholesterol, an endogenous selective estrogen receptor modulator. Maturitas, 2017, 104, 29-35.
[http://dx.doi.org/10.1016/j.maturitas.2017.07.014] [PMID: 28923174]
[134]
Ma, W.W.; Li, C.Q.; Yu, H.L.; Zhang, D.D.; Xi, Y.D.; Han, J.; Liu, Q.R.; Xiao, R. The oxysterol 27-hydroxycholesterol increases oxidative stress and regulate Nrf2 signaling pathway in astrocyte cells. Neurochem. Res., 2015, 40(4), 758-766.
[http://dx.doi.org/10.1007/s11064-015-1524-2] [PMID: 25630716]
[135]
Zhang, X.; Xi, Y.; Yu, H.; An, Y.; Wang, Y.; Tao, L.; Wang, Y.; Liu, W.; Wang, T.; Xiao, R. 27-hydroxycholesterol promotes Aβ accumulation via altering Aβ metabolism in mild cognitive impairment patients and APP/PS1 mice. Brain Pathol., 2019, 29(4), 558-573.
[http://dx.doi.org/10.1111/bpa.12698] [PMID: 30582229]
[136]
Rosa, P.; Zerbinati, C.; Crestini, A.; Canudas, A.M.; Ragona, G.; Confaloni, A.; Iuliano, L.; Calogero, A. Heme oxygenase-1 and brain oxysterols metabolism are linked to Egr-1 expression in aged mice cortex, but not in hippocampus. Front. Aging Neurosci., 2018, 10, 363.
[http://dx.doi.org/10.3389/fnagi.2018.00363] [PMID: 30459596]
[137]
Liu, Q.; An, Y.; Yu, H.; Lu, Y.; Feng, L.; Wang, C.; Xiao, R. Relationship between oxysterols and mild cognitive impairment in the elderly: a case-control study. Lipids Health Dis., 2016, 15(1), 177.
[http://dx.doi.org/10.1186/s12944-016-0344-y] [PMID: 27724967]
[138]
Maxfield, F.R.; Tabas, I. Role of cholesterol and lipid organization in disease. Nature, 2005, 438(7068), 612-621.
[http://dx.doi.org/10.1038/nature04399] [PMID: 16319881]
[139]
Garolla, A.; Šabović, I.; Tescari, S.; De Toni, L.; Menegazzo, M.; Cosci, I.; De Filippis, V.; Giarola, M.; Foresta, C. Impaired sperm function in infertile men relies on the membrane sterol pattern. Andrology, 2018, 6(2), 325-334.
[http://dx.doi.org/10.1111/andr.12468] [PMID: 29378089]
[140]
Garg, H.; Kumar, R. Empirical drug therapy for idiopathic male infertility: what is the new evidence? Urology, 2015, 86(6), 1065-1075.
[http://dx.doi.org/10.1016/j.urology.2015.07.030] [PMID: 26255035]
[141]
Garolla, A.; Sartini, B.; Cosci, I.; Pizzol, D.; Ghezzi, M.; Bertoldo, A.; Menegazzo, M.; Speltra, E.; Ferlin, A.; Foresta, C. Molecular karyotyping of single sperm with nuclear vacuoles identifies more chromosomal abnormalities in patients with testiculopathy than fertile controls: implications for ICSI. Hum. Reprod., 2015, 30(11), 2493-2500.
[http://dx.doi.org/10.1093/humrep/dev202] [PMID: 26405261]
[142]
Zerbinati, C.; Caponecchia, L.; Puca, R.; Ciacciarelli, M.; Salacone, P.; Sebastianelli, A.; Pastore, A.; Palleschi, G.; Petrozza, V.; Porta, N.; Rago, R.; Carbone, A.; Iuliano, L. Mass spectrometry profiling of oxysterols in human sperm identifies 25-hydroxycholesterol as a marker of sperm function. Redox Biol., 2017, 11, 111-117.
[http://dx.doi.org/10.1016/j.redox.2016.11.008] [PMID: 27912195]
[143]
Dufour, J.; Pommier, A.; Alves, G.; De Boussac, H.; Lours-Calet, C.; Volle, D.H.; Lobaccaro, J-M.A.; Baron, S. Lack of liver X receptors leads to cell proliferation in a model of mouse dorsal prostate epithelial cell. PLoS One, 2013, 8(3)e58876
[http://dx.doi.org/10.1371/journal.pone.0058876] [PMID: 23554947]
[144]
Björkhem, I. Five decades with oxysterols. Biochimie, 2013, 95(3), 448-454.
[http://dx.doi.org/10.1016/j.biochi.2012.02.029] [PMID: 23111110]
[145]
Liu, H.; Yuan, L.; Xu, S.; Wang, K.; Zhang, T. Cholestane-3β,5α,6β-triol inhibits osteoblastic differentiation and promotes apoptosis of rat bone marrow stromal cells. J. Cell. Biochem., 2005, 96(1), 198-208.
[http://dx.doi.org/10.1002/jcb.20510] [PMID: 16052487]
[146]
DuSell, C.D.; Nelson, E.R.; Wang, X.; Abdo, J.; Mödder, U.I.; Umetani, M.; Gesty-Palmer, D.; Javitt, N.B.; Khosla, S.; McDonnell, D.P. The endogenous selective estrogen receptor modulator 27-hydroxycholesterol is a negative regulator of bone homeostasis. Endocrinology, 2010, 151(8), 3675-3685.
[http://dx.doi.org/10.1210/en.2010-0080] [PMID: 20501668]
[147]
Vrensen, G.F. Early cortical lens opacities: a short overview. Acta Ophthalmol., 2009, 87(6), 602-610.
[http://dx.doi.org/10.1111/j.1755-3768.2009.01674.x] [PMID: 19719805]
[148]
Vejux, A.; Samadi, M.; Lizard, G. Contribution of cholesterol and oxysterols in the physiopathology of cataract: implication for the development of pharmacological treatments. J. Ophthalmol., 2011, 2011471947
[http://dx.doi.org/10.1155/2011/471947] [PMID: 21577274]
[149]
Girão, H.; Mota, M.C.; Ramalho, J.; Pereira, P. Cholesterol oxides accumulate in human cataracts. Exp. Eye Res., 1998, 66(5), 645-652.
[http://dx.doi.org/10.1006/exer.1998.0465] [PMID: 9628811]
[150]
Gamba, P.; Guglielmotto, M.; Testa, G.; Monteleone, D.; Zerbinati, C.; Gargiulo, S.; Biasi, F.; Iuliano, L.; Giaccone, G.; Mauro, A.; Poli, G.; Tamagno, E.; Leonarduzzi, G. Up-regulation of β-amyloidogenesis in neuron-like human cells by both 24- and 27-hydroxycholesterol: protective effect of N-acetyl-cysteine. Aging Cell, 2014, 13(3), 561-572.
[http://dx.doi.org/10.1111/acel.12206] [PMID: 24612036]
[151]
Teunissen, C.E.; Floris, S.; Sonke, M.; Dijkstra, C.D.; De Vries, H.E.; Lütjohann, D. 24S-hydroxycholesterol in relation to disease manifestations of acute experimental autoimmune encephalomyelitis. J. Neurosci. Res., 2007, 85(7), 1499-1505.
[http://dx.doi.org/10.1002/jnr.21266] [PMID: 17410599]
[152]
Kloudova, A.; Guengerich, F.P.; Soucek, P. the role of oxysterols in human cancer. Trends Endocrinol. Metab., 2017, 28(7), 485-496.
[http://dx.doi.org/10.1016/j.tem.2017.03.002] [PMID: 28410994]
[153]
Negre-Salvayre, A.; Auge, N.; Ayala, V.; Basaga, H.; Boada, J.; Brenke, R.; Chapple, S.; Cohen, G.; Feher, J.; Grune, T.; Lengyel, G.; Mann, G.E.; Pamplona, R.; Poli, G.; Portero-Otin, M.; Riahi, Y.; Salvayre, R.; Sasson, S.; Serrano, J.; Shamni, O.; Siems, W.; Siow, R.C.; Wiswedel, I.; Zarkovic, K.; Zarkovic, N. Pathological aspects of lipid peroxidation. Free Radic. Res., 2010, 44(10), 1125-1171.
[http://dx.doi.org/10.3109/10715762.2010.498478] [PMID: 20836660]
[154]
Menéndez-Carreño, M.; Varo, N.; Mugueta, C.; Restituto, P.; Ansorena, D.; Astiasarán, I. Correlation between serum content of the main COPs (cholesterol oxidation products) from autoxidation and cardiovascular risk factors. Nutr. Hosp., 2011, 26(1), 144-151.
[PMID: 21519741]
[155]
Wooten, J.S.; Wu, H.; Raya, J.; Perrard, X.D.; Gaubatz, J.; Hoogeveen, R.C. The influence of an obesogenic diet on oxysterol metabolism in C57BL/6J mice. Cholesterol, 2014, 2014843468
[http://dx.doi.org/10.1155/2014/843468] [PMID: 24672716]
[156]
Lizard, G.; Lemaire, S.; Monier, S.; Gueldry, S.; Néel, D.; Gambert, P. Induction of apoptosis and of interleukin-1β secretion by 7β-hydroxycholesterol and 7-ketocholesterol: partial inhibition by Bcl-2 overexpression. FEBS Lett., 1997, 419(2-3), 276-280.
[http://dx.doi.org/10.1016/S0014-5793(97)01473-7] [PMID: 9428650]
[157]
Napolitano, M.; Bravo, E. Lipid metabolism and TNF-α secretion in response to dietary sterols in human monocyte derived macrophages. Eur. J. Clin. Invest., 2005, 35(8), 482-490.
[http://dx.doi.org/10.1111/j.1365-2362.2005.01523.x] [PMID: 16101668]
[158]
Rimner, A.; Al Makdessi, S.; Sweidan, H.; Wischhusen, J.; Rabenstein, B.; Shatat, K.; Mayer, P.; Spyridopoulos, I. Relevance and mechanism of oxysterol stereospecifity in coronary artery disease. Free Radic. Biol. Med., 2005, 38(4), 535-544.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.11.016] [PMID: 15649656]
[159]
Maqdasy, S.; Trousson, A.; Tauveron, I.; Volle, D.H.; Baron, S.; Lobaccaro, J-M.A. Once and for all, LXRα and LXRβ are gatekeepers of the endocrine system. Mol. Aspects Med., 2016, 49, 31-46.
[http://dx.doi.org/10.1016/j.mam.2016.04.001] [PMID: 27091047]
[160]
Voisin, M.; de Medina, P.; Mallinger, A.; Dalenc, F.; Huc-Claustre, E.; Leignadier, J.; Serhan, N.; Soules, R.; Ségala, G.; Mougel, A.; Noguer, E.; Mhamdi, L.; Bacquié, E.; Iuliano, L.; Zerbinati, C.; Lacroix-Triki, M.; Chaltiel, L.; Filleron, T.; Cavaillès, V.; Al Saati, T.; Rochaix, P.; Duprez-Paumier, R.; Franchet, C.; Ligat, L.; Lopez, F.; Record, M.; Poirot, M.; Silvente-Poirot, S. Identification of a tumor-promoter cholesterol metabolite in human breast cancers acting through the glucocorticoid receptor. Proc. Natl. Acad. Sci. USA, 2017, 114(44), E9346-E9355.
[http://dx.doi.org/10.1073/pnas.1707965114] [PMID: 29078321]
[161]
Dumolt, J.H.; Radhakrishnan, S.K.; Moghadasian, M.H.; Le, K.; Patel, M.S.; Browne, R.W.; Rideout, T.C. Maternal hypercholesterolemia enhances oxysterol concentration in mothers and newly weaned offspring but is attenuated by maternal phytosterol supplementation. J. Nutr. Biochem., 2018, 52, 10-17.
[http://dx.doi.org/10.1016/j.jnutbio.2017.09.013] [PMID: 29107136]
[162]
Silva, J.; Beckedorf, A.; Bieberich, E. Osteoblast-derived oxysterol is a migration-inducing factor for human breast cancer cells. J. Biol. Chem., 2003, 278(28), 25376-25385.
[http://dx.doi.org/10.1074/jbc.M301233200] [PMID: 12734199]
[163]
Dalenc, F.; Iuliano, L.; Filleron, T.; Zerbinati, C.; Voisin, M.; Arellano, C.; Chatelut, E.; Marquet, P.; Samadi, M.; Roché, H.; Poirot, M.; Silvente-Poirot, S. Circulating oxysterol metabolites as potential new surrogate markers in patients with hormone receptor-positive breast cancer: results of the OXYTAM study. J. Steroid Biochem. Mol. Biol., 2017, 169, 210-218.
[http://dx.doi.org/10.1016/j.jsbmb.2016.06.010] [PMID: 27343991]
[164]
Silvente-Poirot, S.; Poirot, M. Cancer. Cholesterol and cancer, in the balance. Science, 2014, 343(6178), 1445-1446.
[http://dx.doi.org/10.1126/science.1252787] [PMID: 24675946]
[165]
de Weille, J.; Fabre, C.; Bakalara, N. Oxysterols in cancer cell proliferation and death. Biochem. Pharmacol., 2013, 86(1), 154-160.
[http://dx.doi.org/10.1016/j.bcp.2013.02.029] [PMID: 23500545]
[166]
Lin, C-Y.; Huo, C.; Kuo, L-K.; Hiipakka, R.A.; Jones, R.B.; Lin, H-P.; Hung, Y.; Su, L-C.; Tseng, J-C.; Kuo, Y-Y.; Wang, Y.L.; Fukui, Y.; Kao, Y.H.; Kokontis, J.M.; Yeh, C.C.; Chen, L.; Yang, S.D.; Fu, H.H.; Chen, Y.W.; Tsai, K.K.; Chang, J.Y.; Chuu, C.P. Cholestane-3β, 5α, 6β-triol suppresses proliferation, migration, and invasion of human prostate cancer cells. PLoS One, 2013, 8(6)e65734
[http://dx.doi.org/10.1371/journal.pone.0065734] [PMID: 23785446]
[167]
Raza, S.; Ohm, J.E.; Dhasarathy, A.; Schommer, J.; Roche, C.; Hammer, K.D.; Ghribi, O. The cholesterol metabolite 27-hydroxycholesterol regulates p53 activity and increases cell proliferation via MDM2 in breast cancer cells. Mol. Cell. Biochem., 2015, 410(1-2), 187-195.
[http://dx.doi.org/10.1007/s11010-015-2551-7] [PMID: 26350565]
[168]
Kuzu, O.F.; Noory, M.A.; Robertson, G.P. The role of cholesterol in cancer. Cancer Res., 2016, 76(8), 2063-2070.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2613] [PMID: 27197250]
[169]
Linseisen, J.; Wolfram, G.; Miller, A.B. Plasma 7β-hydroxycholesterol as a possible predictor of lung cancer risk. Cancer Epidemiol. Biomarkers Prev., 2002, 11(12), 1630-1637.
[PMID: 12496054]
[170]
Rossin, D.; Deiana, M.; Calfapietra, S.; Atzeri, A.; Incani, A.; Poli, G.; Biasi, F. Oxysterols are involved in colorectal carcinogenesis by damaging intestinal layer. Free Radic. Biol. Med., 2017, 108, S107.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.04.340]
[171]
Seo, D.W.; Choi, H-S.; Lee, S.P.; Kuver, R. Oxysterols from human bile induce apoptosis of canine gallbladder epithelial cells in monolayer culture. Am. J. Physiol. Gastrointest. Liver Physiol., 2004, 287(6), G1247-G1256.
[http://dx.doi.org/10.1152/ajpgi.00013.2004] [PMID: 15246959]
[172]
Hwang, P.L. Inhibitors of protein and RNA synthesis block the cytotoxic effects of oxygenated sterols. Biochim. Biophys. Acta, 1992, 1136(1), 5-11.
[http://dx.doi.org/10.1016/0167-4889(92)90077-O] [PMID: 1379472]
[173]
Leonarduzzi, G.; Gamba, P.; Sottero, B.; Kadl, A.; Robbesyn, F.; Calogero, R.A.; Biasi, F.; Chiarpotto, E.; Leitinger, N.; Sevanian, A.; Poli, G. Oxysterol-induced up-regulation of MCP-1 expression and synthesis in macrophage cells. Free Radic. Biol. Med., 2005, 39(9), 1152-1161.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.06.024] [PMID: 16214031]
[174]
Guo, X.; Zhang, L.; Fan, Y.; Zhang, D.; Qin, L.; Dong, S.; Li, G. Oxysterol-binding protein-related protein 8 inhibits gastric cancer growth through induction of er stress, inhibition of wnt signaling, and activation of apoptosis. Oncol. Res., 2017, 25(5), 799-808.
[http://dx.doi.org/10.3727/096504016X14783691306605] [PMID: 27983927]
[175]
Shimomura, H.; Hosoda, K.; Hirai, Y. Interaction of Helicobacter pylori cell membrane with non-esterified cholesterol and other steroids. Open J. Med. Microbiol., 2013, 3(1), 70-79.
[http://dx.doi.org/10.4236/ojmm.2013.31011]
[176]
Garcia-Cruset, S.; Carpenter, K.L.; Guardiola, F.; Stein, B.K.; Mitchinson, M.J. Oxysterol profiles of normal human arteries, fatty streaks and advanced lesions. Free Radic. Res., 2001, 35(1), 31-41.
[http://dx.doi.org/10.1080/10715760100300571] [PMID: 11697115]
[177]
Flores, R.; Jin, X.; Chang, J.; Zhang, C.; Cogan, D.G.; Schaefer, E.J.; Kruth, H.S. LCAT, ApoD, and ApoA1 expression and review of cholesterol deposition in the cornea. Biomolecules, 2019, 9(12)E785
[http://dx.doi.org/10.3390/biom9120785] [PMID: 31779197]
[178]
Cheng, D.; Jenner, A.M.; Shui, G.; Cheong, W.F.; Mitchell, T.W.; Nealon, J.R.; Kim, W.S.; McCann, H.; Wenk, M.R.; Halliday, G.M.; Garner, B. Lipid pathway alterations in Parkinson’s disease primary visual cortex. PLoS One, 2011, 6(2)e17299
[http://dx.doi.org/10.1371/journal.pone.0017299] [PMID: 21387008]
[179]
Zhornitsky, S.; McKay, K.A.; Metz, L.M.; Teunissen, C.E.; Rangachari, M. Cholesterol and markers of cholesterol turnover in multiple sclerosis: relationship with disease outcomes. Mult. Scler. Relat. Disord., 2016, 5, 53-65.
[http://dx.doi.org/10.1016/j.msard.2015.10.005] [PMID: 26856944]
[180]
Dufour, J.; Viennois, E.; De Boussac, H.; Baron, S.; Lobaccaro, J.M. Oxysterol receptors, AKT and prostate cancer. Curr. Opin. Pharmacol., 2012, 12(6), 724-728.
[http://dx.doi.org/10.1016/j.coph.2012.06.012] [PMID: 22819197]
[181]
Brzeska, M.; Szymczyk, K.; Szterk, A. Current knowledge about oxysterols: a review. J. Food Sci., 2016, 81(10), R2299-R2308.
[http://dx.doi.org/10.1111/1750-3841.13423] [PMID: 27561087]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy