Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Role of Grina/Nmdara1 in the Central Nervous System Diseases

Author(s): Kai Chen, Liu Nan Yang, Chuan Lai, Dan Liu* and Ling-Qiang Zhu*

Volume 18, Issue 9, 2020

Page: [861 - 867] Pages: 7

DOI: 10.2174/1570159X18666200303104235

Price: $65

Abstract

Glutamate receptor, ionotropic, N-methyl-D-aspartate associated protein 1 (GRINA) is a member of the NMDA receptors (NMDARs) and is involved in several neurological diseases, which governs the key processes of neuronal cell death or the release of neurotransmitters. Upregulation of GRINA has been reported in multiple diseases in human beings, such as major depressive disorder (MDD) and schizophrenia (SCZ), with which the underlying mechanisms remain elusive. In this review, we provide a general overview of the expression and physiological function of GRINA in the central nervous system (CNS) diseases, including stroke, depression ,epilepsy, SCZ, and Alzheimer’s disease (AD).

Keywords: NMDARs, stroke, depression, epilepsy, SCZ, AD.

Graphical Abstract

[1]
Collingridge, G.L.; Isaac, J.T.R.; Wang, Y.T. Receptor trafficking and synaptic plasticity. Nat. Rev. Neurosci., 2004, 5(12), 952-962.
[http://dx.doi.org/10.1038/nrn1556] [PMID: 15550950]
[2]
Bliss, T.V.P.; Collingridge, G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 1993, 361(6407), 31-39.
[http://dx.doi.org/10.1038/361031a0] [PMID: 8421494]
[3]
Di Maio, R.; Mastroberardino, P.G.; Hu, X.; Montero, L.M.; Greenamyre, J.T. Thiol oxidation and altered NR2B/NMDA receptor functions in in vitro and in vivo pilocarpine models: implications for epileptogenesis. Neurobiol. Dis., 2013, 49(1), 87-98.
[http://dx.doi.org/10.1016/j.nbd.2012.07.013] [PMID: 22824136]
[4]
Fan, X.; Jin, W.Y.; Wang, Y.T. The NMDA receptor complex: a multifunctional machine at the glutamatergic synapse. Front. Cell. Neurosci., 2014, 8, 160-160.
[http://dx.doi.org/10.3389/fncel.2014.00160] [PMID: 24959120]
[5]
Wang, R.; Reddy, P.H. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J. Alzheimers Dis., 2017, 57(4), 1041-1048.
[http://dx.doi.org/10.3233/JAD-160763] [PMID: 27662322]
[6]
Goswami, D.B.; Jernigan, C.S.; Chandran, A.; Iyo, A.H.; May, W.L.; Austin, M.C.; Stockmeier, C.A.; Karolewicz, B. Gene expression analysis of novel genes in the prefrontal cortex of major depressive disorder subjects. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 43, 126-133.
[http://dx.doi.org/10.1016/j.pnpbp.2012.12.010] [PMID: 23261523]
[7]
Sequeira, A.; Mamdani, F.; Ernst, C.; Vawter, M.P.; Bunney, W.E.; Lebel, V.; Rehal, S.; Klempan, T.; Gratton, A.; Benkelfat, C.; Rouleau, G.A.; Mechawar, N.; Turecki, G. Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression. PLoS One, 2009, 4(8)e6585
[http://dx.doi.org/10.1371/journal.pone.0006585] [PMID: 19668376]
[8]
Čiháková, D.; Eaton, W.W.; Talor, M.V.; Harkus, U.H.; Demyanovich, H.; Rodriguez, K.; Feldman, S.; Kelly, D.L. Gut permeability and mimicry of the glutamate ionotropic receptor NMDA type Subunit Associated with protein 1 (GRINA) as potential mechanisms related to a subgroup of people with schizophrenia with elevated antigliadin antibodies (AGA IgG). Schizophr. Res., 2019, 208, 414-419.
[http://dx.doi.org/10.1016/j.schres.2019.01.007] [PMID: 30685393]
[9]
Lewis, T.B.; Wood, S.; Michaelis, E.K.; DuPont, B.R.; Leach, R.J. Localization of a gene for a glutamate binding subunit of a NMDA receptor (GRINA) to 8q24. Genomics, 1996, 32(1), 131-133.
[http://dx.doi.org/10.1006/geno.1996.0088] [PMID: 8786101]
[10]
Bonaglia, M.C.; Giorda, R.; Tenconi, R.; Pessina, M.; Pramparo, T.; Borgatti, R.; Zuffardi, O.A. 2.3 Mb duplication of chromosome 8q24.3 associated with severe mental retardation and epilepsy detected by standard karyotype. Eur. J. Hum. Genet., 2005, 13(5), 586-591.
[http://dx.doi.org/10.1038/sj.ejhg.5201369] [PMID: 15657611]
[11]
Habib, P.; Stamm, A.S.; Zeyen, T.; Noristani, R.; Slowik, A.; Beyer, C.; Wilhelm, T.; Huber, M.; Komnig, D.; Schulz, J.B.; Reich, A. EPO regulates neuroprotective Transmembrane BAX Inhibitor-1 Motif-containing (TMBIM) family members GRINA and FAIM2 after cerebral ischemia-reperfusion injury. Exp. Neurol., 2019, 320112978
[http://dx.doi.org/10.1016/j.expneurol.2019.112978] [PMID: 31211943]
[12]
Habib, P.; Stamm, A.S.; Schulz, J.B.; Reich, A.; Slowik, A.; Capellmann, S.; Huber, M.; Wilhelm, T. EPO and TMBIM3/GRINA Promote the activation of the adaptive arm and counteract the terminal arm of the unfolded protein response after murine transient cerebral ischemia. Int. J. Mol. Sci., 2019, 20(21), 5421.
[http://dx.doi.org/10.3390/ijms20215421] [PMID: 31683519]
[13]
Marchler-Bauer, A.; Derbyshire, M.K.; Gonzales, N.R.; Lu, S.; Chitsaz, F.; Geer, L.Y.; Geer, R.C.; He, J.; Gwadz, M.; Hurwitz, D.I.; Lanczycki, C.J.; Lu, F.; Marchler, G.H.; Song, J.S.; Thanki, N.; Wang, Z.; Yamashita, R.A.; Zhang, D.; Zheng, C.; Bryant, S.H. CDD: NCBI’s conserved domain database. Nucleic Acids Res., 2015, 43(Database issue), D222-D226.
[http://dx.doi.org/10.1093/nar/gku1221] [PMID: 25414356]
[14]
Jiménez-González, V.; Ogalla-García, E.; García-Quintanilla, M.; García-Quintanilla, A. Deciphering GRINA/Lifeguard1: nuclear location, ca2+ homeostasis and vesicle transport. Int. J. Mol. Sci., 2019, 20(16), 4005.
[http://dx.doi.org/10.3390/ijms20164005] [PMID: 31426446]
[15]
Nielsen, J.A.; Chambers, M.A.; Romm, E.; Lee, L.Y.; Berndt, J.A.; Hudson, L.D. Mouse transmembrane BAX inhibitor motif 3 (Tmbim3) encodes a 38 kDa transmembrane protein expressed in the central nervous system. Mol. Cell. Biochem., 2011, 357(1-2), 73-81.
[http://dx.doi.org/10.1007/s11010-011-0877-3] [PMID: 21614515]
[16]
Murrough, J.W.; Abdallah, C.G.; Mathew, S.J. Targeting glutamate signalling in depression: progress and prospects. Nat. Rev. Drug Discov., 2017, 16(7), 472-486.
[http://dx.doi.org/10.1038/nrd.2017.16] [PMID: 28303025]
[17]
Zarate, C.A., Jr; Singh, J.B.; Carlson, P.J.; Brutsche, N.E.; Ameli, R.; Luckenbaugh, D.A.; Charney, D.S.; Manji, H.K. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry, 2006, 63(8), 856-864.
[http://dx.doi.org/10.1001/archpsyc.63.8.856] [PMID: 16894061]
[18]
Berman, R.M.; Cappiello, A.; Anand, A.; Oren, D.A.; Heninger, G.R.; Charney, D.S.; Krystal, J.H. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry, 2000, 47(4), 351-354.
[http://dx.doi.org/10.1016/S0006-3223(99)00230-9] [PMID: 10686270]
[19]
Sumner, R.L.; Mcmillan, R.; Spriggs, M.J.; Campbell, D.; Malpas, G.; Maxwell, E.; Deng, C.; Hay, J.; Ponton, R.; Kirk, I.J. Ketamine enhances visual sensory evoked potential long-term potentiation in patients with major depressive disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2020, 5(1), 45-55.
[PMID: 31495712]
[20]
Yang, Y.; Cui, Y.; Sang, K.; Dong, Y.; Ni, Z.; Ma, S.; Hu, H. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature, 2018, 554(7692), 317-322.
[http://dx.doi.org/10.1038/nature25509] [PMID: 29446381]
[21]
Nosyreva, E.; Szabla, K.; Autry, A.E.; Ryazanov, A.G.; Monteggia, L.M.; Kavalali, E.T. Acute suppression of spontaneous neurotransmission drives synaptic potentiation. J. Neurosci., 2013, 33(16), 6990-7002.
[http://dx.doi.org/10.1523/JNEUROSCI.4998-12.2013] [PMID: 23595756]
[22]
Nosyreva, E.; Autry, A.E.; Kavalali, E.T.; Monteggia, L.M. Age dependence of the rapid antidepressant and synaptic effects of acute NMDA receptor blockade. Front. Mol. Neurosci., 2014, 7, 94-94.
[http://dx.doi.org/10.3389/fnmol.2014.00094] [PMID: 25520615]
[23]
Zanos, P.; Gould, T.D. Mechanisms of ketamine action as an antidepressant. Mol. Psychiatry, 2018, 23(4), 801-811.
[http://dx.doi.org/10.1038/mp.2017.255] [PMID: 29532791]
[24]
Alsharafi, W.A.; Luo, Z.; Long, X.; Xie, Y.; Xiao, B. MicroRNA in glutamate receptor-dependent neurological diseases. Clin. Sci. (Lond.), 2017, 131(14), 1591-1604.
[http://dx.doi.org/10.1042/CS20170964] [PMID: 28667061]
[25]
Balu, D.T. The NMDA Receptor and Schizophrenia: From Pathophysiology to Treatment. Adv. Pharmacol., 2016, 76, 351-382.
[http://dx.doi.org/10.1016/bs.apha.2016.01.006] [PMID: 27288082]
[26]
Ross, C.A.; Margolis, R.L.; Reading, S.A.J.; Pletnikov, M.; Coyle, J.T. Neurobiology of schizophrenia. Neuron, 2006, 52(1), 139-153.
[http://dx.doi.org/10.1016/j.neuron.2006.09.015] [PMID: 17015232]
[27]
DeVito, L.M.; Balu, D.T.; Kanter, B.R.; Lykken, C.; Basu, A.C.; Coyle, J.T.; Eichenbaum, H. Serine racemase deletion disrupts memory for order and alters cortical dendritic morphology. Genes Brain Behav., 2011, 10(2), 210-222.
[http://dx.doi.org/10.1111/j.1601-183X.2010.00656.x] [PMID: 21029376]
[28]
Gunduz-Bruce, H.; Kenney, J.; Changlani, S.; Peixoto, A.; Gueorguieva, R.; Leone, C.; Stachenfeld, N. A translational approach for NMDA receptor profiling as a vulnerability biomarker for depression and schizophrenia. Exp. Physiol., 2017, 102(5), 587-597.
[http://dx.doi.org/10.1113/EP086212] [PMID: 28294453]
[29]
Shelkar, G.P.; Pavuluri, R.; Gandhi, P.J.; Ravikrishnan, A.; Gawande, D.Y.; Liu, J.; Stairs, D.J.; Ugale, R.R.; Dravid, S.M. Differential effect of NMDA receptor GluN2C and GluN2D subunit ablation on behavior and channel blocker-induced schizophrenia phenotypes. Sci. Rep., 2019, 9(1), 7572.
[http://dx.doi.org/10.1038/s41598-019-43957-2] [PMID: 31110197]
[30]
Ghotbi Ravandi, S.; Shabani, M.; Bashiri, H.; Saeedi Goraghani, M.; Khodamoradi, M.; Nozari, M. Ameliorating effects of berberine on MK-801-induced cognitive and motor impairments in a neonatal rat model of schizophrenia. Neurosci. Lett., 2019, 706, 151-157.
[http://dx.doi.org/10.1016/j.neulet.2019.05.029] [PMID: 31103726]
[31]
Buchanan, R.W.; Javitt, D.C.; Marder, S.R.; Schooler, N.R.; Gold, J.M.; McMahon, R.P.; Heresco-Levy, U.; Carpenter, W.T. The Cognitive and Negative Symptoms in Schizophrenia Trial (CONSIST): the efficacy of glutamatergic agents for negative symptoms and cognitive impairments. Am. J. Psychiatry, 2007, 164(10), 1593-1602.
[http://dx.doi.org/10.1176/appi.ajp.2007.06081358] [PMID: 17898352]
[32]
Hao, K.; Su, X.; Luo, B.; Cai, Y.; Chen, T.; Yang, Y.; Shao, M.; Song, M.; Zhang, L.; Zhong, Z.; Li, W.; Lv, L. Prenatal immune activation induces age-related alterations in rat offspring: Effects upon NMDA receptors and behaviors. Behav. Brain Res., 2019, 370111946
[http://dx.doi.org/10.1016/j.bbr.2019.111946] [PMID: 31112730]
[33]
Garcia-Quintanilla, A.; Miranzo-Navarro, D. Extraintestinal manifestations of celiac disease: 33-mer gliadin binding to glutamate receptor GRINA as a new explanation. BioEssays, 2016, 38(5), 427-439.
[http://dx.doi.org/10.1002/bies.201500143] [PMID: 26990286]
[34]
Xu, X.X.; Luo, J.H. Mutations of N-Methyl-D-Aspartate receptor subunits in epilepsy. Neurosci. Bull., 2018, 34(3), 549-565.
[http://dx.doi.org/10.1007/s12264-017-0191-5] [PMID: 29124671]
[35]
Gao, K.; Tankovic, A.; Zhang, Y.; Kusumoto, H.; Zhang, J.; Chen, W. XiangWei, W.; Shaulsky, G.H.; Hu, C.; Traynelis, S.F.; Yuan, H.; Jiang, Y. A de novo loss-of-function GRIN2A mutation associated with childhood focal epilepsy and acquired epileptic aphasia. PLoS One, 2017, 12(2)e0170818
[http://dx.doi.org/10.1371/journal.pone.0170818] [PMID: 28182669]
[36]
Frasca, A.; Aalbers, M.; Frigerio, F.; Fiordaliso, F.; Salio, M.; Gobbi, M.; Cagnotto, A.; Gardoni, F.; Battaglia, G.S.; Hoogland, G.; Di Luca, M.; Vezzani, A. Misplaced NMDA receptors in epileptogenesis contribute to excitotoxicity. Neurobiol. Dis., 2011, 43(2), 507-515.
[http://dx.doi.org/10.1016/j.nbd.2011.04.024] [PMID: 21575722]
[37]
Rothan, H.A.; Amini, E.; Faraj, F.L.; Golpich, M.; Teoh, T.C.; Gholami, K.; Yusof, R. NMDA receptor antagonism with novel indolyl, 2-(1,1-Dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-malonaldehyde, reduces seizures duration in a rat model of epilepsy. Sci. Rep., 2017, 7(1), 45540.
[http://dx.doi.org/10.1038/srep45540] [PMID: 28358047]
[38]
Walker, M. Neuroprotection in epilepsy. Epilepsia, 2007, 48(Suppl. 8), 66-68.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01354.x] [PMID: 18330004]
[39]
Ovbiagele, B.; Nguyen-Huynh, M.N. Stroke epidemiology: advancing our understanding of disease mechanism and therapy. Neurotherapeutics, 2011, 8(3), 319-329.
[http://dx.doi.org/10.1007/s13311-011-0053-1] [PMID: 21691873]
[40]
Feigin, V.L.; Forouzanfar, M.H.; Krishnamurthi, R.; Mensah, G.A.; Connor, M.; Bennett, D.A.; Moran, A.E.; Sacco, R.L.; Anderson, L.; Truelsen, T.; O’Donnell, M.; Venketasubramanian, N.; Barker-Collo, S.; Lawes, C.M.; Wang, W.; Shinohara, Y.; Witt, E.; Ezzati, M.; Naghavi, M.; Murray, C. Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010) and the GBD Stroke Experts Group. Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet, 2014, 383(9913), 245-254.
[http://dx.doi.org/10.1016/S0140-6736(13)61953-4] [PMID: 24449944]
[41]
Tymianski, M. Emerging mechanisms of disrupted cellular signaling in brain ischemia. Nat. Neurosci., 2011, 14(11), 1369-1373.
[http://dx.doi.org/10.1038/nn.2951] [PMID: 22030547]
[42]
Wu, Q.J.; Tymianski, M. Targeting NMDA receptors in stroke: new hope in neuroprotection. Mol. Brain, 2018, 11(1), 15.
[http://dx.doi.org/10.1186/s13041-018-0357-8] [PMID: 29534733]
[43]
Lai, T.W.; Zhang, S.; Wang, Y.T. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog. Neurobiol., 2014, 115, 157-188.
[http://dx.doi.org/10.1016/j.pneurobio.2013.11.006] [PMID: 24361499]
[44]
Tu, W.; Xu, X.; Peng, L.; Zhong, X.; Zhang, W.; Soundarapandian, M.M.; Balel, C.; Wang, M.; Jia, N.; Zhang, W.; Lew, F.; Chan, S.L.; Chen, Y.; Lu, Y. DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell, 2010, 140(2), 222-234.
[http://dx.doi.org/10.1016/j.cell.2009.12.055] [PMID: 20141836]
[45]
Tang, N.; Wu, J.; Zhu, H.; Yan, H.; Guo, Y.; Cai, Y.; Yan, H.; Shi, Y.; Shu, S.; Pei, L.; Lu, Y. Genetic mutation of glun2b protects brain cells against stroke damages. Mol. Neurobiol., 2018, 55(4), 2979-2990.
[http://dx.doi.org/10.1007/s12035-017-0562-y] [PMID: 28456939]
[46]
Chen, M.; Lu, T.J.; Chen, X.J.; Zhou, Y.; Chen, Q.; Feng, X.Y.; Xu, L.; Duan, W.H.; Xiong, Z.Q. Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance. Stroke, 2008, 39(11), 3042-3048.
[http://dx.doi.org/10.1161/STROKEAHA.108.521898] [PMID: 18688011]
[47]
Lau, D.; Bengtson, C.P.; Buchthal, B.; Bading, H. BDNF Reduces Toxic Extrasynaptic NMDA Receptor Signaling via Synaptic NMDA Receptors and Nuclear-Calcium-Induced Transcription of inhba/Activin A. Cell Rep., 2015, 12(8), 1353-1366.
[http://dx.doi.org/10.1016/j.celrep.2015.07.038] [PMID: 26279570]
[48]
Lisak, D.A.; Schacht, T.; Enders, V.; Habicht, J.; Kiviluoto, S.; Schneider, J.; Henke, N.; Bultynck, G.; Methner, A. The transmembrane Bax inhibitor motif (TMBIM) containing protein family: Tissue expression, intracellular localization and effects on the ER CA2+-filling state. Biochim. Biophys. Acta, 2015, 1853(9), 2104-2114.
[http://dx.doi.org/10.1016/j.bbamcr.2015.03.002] [PMID: 25764978]
[49]
Krajewska, M.; Xu, L.; Xu, W.; Krajewski, S.; Kress, C.L.; Cui, J.; Yang, L.; Irie, F.; Yamaguchi, Y.; Lipton, S.A.; Reed, J.C. Endoplasmic reticulum protein BI-1 modulates unfolded protein response signaling and protects against stroke and traumatic brain injury. Brain Res., 2011, 1370, 227-237.
[http://dx.doi.org/10.1016/j.brainres.2010.11.015] [PMID: 21075086]
[50]
Kim, J.H.; Lee, E.R.; Jeon, K.; Choi, H.Y.; Lim, H.; Kim, S.J.; Chae, H.J.; Park, S.H.; Kim, S.; Seo, Y.R.; Kim, J.H.; Cho, S.G. Role of BI-1 (TEGT)-mediated ERK1/2 activation in mitochondria-mediated apoptosis and splenomegaly in BI-1 transgenic mice. Biochim. Biophys. Acta, 2012, 1823(4), 876-888.
[http://dx.doi.org/10.1016/j.bbamcr.2012.01.016] [PMID: 22309999]
[51]
Tauber, S.C.; Harms, K.; Falkenburger, B.; Weis, J.; Sellhaus, B.; Nau, R.; Schulz, J.B.; Reich, A. Modulation of hippocampal neuroplasticity by Fas/CD95 regulatory protein 2 (Faim2) in the course of bacterial meningitis. J. Neuropathol. Exp. Neurol., 2014, 73(1), 2-13.
[http://dx.doi.org/10.1097/NEN.0000000000000020] [PMID: 24335530]
[52]
Reich, A.; Spering, C.; Gertz, K.; Harms, C.; Gerhardt, E.; Kronenberg, G.; Nave, K.A.; Schwab, M.; Tauber, S.C.; Drinkut, A.; Harms, K.; Beier, C.P.; Voigt, A.; Göbbels, S.; Endres, M.; Schulz, J.B. Fas/CD95 regulatory protein Faim2 is neuroprotective after transient brain ischemia. J. Neurosci., 2011, 31(1), 225-233.
[http://dx.doi.org/10.1523/JNEUROSCI.2188-10.2011] [PMID: 21209208]
[53]
Komnig, D.; Gertz, K.; Habib, P.; Nolte, K.W.; Meyer, T.; Brockmann, M.A.; Endres, M.; Rathkolb, B.; Hrabě de Angelis, M.; Schulz, J.B.; Falkenburger, B.H.; Reich, A. German Mouse Clinic Consortium. Faim2 contributes to neuroprotection by erythropoietin in transient brain ischemia. J. Neurochem., 2018, 145(3), 258-270.
[http://dx.doi.org/10.1111/jnc.14296] [PMID: 29315561]
[54]
Mota, S.I.; Ferreira, I.L.; Rego, A.C. Dysfunctional synapse in Alzheimer’s disease - A focus on NMDA receptors. Neuropharmacology, 2014, 76(Pt A), 16-26.
[http://dx.doi.org/10.1016/j.neuropharm.2013.08.013] [PMID: 23973316]
[55]
Perl, D.P. Neuropathology of Alzheimer’s disease. Mt. Sinai J. Med., 2010, 77(1), 32-42.
[http://dx.doi.org/10.1002/msj.20157] [PMID: 20101720]
[56]
Zhang, Y.; Li, P.; Feng, J.; Wu, M. Dysfunction of NMDA receptors in Alzheimer’s disease. Neurol. Sci., 2016, 37(7), 1039-1047.
[http://dx.doi.org/10.1007/s10072-016-2546-5] [PMID: 26971324]
[57]
Hanson, J.E.; Pare, J.F.; Deng, L.; Smith, Y.; Zhou, Q. Altered GluN2B NMDA receptor function and synaptic plasticity during early pathology in the PS2APP mouse model of Alzheimer’s disease. Neurobiol. Dis., 2015, 74, 254-262.
[http://dx.doi.org/10.1016/j.nbd.2014.11.017] [PMID: 25484285]
[58]
Dong, Y.; Kalueff, A.V.; Song, C. N-methyl-d-aspartate receptor-mediated calcium overload and endoplasmic reticulum stress are involved in interleukin-1beta-induced neuronal apoptosis in rat hippocampus. J. Neuroimmunol., 2017, 307, 7-13.
[http://dx.doi.org/10.1016/j.jneuroim.2017.03.005] [PMID: 28495142]
[59]
Ma, S.H.; Zhuang, Q.X.; Shen, W.X.; Peng, Y.P.; Qiu, Y.H. Interleukin-6 reduces NMDAR-mediated cytosolic Ca2+ overload and neuronal death via JAK/CaN signaling. Cell Calcium, 2015, 58(3), 286-295.
[http://dx.doi.org/10.1016/j.ceca.2015.06.006] [PMID: 26104917]
[60]
Ferreira, I.L.; Ferreiro, E.; Schmidt, J.; Cardoso, J.M.R.; Pereira, C.M.; Carvalho, A.L.; Oliveira, C.R.; Rego, A.C. Aβ and NMDAR activation cause mitochondrial dysfunction involving ER calcium release. Neurobiol. Aging, 2015, 36(2), 680-692.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.09.006] [PMID: 25442114]
[61]
Supnet, C.; Bezprozvanny, I. The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium, 2010, 47(2), 183-189.
[http://dx.doi.org/10.1016/j.ceca.2009.12.014] [PMID: 20080301]
[62]
Rojas-Rivera, D.; Armisén, R.; Colombo, A.; Martínez, G.; Eguiguren, A.L.; Díaz, A.; Kiviluoto, S.; Rodríguez, D.; Patron, M.; Rizzuto, R.; Bultynck, G.; Concha, M.L.; Sierralta, J.; Stutzin, A.; Hetz, C. TMBIM3/GRINA is a novel unfolded protein response (UPR) target gene that controls apoptosis through the modulation of ER calcium homeostasis. Cell Death Differ., 2012, 19(6), 1013-1026.
[http://dx.doi.org/10.1038/cdd.2011.189] [PMID: 22240901]
[63]
Chen, K.; Li, X.; Song, G.; Zhou, T.; Long, Y.; Li, Q.; Zhong, S.; Cui, Z. Deficiency in the membrane protein Tmbim3a/Grinaa initiates cold-induced ER stress and cell death by activating an intrinsic apoptotic pathway in zebrafish. J. Biol. Chem., 2019, 294(30), 11445-11457.
[http://dx.doi.org/10.1074/jbc.RA119.007813] [PMID: 31171717]
[64]
Mallmann, R.T.; Moravcikova, L.; Ondacova, K.; Lacinova, L.; Klugbauer, N. Grina/TMBIM3 modulates voltage-gated CaV2.2 Ca2+ channels in a G-protein-like manner. Cell Calcium, 2019, 80, 71-78.
[http://dx.doi.org/10.1016/j.ceca.2019.04.002] [PMID: 30991297]
[65]
Acquaah-Mensah, G.K.; Agu, N.; Khan, T.; Gardner, A. A regulatory role for the insulin- and BDNF-linked RORA in the hippocampus: implications for Alzheimer’s disease. J. Alzheimers Dis., 2015, 44(3), 827-838.
[http://dx.doi.org/10.3233/JAD-141731] [PMID: 25362032]
[66]
Xu, D.H.; Li, Q.; Hu, H.; Ni, B.; Liu, X.; Huang, C.; Zhang, Z.Z.; Zhao, G. Transmembrane protein GRINA modulates aerobic glycolysis and promotes tumor progression in gastric cancer. J. Exp. Clin. Cancer Res., 2018, 37(1), 308.
[http://dx.doi.org/10.1186/s13046-018-0974-1] [PMID: 30541591]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy