Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Mini-Review Article

Repurposing Antihypertensive Drugs for the Management of Alzheimer’s Disease

Author(s): Christine Shing Wei Law and Keng Yoon Yeong*

Volume 28, Issue 9, 2021

Published on: 12 March, 2020

Page: [1716 - 1730] Pages: 15

DOI: 10.2174/0929867327666200312114223

Price: $65

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder that has affected millions of people worldwide. However, currently, there is no treatment to cure the disease. The AD drugs available in the market only manage the disease symptomatically and the effects are usually short-term. Thus, there is a need to look at alternatives AD therapies. This literature review aims to shed some light on the potential of repurposing antihypertensives to treat AD. Mid-life hypertension has not only been recognised as a risk factor for AD, but its relation with AD has also been well established. Hence, antihypertensives were postulated to be beneficial in managing AD. Four classes of antihypertensives, as well as their potential limitations and prospects in being utilised as AD therapeutics, were discussed in this review.

Keywords: Drug repurposing, alzheimer's disease, anti-hypertensive, calcium channel blockers, ACE inhibitors, AT2 inhibitors, beta-blockers.

[1]
McGleenon, B.M.; Dynan, K.B.; Passmore, A.P. Acetylcholinesterase inhibitors in Alzheimer’s disease. Br. J. Clin. Pharmacol., 1999, 48(4), 471-480.
[http://dx.doi.org/10.1046/j.1365-2125.1999.00026.x] [PMID: 10583015]
[2]
Corbett, A.; Pickett, J.; Burns, A.; Corcoran, J.; Dunnett, S.B.; Edison, P.; Hagan, J.J.; Holmes, C.; Jones, E.; Katona, C.; Kearns, I.; Kehoe, P.; Mudher, A.; Passmore, A.; Shepherd, N.; Walsh, F.; Ballard, C. Drug repositioning for Alzheimer’s disease. Nat. Rev. Drug Discov., 2012, 11(11), 833-846.
[http://dx.doi.org/10.1038/nrd3869] [PMID: 23123941]
[3]
Chiu, M.J.; Chen, T.F.; Yip, P.K.; Hua, M.S.; Tang, L.Y. Behavioral and psychologic symptoms in different types of dementia. J. Formos. Med. Assoc., 2006, 105(7), 556-562.
[http://dx.doi.org/10.1016/S0929-6646(09)60150-9] [PMID: 16877235]
[4]
Shoaib, M.; Kamal, M.A.; Rizvi, S.M.D. Repurposed drugs as potential therapeutic candidates for the management of Alzheimer’s disease. Curr. Drug Metab., 2017, 18(9), 842-852.
[http://dx.doi.org/10.2174/1389200218666170607101622] [PMID: 28595531]
[5]
Cummings, J.L.; Tong, G.; Ballard, C. Treatment combinations for Alzheimer’s disease: current and future pharmacotherapy options. J. Alzheimers Dis., 2019, 67(3), 779-794.
[http://dx.doi.org/10.3233/JAD-180766] [PMID: 30689575]
[6]
Corbett, A.; Williams, G.; Ballard, C. Drug repositioning: an opportunity to develop novel treatments for Alzheimer’s disease. Pharmaceuticals (Basel), 2013, 6(10), 1304-1321.
[http://dx.doi.org/10.3390/ph6101304] [PMID: 24275851]
[7]
Robinson, D.M.; Keating, G.M.R. Memantine: a review of its use in Alzheimer’s disease. Drugs, 2006, 66(11), 1515-1534.
[http://dx.doi.org/10.2165/00003495-200666110-00015] [PMID: 16906789]
[8]
Zemek, F.; Drtinova, L.; Nepovimova, E.; Sepsova, V.; Korabecny, J.; Klimes, J.; Kuca, K. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin. Drug Saf., 2014, 13(6), 759-774.
[http://dx.doi.org/10.1517/14740338.2014.914168] [PMID: 24845946]
[9]
Imbimbo, B.P.; Watling, M. Investigational BACE inhibitors for the treatment of Alzheimer’s disease. Expert Opin. Investig. Drugs, 2019, 28(11), 967-975.
[http://dx.doi.org/10.1080/13543784.2019.1683160] [PMID: 31661331]
[10]
Yang, T.; Dang, Y.; Ostaszewski, B.; Mengel, D.; Steffen, V.; Rabe, C.; Bittner, T.; Walsh, D.M.; Selkoe, D.J. Target engagement in an alzheimer trial: crenezumab lowers amyloid β oligomers in cerebrospinal fluid. Ann. Neurol., 2019, 86(2), 215-224.
[http://dx.doi.org/10.1002/ana.25513] [PMID: 31168802]
[11]
Bu, X.L.; Jiao, S.S.; Lian, Y.; Wang, Y.J. Perspectives on the tertiary prevention strategy for Alzheimer’s disease. Curr. Alzheimer Res., 2016, 13(3), 307-316.
[http://dx.doi.org/10.2174/1567205013666151215110114] [PMID: 26667888]
[12]
Doan, T.L.; Pollastri, M.; Walters, M.A.; Georg, G.I. The future of drug repositioning: old drugs, new opportunities. Annu. Rep. Med. Chem., 2011, 46, 385-401.
[http://dx.doi.org/10.1016/B978-0-12-386009-5.00004-7]
[13]
Xue, H.; Li, J.; Xie, H.; Wang, Y. Review of drug repositioning approaches and resources. Int. J. Biol. Sci., 2018, 14(10), 1232-1244.
[http://dx.doi.org/10.7150/ijbs.24612] [PMID: 30123072]
[14]
Pantziarka, P.; Bouche, G.; Meheus, L.; Sukhatme, V.; Sukhatme, V.P.; Vikas, P. The repurposing drugs in oncology (ReDO) project. Ecancermedicalscience, 2014, 8, 442.
[http://dx.doi.org/10.3332/ecancer.2014.442] [PMID: 25075216]
[15]
Talevi, A. Drug repositioning: current approaches and their implications in the precision medicine era. Expert Rev. Precis. Med. Drug Dev., 2018, 3(1), 49-61.
[http://dx.doi.org/10.1080/23808993.2018.1424535]
[16]
Polamreddy, P.; Gattu, N. The drug repurposing landscape from 2012 to 2017: evolution, challenges and possible solutions. Drug Discov. Today, 2019, 24(3), 789-795.
[http://dx.doi.org/10.1016/j.drudis.2018.11.022] [PMID: 30513339]
[17]
Alexander, R.W. Hypertension and the pathogenesis of atherosclerosis: oxidative stress and the medication of arterial inflammatory response: a new perspective. Hypertension, 1995, 25(2), 155-161.
[http://dx.doi.org/10.1161/01.HYP.25.2.155] [PMID: 7843763]
[18]
Shih, Y.H.; Wu, S.Y.; Yu, M.; Huang, S.H.; Lee, C.W.; Jiang, M.J.; Lin, P.Y.; Yang, T.T.; Kuo, Y.M. Hypertension accelerates Alzheimer’s disease-related pathologies in pigs and 3xTg mice. Front. Aging Neurosci., 2018, 10(73), 73.
[http://dx.doi.org/10.3389/fnagi.2018.00073] [PMID: 29615895]
[19]
Nasrabady, S.E.; Rizvi, B.; Goldman, J.E.; Brickman, A.M. White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes. Acta Neuropathol. Commun., 2018, 6(1), 22.
[http://dx.doi.org/10.1186/s40478-018-0515-3] [PMID: 29499767]
[20]
Shi, H.; Hu, X.; Leak, R.K.; Shi, Y.; An, C.; Suenaga, J.; Chen, J.; Gao, Y. Demyelination as a rational therapeutic target for ischemic or traumatic brain injury. Exp. Neurol., 2015, 272, 17-25.
[http://dx.doi.org/10.1016/j.expneurol.2015.03.017] [PMID: 25819104]
[21]
Skoog, I.; Lernfelt, B.; Landahl, S.; Palmertz, B.; Andreasson, L.A.; Nilsson, L.; Persson, G.; Odén, A.; Svanborg, A. 15-year longitudinal study of blood pressure and dementia. Lancet, 1996, 347(9009), 1141-1145.
[http://dx.doi.org/10.1016/S0140-6736(96)90608-X] [PMID: 8609748]
[22]
Ruitenberg, A.; Skoog, I.; Ott, A.; Aevarsson, O.; Witteman, J.C.M.; Lernfelt, B.; van Harskamp, F.; Hofman, A.; Breteler, M.M.B. Blood pressure and risk of dementia: results from the Rotterdam study and the Gothenburg H-70 Study. Dement. Geriatr. Cogn. Disord., 2001, 12(1), 33-39.
[http://dx.doi.org/10.1159/000051233] [PMID: 11125239]
[23]
Qiu, C.; Winblad, B.; Fratiglioni, L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol., 2005, 4(8), 487-499.
[http://dx.doi.org/10.1016/S1474-4422(05)70141-1] [PMID: 16033691]
[24]
Virdis, A.; Duranti, E.; Taddei, S. Oxidative stress and vascular damage in hypertension: role of angiotensin II. Int. J. Hypertens., 2011., 2011916310.
[http://dx.doi.org/10.4061/2011/916310] [PMID: 21747985]
[25]
Feldstein, C.A. Association between chronic blood pressure changes and development of Alzheimer’s disease. J. Alzheimers Dis., 2012, 32(3), 753-763.
[http://dx.doi.org/10.3233/JAD-2012-120613] [PMID: 22890096]
[26]
Dinh, Q.N.; Drummond, G.R.; Sobey, C.G.; Chrissobolis, S. Roles of inflammation, oxidative stress and vascular dysfunction in hypertension. BioMed Res. Int., 2014, 2014, 406960.
[http://dx.doi.org/10.1155/2014/406960] [PMID: 25136585]
[27]
Jackson, R.E.; Bellamy, M.C. Antihypertensive drugs. Br. J. Anaesth., 2015, 15(6), 280-285.
[http://dx.doi.org/10.1093/bjaceaccp/mku061]
[28]
Anekonda, T.S.; Quinn, J.F. Calcium channel blocking as a therapeutic strategy for Alzheimer’s disease: the case for isradipine. Biochim. Biophys. Acta, 2011, 1812(12), 1584-1590.
[http://dx.doi.org/10.1016/j.bbadis.2011.08.013] [PMID: 21925266]
[29]
Bachmeier, C.; Beaulieu-Abdelahad, D.; Mullan, M.; Paris, D. Selective dihydropyiridine compounds facilitate the clearance of β-amyloid across the blood-brain barrier. Eur. J. Pharmacol., 2011, 659(2-3), 124-129.
[http://dx.doi.org/10.1016/j.ejphar.2011.03.048] [PMID: 21497592]
[30]
Appleby, B.S.; Nacopoulos, D.; Milano, N.; Zhong, K.; Cummings, J.L. A review: treatment of Alzheimer’s disease discovered in repurposed agents. Dement. Geriatr. Cogn. Disord., 2013, 35(1-2), 1-22.
[http://dx.doi.org/10.1159/000345791] [PMID: 23307039]
[31]
Kim, T.W. Drug repositioning approaches for the discovery of new therapeutics for Alzheimer’s disease. Neurotherapeutics, 2015, 12(1), 132-142.
[http://dx.doi.org/10.1007/s13311-014-0325-7] [PMID: 25549849]
[32]
Copenhaver, P.F.; Anekonda, T.S.; Musashe, D.; Robinson, K.M.; Ramaker, J.M.; Swanson, T.L.; Wadsworth, T.L.; Kretzschmar, D.; Woltjer, R.L.; Quinn, J.F.C. A translational continuum of model systems for evaluating treatment strategies in Alzheimer’s disease: isradipine as a candidate drug. Dis. Model. Mech., 2011, 4(5), 634-648.
[http://dx.doi.org/10.1242/dmm.006841] [PMID: 21596710]
[33]
Kennelly, S.; Abdullah, L.; Kenny, R.A.; Mathura, V.; Luis, C.A.; Mouzon, B.; Crawford, F.; Mullan, M.; Lawlor, B. Apolipoprotein E genotype-specific short-term cognitive benefits of treatment with the antihypertensive nilvadipine in Alzheimer’s patients--an open-label trial. Int. J. Geriatr. Psychiatry, 2012, 27(4), 415-422.
[http://dx.doi.org/10.1002/gps.2735] [PMID: 21560164]
[34]
Chakroborty, S.; Stutzmann, G.E. Calcium channelopathies and Alzheimer’s disease: insight into therapeutic success and failures. Eur. J. Pharmacol., 2014, 739, 83-95.
[http://dx.doi.org/10.1016/j.ejphar.2013.11.012] [PMID: 24316360]
[35]
Paris, D.; Quadros, A.; Humphrey, J.; Patel, N.; Crescentini, R.; Crawford, F.; Mullan, M. Nilvadipine antagonizes both Aβ vasoactivity in isolated arteries and the reduced cerebral blood flow in APPsw transgenic mice. Brain Res., 2004, 999(1), 53-61.
[http://dx.doi.org/10.1016/j.brainres.2003.11.061] [PMID: 14746921]
[36]
Venkat, P.; Chopp, M.; Chen, J. New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain. Croat. Med. J., 2016, 57(3), 223-228.
[http://dx.doi.org/10.3325/cmj.2016.57.223] [PMID: 27374823]
[37]
Iwasaki, K.; Egashira, N.; Takagaki, Y.; Yoshimitsu, Y.; Hatip-Al-Khatib, I.; Mishima, K.; Fujiwara, M. Nilvadipine prevents the impairment of spatial memory induced by cerebral ischemia combined with β-amyloid in rats. Biol. Pharm. Bull., 2007, 30(4), 698-701.
[http://dx.doi.org/10.1248/bpb.30.698] [PMID: 17409505]
[38]
Morin, A.; Mouzon, B.; Ferguson, S.; Paris, D.; Saltiel, N.; Lungmus, C.; Mullan, M.; Crawford, F. Treatment with nilvadipine mitigates inflammatory pathology and improves spatial memory in aged hTau mice after repetitive mild TBI. Front. Aging Neurosci., 2018, 10(292), 292.
[http://dx.doi.org/10.3389/fnagi.2018.00292] [PMID: 30364309]
[39]
Cummings, J.; Lee, G.; Ritter, A.; Zhong, K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement. (N. Y.), 2018, 4, 195-214.
[http://dx.doi.org/10.1016/j.trci.2018.03.009] [PMID: 29955663]
[40]
Lawlor, B.; Segurado, R.; Kennelly, S.; Olde Rikkert, M.G.M.; Howard, R.; Pasquier, F.; Börjesson-Hanson, A.; Tsolaki, M.; Lucca, U.; Molloy, D.W.; Coen, R.; Riepe, M.W.; Kálmán, J.; Kenny, R.A.; Cregg, F.; O’Dwyer, S.; Walsh, C.; Adams, J.; Banzi, R.; Breuilh, L.; Daly, L.; Hendrix, S.; Aisen, P.; Gaynor, S.; Sheikhi, A.; Taekema, D.G.; Verhey, F.R.; Nemni, R.; Nobili, F.; Franceschi, M.; Frisoni, G.; Zanetti, O.; Konsta, A.; Anastasios, O.; Nenopoulou, S.; Tsolaki-Tagaraki, F.; Pakaski, M.; Dereeper, O.; de la Sayette, V.; Sénéchal, O.; Lavenu, I.; Devendeville, A.; Calais, G.; Crawford, F.; Mullan, M. NILVAD Study Group. Nilvadipine in mild to moderate Alzheimer disease: A randomised controlled trial. PLoS Med., 2018, 15(9), e1002660.
[http://dx.doi.org/10.1371/journal.pmed.1002660] [PMID: 30248105]
[41]
Tan, Z.; Chen, Y.; Xie, W.; Liu, X.; Zhu, Y.; Zhu, Y. Nimodipine attenuates tau phosphorylation at Ser396 via miR-132/GSK-3β pathway in chronic cerebral hypoperfusion rats. Eur. J. Pharmacol., 2018, 819, 1-8.
[http://dx.doi.org/10.1016/j.ejphar.2017.10.027] [PMID: 29042207]
[42]
Zheng, H.; Wang, Y.; Wang, A.; Li, H.; Wang, D.; Zhao, X.; Wang, P.; Shen, H.; Zuo, L.; Pan, Y.; Li, Z.; Meng, X.; Wang, X.; Shi, W.; Ju, Y.; Liu, L.; Dong, K.; Wang, C.; Sui, R.; Xue, R.; Pan, X.; Niu, X.; Luo, B.; Sui, Y.; Wang, H.; Feng, T.; Wang, Y. On behalf of the NICE trial group. The efficacy and safety of nimodipine in acute ischemic stroke patients with mild cognitive impairment: a double-blind, randomized, placebo-controlled trial. Sci. Bull., 2019, 64(2), 101-107.
[http://dx.doi.org/10.1016/j.scib.2018.12.006]
[43]
Sun, Y.; Rui, Y.; Wenliang, Z.; Tang, X. Nimodipine semi-solid capsules containing solid dispersion for improving dissolution. Int. J. Pharm., 2008, 359(1-2), 144-149.
[http://dx.doi.org/10.1016/j.ijpharm.2008.03.040] [PMID: 18499371]
[44]
Moreno, L.C.G.E.A.I.; Solas, M.; Martínez-Ohárriz, M.C.; Muñoz, E.; Santos-Magalhães, N.S.; Ramirez, M.J.; Irache, J.M. Pegylated nanoparticles for the oral delivery of nimodipine: pharmacokinetics and effect on the anxiety and cognition in mice. Int. J. Pharm., 2018, 543(1-2), 245-256.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.048] [PMID: 29604372]
[45]
Goel, R.; Bhat, S.A.; Hanif, K.; Nath, C.; Shukla, R. Perindopril attenuates lipopolysaccharide-induced amyloidogenesis and memory impairment by suppression of oxidative stress and RAGE activation. ACS Chem. Neurosci., 2016, 7(2), 206-217.
[http://dx.doi.org/10.1021/acschemneuro.5b00274] [PMID: 26689453]
[46]
Vahid, M.; Ganji, F.; Sepehri, H.; Nazari, Z. Captopril modifies angiotensin-converting enzyme but not choline acetyltransferase gene expression in the frontal cortex of renovascular hypertensive rats. Natl. J. Physiol. Pharm. Pharmacol., 2017, 7(6), 599-602.
[http://dx.doi.org/10.5455/njppp.2017.7.0202314022017]
[47]
Torika, N.; Asraf, K.; Roasso, E.; Danon, A.; Fleisher-Berkovich, S. Angiotensin converting enzyme inhibitors ameliorate brain inflammation associated with microglial activation: possible implications for Alzheimer’s disease. J. Neuroimmune Pharmacol., 2016, 11(4), 774-785.
[http://dx.doi.org/10.1007/s11481-016-9703-8] [PMID: 27562846]
[48]
Wright, J.W.; Harding, J.W. Contributions by the brain renin-angiotensin system to memory, cognition and Alzheimer’s disease. J. Alzheimers Dis., 2019, 67(2), 469-480.
[http://dx.doi.org/10.3233/JAD-181035] [PMID: 30664507]
[49]
Fazal, K.; Perera, G.; Khondoker, M.; Howard, R.; Stewart, R. Associations of centrally acting ACE inhibitors with cognitive decline and survival in Alzheimer’s disease. BJPsych Open, 2017, 3(4), 158-164.
[http://dx.doi.org/10.1192/bjpo.bp.116.004184] [PMID: 28713585]
[50]
Quitterer, U. AbdAlla, S. Improvements of symptoms of Alzheimer’s disease by inhibition of the angiotensin system. Pharmacol. Res., 2020, 154, 104230.
[http://dx.doi.org/10.1016/j.phrs.2019.04.014] [PMID: 30991105]
[51]
Liu, S.; Ando, F.; Fujita, Y.; Liu, J.; Maeda, T.; Shen, X.; Kikuchi, K.; Matsumoto, A.; Yokomori, M.; Tanabe-Fujimura, C.; Shimokata, H.; Michikawa, M.; Komano, H.; Zou, K. A clinical dose of angiotensin-converting enzyme (ACE) inhibitor and heterozygous ACE deletion exacerbate Alzheimer’s disease pathology in mice. J. Biol. Chem., 2019, 294(25), 9760-9770.
[http://dx.doi.org/10.1074/jbc.RA118.006420] [PMID: 31072831]
[52]
Hemming, M.L.; Selkoe, D.J.; Farris, W. Effects of prolonged angiotensin-converting enzyme inhibitor treatment on amyloid β-protein metabolism in mouse models of Alzheimer disease. Neurobiol. Dis., 2007, 26(1), 273-281.
[http://dx.doi.org/10.1016/j.nbd.2007.01.004] [PMID: 17321748]
[53]
Yamada, K.; Uchida, S.; Takahashi, S.; Takayama, M.; Nagata, Y.; Suzuki, N.; Shirakura, S.; Kanda, T. Effect of a centrally active angiotensin-converting enzyme inhibitor, perindopril, on cognitive performance in a mouse model of Alzheimer’s disease. Brain Res., 2010, 1352, 176-186.
[http://dx.doi.org/10.1016/j.brainres.2010.07.006] [PMID: 20627092]
[54]
. AbdAlla, S.; Langer, A.; Fu, X.; Quitterer, U. ACE inhibition with captopril retards the development of signs of neurodegeneration in an animal model of Alzheimer’s disease. Int. J. Mol. Sci., 2013, 14(8), 16917-16942.
[http://dx.doi.org/10.3390/ijms140816917] [PMID: 23959119]
[55]
Asraf, K.; Torika, N.; Apte, R.N.; Fleisher-Berkovich, S. Microglial activation is modulated by captopril: in vitro and in vivo studies. Front. Cell. Neurosci., 2018, 12(116), 116.
[http://dx.doi.org/10.3389/fncel.2018.00116] [PMID: 29765306]
[56]
Parameswari, R.P.; Girish, R.; Babu, C.S.; Thyagarajan, S.P.; Dwarakanath, B.S. Beneficial effects of angiotensin converting enzyme inhibitor captopril on sleep deprivation-induced cognitive impairment. Alzheimers Dement., 2017, 13(7)(Suppl.), 946-947.
[http://dx.doi.org/10.1016/j.jalz.2017.06.1858]
[57]
Dong, Y.F.; Kataoka, K.; Tokutomi, Y.; Nako, H.; Nakamura, T.; Toyama, K.; Sueta, D.; Koibuchi, N.; Yamamoto, E.; Ogawa, H.; Kim-Mitsuyama, S. Perindopril, a centrally active angiotensin-converting enzyme inhibitor, prevents cognitive impairment in mouse models of Alzheimer’s disease. FASEB J., 2011, 25(9), 2911-2920.
[http://dx.doi.org/10.1096/fj.11-182873] [PMID: 21593435]
[58]
Culman, J.; Blume, A.; Gohlke, P.; Unger, T. The renin-angiotensin system in the brain: possible therapeutic implications for AT(1)-receptor blockers. J. Hum. Hypertens., 2002, 16(Suppl. 3), S64-S70.
[http://dx.doi.org/10.1038/sj.jhh.1001442] [PMID: 12140731]
[59]
Schmieder, R.E. Mechanisms for the clinical benefits of angiotensin II receptor blockers. Am. J. Hypertens., 2005, 18(5 Pt 1), 720-730.
[http://dx.doi.org/10.1016/j.amjhyper.2004.11.032] [PMID: 15882557]
[60]
Trigiani, L.J.; Royea, J.; Lacalle-Aurioles, M.; Tong, X.K.; Hamel, E. Pleiotropic benefits of the angiotensin receptor blocker candesartan in a mouse model of Alzheimer disease. Hypertension, 2018, 72(5), 1217-1226.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.11775] [PMID: 30354809]
[61]
Torika, N.; Asraf, K.; Apte, R.N.; Fleisher-Berkovich, S. Candesartan ameliorates brain inflammation associated with Alzheimer’s disease. CNS Neurosci. Ther., 2018, 24(3), 231-242.
[http://dx.doi.org/10.1111/cns.12802] [PMID: 29365370]
[62]
Trofimiuk, E.; Wielgat, P.; Braszko, J.J. Candesartan, angiotensin II type 1 receptor blocker is able to relieve age-related cognitive impairment. Pharmacol. Rep., 2018, 70(1), 87-92.
[http://dx.doi.org/10.1016/j.pharep.2017.07.016] [PMID: 29331792]
[63]
Wang, J.; Ho, L.; Chen, L.; Zhao, Z.; Zhao, W.; Qian, X.; Humala, N.; Seror, I.; Bartholomew, S.; Rosendorff, C.; Pasinetti, G.M. Valsartan lowers brain β-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J. Clin. Invest., 2007, 117(11), 3393-3402.
[http://dx.doi.org/10.1172/JCI31547] [PMID: 17965777]
[64]
Arjmand Abbassi, Y.; Mohammadi, M.T.; Sarami Foroshani, M.; Raouf Sarshoori, J. Captopril and valsartan may improve cognitive function through potentiation of the brain antioxidant defence system and attenuation of oxidative/nitrosative damage in STZ-induced dementia in rat. Adv. Pharm. Bull., 2016, 6(4), 531-539.
[http://dx.doi.org/10.15171/apb.2016.067] [PMID: 28101460]
[65]
Tsukuda, K.; Mogi, M.; Iwanami, J.; Min, L.J.; Sakata, A.; Jing, F.; Iwai, M.; Horiuchi, M. Cognitive deficit in amyloid-β-injected mice was improved by pretreatment with a low dose of telmisartan partly because of peroxisome proliferator-activated receptor-γ activation. Hypertension, 2009, 54(4), 782-787.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.136879] [PMID: 19635982]
[66]
Mogi, M.; Li, J.M.; Tsukuda, K.; Iwanami, J.; Min, L.J.; Sakata, A.; Fujita, T.; Iwai, M.; Horiuchi, M. Telmisartan prevented cognitive decline partly due to PPAR-γ activation. Biochem. Biophys. Res. Commun., 2008, 375(3), 446-449.
[http://dx.doi.org/10.1016/j.bbrc.2008.08.032] [PMID: 18715543]
[67]
Kurata, T.; Lukic, V.; Kozuki, M.; Wada, D.; Miyazaki, K.; Morimoto, N.; Ohta, Y.; Deguchi, K.; Ikeda, Y.; Kamiya, T.; Abe, K. Telmisartan reduces progressive accumulation of cellular amyloid beta and phosphorylated tau with inflammatory responses in aged spontaneously hypertensive stroke resistant rat. J. Stroke Cerebrovasc. Dis., 2014, 23(10), 2580-2590.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2014.05.023] [PMID: 25241340]
[68]
Singh, B.; Sharma, B.; Jaggi, A.S.; Singh, N. Attenuating effect of lisinopril and telmisartan in intracerebroventricular streptozotocin induced experimental dementia of Alzheimer’s disease type: possible involvement of PPAR-γ agonistic property. J. Renin Angiotensin Aldosterone Syst., 2013, 14(2), 124-136.
[http://dx.doi.org/10.1177/1470320312459977] [PMID: 23060470]
[69]
Gao, Y.; Li, W.; Liu, Y.; Wang, Y.; Zhang, J.; Li, M.; Bu, M. Effect of telmisartan on preventing learning and memory deficits via peroxisome proliferator-activated receptor-γ in vascular dementia spontaneously hypertensive rats. J. Stroke Cerebrovasc. Dis., 2018, 27(2), 277-285.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2017.01.025] [PMID: 29241675]
[70]
Noda, A.; Fushiki, H.; Murakami, Y.; Sasaki, H.; Miyoshi, S.; Kakuta, H.; Nishimura, S. Brain penetration of telmisartan, a unique centrally acting angiotensin II type 1 receptor blocker, studied by PET in conscious rhesus macaques. Nucl. Med. Biol., 2012, 39(8), 1232-1235.
[http://dx.doi.org/10.1016/j.nucmedbio.2012.06.012] [PMID: 22890047]
[71]
Wharton, W.; Goldstein, F.C.; Tansey, M.G.; Brown, A.L.; Tharwani, S.D.; Verble, D.D.; Cintron, A.; Kehoe, P.G. Rationale and design of the mechanistic potential of antihypertensives in preclinical Alzheimer’s (HEART) trial. J. Alzheimers Dis., 2018, 61(2), 815-824.
[http://dx.doi.org/10.3233/JAD-161198] [PMID: 29254080]
[72]
Danielyan, L.; Klein, R.; Hanson, L.R.; Buadze, M.; Schwab, M.; Gleiter, C.H.; Frey, W.H. Protective effects of intranasal losartan in the APP/PS1 transgenic mouse model of Alzheimer disease. Rejuvenation Res., 2010, 13(2-3), 195-201.
[http://dx.doi.org/10.1089/rej.2009.0944] [PMID: 20370487]
[73]
Drews, H.J.; Yenkoyan, K.; Lourhmati, A.; Buadze, M.; Kabisch, D.; Verleysdonk, S.; Petschak, S.; Beer-Hammer, S.; Davtyan, T.; Frey, W.H., II; Gleiter, C.H.; Schwab, M.; Danielyan, L. Intranasal losartan decreases perivascular beta amyloid, inflammation and the decline of neurogenesis in hypertensive rats. Neurotherapeutics, 2019, 16(3), 725-740.
[http://dx.doi.org/10.1007/s13311-019-00723-6] [PMID: 30796737]
[74]
Salmani, H.; Hosseini, M.; Beheshti, F.; Baghcheghi, Y.; Sadeghnia, H.R.; Soukhtanloo, M.; Shafei, M.N.; Khazaei, M. Angiotensin receptor blocker, losartan ameliorates neuroinflammation and behavioral consequences of lipopolysaccharide injection. Life Sci., 2018, 203, 161-170.
[http://dx.doi.org/10.1016/j.lfs.2018.04.033] [PMID: 29684446]
[75]
Papadopoulos, P.; Tong, X.K.; Imboden, H.; Hamel, E. Losartan improves cerebrovascular function in a mouse model of Alzheimer’s disease with combined overproduction of amyloid-β and transforming growth factor-β1. J. Cereb. Blood Flow Metab., 2017, 37(6), 1959-1970.
[http://dx.doi.org/10.1177/0271678X16658489] [PMID: 27389178]
[76]
Lo, M.W.; Goldberg, M.R.; McCrea, J.B.; Lu, H.; Furtek, C.I.; Bjornsson, T.D. Pharmacokinetics of losartan, an angiotensin II receptor antagonist and its active metabolite EXP3174 in humans. Clin. Pharmacol. Ther., 1995, 58(6), 641-649.
[http://dx.doi.org/10.1016/0009-9236(95)90020-9] [PMID: 8529329]
[77]
Fogari, R.; Mugellini, A.; Zoppi, A.; Derosa, G.; Pasotti, C.; Fogari, E.; Preti, P. Influence of losartan and atenolol on memory function in very elderly hypertensive patients. J. Hum. Hypertens., 2003, 17(11), 781-785.
[http://dx.doi.org/10.1038/sj.jhh.1001613] [PMID: 14578918]
[78]
National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT03354143?term=NCT03354143&rank=1 (Accessed on: 18 August 2019).
[79]
Mason, R.P.; Giles, T.D.; Sowers, J.R. Evolving mechanisms of action of beta blockers: focus on nebivolol. J. Cardiovasc. Pharmacol., 2009, 54(2), 123-128.
[http://dx.doi.org/10.1097/FJC.0b013e3181ad207b] [PMID: 19528811]
[80]
Gorre, F.; Vandekerckhove, H. Beta-blockers: focus on mechanism of action. Which beta-blocker, when and why? Acta Cardiol., 2010, 65(5), 565-570.
[http://dx.doi.org/10.1080/AC.65.5.2056244] [PMID: 21125979]
[81]
Peskind, E.R.; Tsuang, D.W.; Bonner, L.T.; Pascualy, M.; Riekse, R.G.; Snowden, M.B.; Thomas, R.; Raskind, M.A. Propranolol for disruptive behaviors in nursing home residents with probable or possible Alzheimer disease: a placebo-controlled study. Alzheimer Dis. Assoc. Disord., 2005, 19(1), 23-28.
[http://dx.doi.org/10.1097/01.wad.0000155067.16313.5e] [PMID: 15764868]
[82]
Wang, J.; Zhao, Z.; Lin, E.; Zhao, W.; Qian, X.; Freire, D.; Bilski, A.E.; Cheng, A.; Vempati, P.; Ho, L.; Ono, K.; Yamada, M.; Pasinetti, G.M. Unintended effects of cardiovascular drugs on the pathogenesis of Alzheimer’s disease. PLoS One, 2013, 8(6), e65232.
[http://dx.doi.org/10.1371/journal.pone.0065232] [PMID: 23762322]
[83]
Dobarro, M.; Gerenu, G.; Ramírez, M.J. Propranolol reduces cognitive deficits, amyloid and tau pathology in Alzheimer’s transgenic mice. Int. J. Neuropsychopharmacol., 2013, 16(10), 2245-2257.
[http://dx.doi.org/10.1017/S1461145713000631] [PMID: 23768694]
[84]
Gelber, R.P.; Ross, G.W.; Petrovitch, H.; Masaki, K.H.; Launer, L.J.; White, L.R. Antihypertensive medication use and risk of cognitive impairment: the Honolulu-Asia Aging Study. Neurology, 2013, 81(10), 888-895.
[http://dx.doi.org/10.1212/WNL.0b013e3182a351d4] [PMID: 23911753]
[85]
Rosini, M.; Simoni, E.; Bartolini, M.; Cavalli, A.; Ceccarini, L.; Pascu, N.; McClymont, D.W.; Tarozzi, A.; Bolognesi, M.L.; Minarini, A.; Tumiatti, V.; Andrisano, V.; Mellor, I.R.; Melchiorre, C. Inhibition of acetylcholinesterase, β-amyloid aggregation and NMDA receptors in Alzheimer’s disease: a promising direction for the multi-target-directed ligands gold rush. J. Med. Chem., 2008, 51(15), 4381-4384.
[http://dx.doi.org/10.1021/jm800577j] [PMID: 18605718]
[86]
Liu, J.; Wang, M. Carvedilol protection against endogenous Aβ-induced neurotoxicity in N2a cells. Cell Stress Chaperones, 2018, 23(4), 695-702.
[http://dx.doi.org/10.1007/s12192-018-0881-6] [PMID: 29435723]
[87]
Yue, T.L.; Cheng, H.Y.; Lysko, P.G.; McKenna, P.J.; Feuerstein, R.; Gu, J.L.; Lysko, K.A.; Davis, L.L.; Feuerstein, G. Carvedilol, a new vasodilator and beta adrenoceptor antagonist, is an antioxidant and free radical scavenger. J. Pharmacol. Exp. Ther., 1992, 263(1), 92-98.
[PMID: 1357162]
[88]
Kumar, A.; Dogra, S. Neuroprotective effect of carvedilol, an adrenergic antagonist against colchicine induced cognitive impairment and oxidative damage in rat. Pharmacol. Biochem. Behav., 2009, 92(1), 25-31.
[http://dx.doi.org/10.1016/j.pbb.2008.10.005] [PMID: 18992766]
[89]
Kumar, A.; Dogra, S.; Prakash, A. Effect of carvedilol on behavioral, mitochondrial dysfunction and oxidative damage against D-galactose induced senescence in mice. Naunyn Schmiedebergs Arch. Pharmacol., 2009, 380(5), 431-441.
[http://dx.doi.org/10.1007/s00210-009-0442-8] [PMID: 19685040]
[90]
Gao, X.; Wu, B.; Fu, Z.; Zhang, Z.; Xu, G. Carvedilol abrogates hypoxia-induced oxidative stress and neuroinflammation in microglial BV2 cells. Eur. J. Pharmacol., 2017, 814, 144-150.
[http://dx.doi.org/10.1016/j.ejphar.2017.08.013] [PMID: 28821450]
[91]
Wang, J.; Ono, K.; Dickstein, D.L.; Arrieta-Cruz, I.; Zhao, W.; Qian, X.; Lamparello, A.; Subnani, R.; Ferruzzi, M.; Pavlides, C.; Ho, L.; Hof, P.R.; Teplow, D.B.; Pasinetti, G.M. Carvedilol as a potential novel agent for the treatment of Alzheimer’s disease. Neurobiol. Aging, 2011, 32(12), 2321.e1-e12.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.004] [PMID: 20579773]
[92]
National Library of Medicine. Trial of carvedilol in Alzheimer’s disease., https://clinicaltrials.gov/ct2/show/NCT01354444?term=NCT01354444&rank=1 (Accessed on: 18 August 2019).
[93]
Strazzullo, P.; Kerry, S.M.; Barbato, A.; Versiero, M.; D’Elia, L.; Cappuccio, F.P. Do statins reduce blood pressure?: a meta-analysis of randomized, controlled trials. Hypertension, 2007, 49(4), 792-798.
[http://dx.doi.org/10.1161/01.HYP.0000259737.43916.42] [PMID: 17309949]
[94]
Poly, T.N.; Islam, M.M.; Walther, B.A.; Yang, H.-C.; Wu, C.-C.; Lin, M.-C.; Li, Y.-C. Association between the use of statin and risk of dementia: a meta-analysis of observational studies. Neuroepidemiology, 2020, 54(3), 214-226.
[http://dx.doi.org/10.1159/000503105] [PMID: 31574510]
[95]
Chu, C.S.; Tseng, P.T.; Stubbs, B.; Chen, T.Y.; Tang, C.H.; Li, D.J.; Yang, W.C.; Chen, Y.W.; Wu, C.K.; Veronese, N.; Carvalho, A.F.; Fernandes, B.S.; Herrmann, N.; Lin, P.Y. Use of statins and the risk of dementia and mild cognitive impairment: A systematic review and meta-analysis. Sci. Rep., 2018, 8(1), 5804.
[http://dx.doi.org/10.1038/s41598-018-24248-8] [PMID: 29643479]
[96]
Vazirinejad, R.; Mirmotalebi, M.; Bageri, M.; Kounis, N.G.; Koniari, I.; Lilley, J.M.; Gommnami, N. Age-related effect of antihypertensive treatment on cognitive performance: is it better preventing dementia in older age? Am. J. Alzheimers Dis. Other Demen., 2019, 34(7-8), 486-491.
[http://dx.doi.org/10.1177/1533317519859197] [PMID: 31315417]
[97]
McGeer, E.G.; McGeer, P.L. Clinically tested drugs for Alzheimer’s disease. Expert Opin. Investig. Drugs, 2003, 12(7), 1143-1151.
[http://dx.doi.org/10.1517/13543784.12.7.1143] [PMID: 12831349]
[98]
van Dalen, J.W.; Moll van Charante, E.P.; van Gool, W.A.; Richard, E. Discontinuation of antihypertensive medication, cognitive complaints and incident dementia. J. Am. Med. Dir. Assoc., 2019, 20(9), 1091-1097.e3.
[http://dx.doi.org/10.1016/j.jamda.2018.12.006] [PMID: 30738826]
[99]
Larsson, S.C.; Markus, H.S. Does treating vascular risk factors prevent dementia and Alzheimer’s disease? A systematic review and meta-analysis. J. Alzheimers Dis., 2018, 64(2), 657-668.
[http://dx.doi.org/10.3233/JAD-180288] [PMID: 29914039]
[100]
Ntountaniotis, D.; Andreadelis, I.; Kellici, T.F.; Karageorgos, V.; Leonis, G.; Christodoulou, E.; Kiriakidi, S.; Becker-Baldus, J.; Stylos, E.K.; Chatziathanasiadou, M.V.; Chatzigiannis, C.M.; Damalas, D.E.; Aksoydan, B.; Javornik, U.; Valsami, G.; Glaubitz, C.; Durdagi, S.; Thomaidis, N.S.; Kolocouris, A.; Plavec, J.; Tzakos, A.G.; Liapakis, G.; Mavromoustakos, T. Host-guest interactions between candesartan and its prodrug candesartan cilexetil in complex with 2-hydroxypropyl-β-cyclodextrin: on the biological potency for angiotensin II antagonism. Mol. Pharm., 2019, 16(3), 1255-1271.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01212] [PMID: 30681344]
[101]
Hu, Z.; Wang, L.; Ma, S.; Kirisci, L.; Feng, Z.; Xue, Y.; Klunk, W.E.; Kamboh, M.I.; Sweet, R.A.; Becker, J.; Lv, Q.; Lopez, O.L.; Xie, X.Q. Synergism of antihypertensives and cholinesterase inhibitors in Alzheimer’s disease. Alzheimers Dement. (N. Y.), 2018, 4, 542-555.
[http://dx.doi.org/10.1016/j.trci.2018.09.001] [PMID: 30386819]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy