Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Recent Trends in the Management of Alzheimer’s Disease: Current Therapeutic Options and Drug Repurposing Approaches

Author(s): Rakesh K. Singh*

Volume 18, Issue 9, 2020

Page: [868 - 882] Pages: 15

DOI: 10.2174/1570159X18666200128121920

Price: $65

Abstract

Alzheimer’s disease is one of the most progressive forms of dementia, ultimately leading to death in aged populations. The major hallmarks of Alzheimer’s disease include deposition of extracellular amyloid senile plaques and intracellular neurofibrillary tangles in brain neuronal cells. Although there are classical therapeutic options available for the treatment of the diseases, however, they provide only a symptomatic relief and do not modify the molecular pathophysiological course of the disease. Recent research advances in Alzheimer’s disease have highlighted the potential role of anti-amyloid, anti-tau, and anti-inflammatory therapies. However, these therapies are still in different phases of pre-clinical/clinical development. In addition, drug repositioning/repurposing is another interesting and promising approach to explore rationalized options for the treatment of Alzheimer’s disease.

This review discusses the different aspects of the pathophysiological mechanism involved in the progression of Alzheimer’s disease along with the limitations of current therapies. Furthermore, this review also highlights emerging investigational drugs along with recent drug repurposing approaches for Alzheimer’s disease.

Keywords: Alzheimer's disease, drug repurposing, inflammatory cytokines, chronic neuroinflammation, drug repurposing.

Graphical Abstract

[1]
Sala Frigerio, C.; De Strooper, B. Alzheimer’s disease mechanisms and emerging roads to novel therapeutics. Annu. Rev. Neurosci., 2016, 39, 57-79.
[http://dx.doi.org/10.1146/annurev-neuro-070815-014015] [PMID: 27050320]
[2]
Bondi, M.W.; Edmonds, E.C.; Salmon, D.P. Alzheimer’s Disease: Past, Present, and Future. J. Int. Neuropsychol. Soc., 2017, 23(9-10), 818-831.
[http://dx.doi.org/10.1017/S135561771700100X] [PMID: 29198280]
[3]
Kozlov, S.; Afonin, A.; Evsyukov, I.; Bondarenko, A. Alzheimer’s disease: as it was in the beginning. Rev. Neurosci., 2017, 28(8), 825-843.
[http://dx.doi.org/10.1515/revneuro-2017-0006] [PMID: 28704198]
[4]
Dos Santos Picanco, L.C.; Ozela, P.F.; de Fatima de Brito Brito, M.; Pinheiro, A.A.; Padilha, E.C.; Braga, F.S.; de Paula da Silva, C.H.T.; Dos Santos, C.B.R.; Rosa, J.M.C.; da Silva Hage-Melim, L.I. Alzheimer’s Disease: A review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Curr. Med. Chem., 2018, 25(26), 3141-3159.
[http://dx.doi.org/10.2174/0929867323666161213101126] [PMID: 30191777]
[5]
Mufson, E.J.; Ikonomovic, M.D.; Counts, S.E.; Perez, S.E.; Malek-Ahmadi, M.; Scheff, S.W.; Ginsberg, S.D. Molecular and cellular pathophysiology of preclinical Alzheimer’s disease. Behav. Brain Res., 2016, 311, 54-69.
[http://dx.doi.org/10.1016/j.bbr.2016.05.030] [PMID: 27185734]
[6]
Sanabria-Castro, A.; Alvarado-Echeverría, I.; Monge-Bonilla, C. Molecular pathogenesis of Alzheimer’s Disease: An update. Ann. Neurosci., 2017, 24(1), 46-54.
[http://dx.doi.org/10.1159/000464422] [PMID: 28588356]
[7]
Wang, J.; Gu, B.J.; Masters, C.L.; Wang, Y-J. A systemic view of Alzheimer disease - insights from amyloid-β metabolism beyond the brain. Nat. Rev. Neurol., 2017, 13(10), 612-623.
[http://dx.doi.org/10.1038/nrneurol.2017.111] [PMID: 28960209]
[8]
Cummings, J.; Aisen, P.S.; DuBois, B.; Frölich, L.; Jack, C.R., Jr; Jones, R.W.; Morris, J.C.; Raskin, J.; Dowsett, S.A.; Scheltens, P. Drug development in Alzheimer’s disease: the path to 2025. Alzheimers Res. Ther., 2016, 8, 39.
[http://dx.doi.org/10.1186/s13195-016-0207-9] [PMID: 27646601]
[9]
Van Eldik, L.J.; Carrillo, M.C.; Cole, P.E.; Feuerbach, D.; Greenberg, B.D.; Hendrix, J.A.; Kennedy, M.; Kozauer, N.; Margolin, R.A.; Molinuevo, J.L.; Mueller, R.; Ransohoff, R.M.; Wilcock, D.M.; Bain, L.; Bales, K. The roles of inflammation and immune mechanisms in Alzheimer’s disease. Alzheimers Dement. (N. Y.), 2016, 2(2), 99-109.
[http://dx.doi.org/10.1016/j.trci.2016.05.001] [PMID: 29067297]
[10]
Kuca, K.; Soukup, O.; Maresova, P.; Korabecny, J.; Nepovimova, E.; Klimova, B.; Honegr, J.; Ramalhob, T.C.; França, T.C.C. Current Approaches Against Alzheimer’s Disease in Clinical Trials. J. Braz. Chem. Soc., 2016, 27(4), 641-649.
[11]
Corbett, A.; Pickett, J.; Burns, A.; Corcoran, J.; Dunnett, S.B.; Edison, P.; Hagan, J.J.; Holmes, C.; Jones, E.; Katona, C.; Kearns, I.; Kehoe, P.; Mudher, A.; Passmore, A.; Shepherd, N.; Walsh, F.; Ballard, C. Drug repositioning for Alzheimer’s disease. Nat. Rev. Drug Discov., 2012, 11(11), 833-846.
[http://dx.doi.org/10.1038/nrd3869] [PMID: 23123941]
[12]
Cummings, J.; Lee, G.; Ritter, A.; Zhong, K. Alzheimer’s disease drug development pipeline. Alzheimers Dement. (N. Y.), 2018, 4, 195-214.
[http://dx.doi.org/10.1016/j.trci.2018.03.009] [PMID: 29955663]
[13]
Kumar, A.; Singh, A. Ekavali, A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol. Rep., 2015, 67(2), 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[14]
Vickers, J.C.; Mitew, S.; Woodhouse, A.; Fernandez-Martos, C.M.; Kirkcaldie, M.T.; Canty, A.J.; McCormack, G.H.; King, A.E. Defining the earliest pathological changes of Alzheimer’s disease. Curr. Alzheimer Res., 2016, 13(3), 281-287.
[http://dx.doi.org/10.2174/1567205013666151218150322] [PMID: 26679855]
[15]
Vargas, D.M.; De Bastiani, M.A.; Zimmer, E.R.; Klamt, F. Alzheimer’s disease master regulators analysis: search for potential molecular targets and drug repositioning candidates. Alzheimers Res. Ther., 2018, 10(1), 59-70.
[http://dx.doi.org/10.1186/s13195-018-0394-7] [PMID: 29935546]
[16]
Durães, F.; Pinto, M.; Sousa, E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals (Basel), 2018, 11(2), 44.
[http://dx.doi.org/10.3390/ph11020044] [PMID: 29751602]
[17]
Nunan, J.; Small, D.H. Regulation of APP cleavage by alpha-, beta- and gamma-secretases. FEBS Lett., 2000, 483(1), 6-10.
[http://dx.doi.org/10.1016/S0014-5793(00)02076-7] [PMID: 11033346]
[18]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[19]
Chai, Q.; He, W.Q.; Zhou, M.; Lu, H.; Fu, Z.F. Enhancement of blood-brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. J. Virol., 2014, 88(9), 4698-4710.
[http://dx.doi.org/10.1128/JVI.03149-13] [PMID: 24522913]
[20]
Wierenga, C. E.; Hays, C. C.; Zlatar, Z. Z. Cerebral blood flow measured by arterial spin labeling MRI as a preclinical marker of Alzheimer's disease. J. Alzheimer's Dis.,, 2014, 42(Suppl 4)(4), S411-S419.
[http://dx.doi.org/10.3233/JAD-141467]
[21]
Hays, C.C.; Zlatar, Z.Z.; Wierenga, C.E. The utility of cerebral blood flow as a biomarker of preclinical Alzheimer’s disease. Cell. Mol. Neurobiol., 2016, 36(2), 167-179.
[http://dx.doi.org/10.1007/s10571-015-0261-z] [PMID: 26898552]
[22]
Tiernan, C.T.; Mufson, E.J.; Kanaan, N.M.; Counts, S.E. Tau Oligomer pathology in nucleus basalis neurons during the progression of Alzheimer Disease. J. Neuropathol. Exp. Neurol., 2018, 77(3), 246-259.
[http://dx.doi.org/10.1093/jnen/nlx120] [PMID: 29378005]
[23]
Rahman, S.O.; Singh, R.K.; Hussain, S.; Akhtar, M.; Najmi, A.K. A novel therapeutic potential of cysteinyl leukotrienes and their receptors modulation in the neurological complications associated with Alzheimer’s disease. Eur. J. Pharmacol., 2019, 842, 208-220.
[http://dx.doi.org/10.1016/j.ejphar.2018.10.040] [PMID: 30389631]
[24]
Miners, J.S.; Baig, S.; Palmer, J.; Palmer, L.E.; Kehoe, P.G.; Love, S. Abeta-degrading enzymes in Alzheimer’s disease. Brain Pathol., 2008, 18(2), 240-252.
[http://dx.doi.org/10.1111/j.1750-3639.2008.00132.x] [PMID: 18363935]
[25]
Cui, J.; Wang, X.; Li, X.; Wang, X.; Zhang, C.; Li, W.; Zhang, Y.; Gu, H.; Xie, X.; Nan, F.; Zhao, J.; Pei, G. Targeting the γ-/β-secretase interaction reduces β-amyloid generation and ameliorates Alzheimer’s disease-related pathogenesis. Cell Discov., 2015, 1(1), 15021.
[http://dx.doi.org/10.1038/celldisc.2015.21] [PMID: 27462420]
[26]
Kalra, J.; Khan, A. Reducing Aβ load and tau phosphorylation: Emerging perspective for treating Alzheimer’s disease. Eur. J. Pharmacol., 2015, 764, 571-581.
[http://dx.doi.org/10.1016/j.ejphar.2015.07.043] [PMID: 26209363]
[27]
Balducci, C.; Frasca, A.; Zotti, M.; La Vitola, P.; Mhillaj, E.; Grigoli, E.; Iacobellis, M.; Grandi, F.; Messa, M.; Colombo, L.; Molteni, M.; Trabace, L.; Rossetti, C.; Salmona, M.; Forloni, G. Toll-like receptor 4-dependent glial cell activation mediates the impairment in memory establishment induced by β-amyloid oligomers in an acute mouse model of Alzheimer’s disease. Brain Behav. Immun., 2017, 60, 188-197.
[http://dx.doi.org/10.1016/j.bbi.2016.10.012] [PMID: 27751869]
[28]
Simunkova, M.; Alwasel, S.H.; Alhazza, I.M.; Jomova, K.; Kollar, V.; Rusko, M.; Valko, M. Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch. Toxicol., 2019, 93(9), 2491-2513.
[http://dx.doi.org/10.1007/s00204-019-02538-y] [PMID: 31440798]
[29]
Giuffrida, M.L.; Caraci, F.; Pignataro, B.; Cataldo, S.; De Bona, P.; Bruno, V.; Molinaro, G.; Pappalardo, G.; Messina, A.; Palmigiano, A.; Garozzo, D.; Nicoletti, F.; Rizzarelli, E.; Copani, A. β-amyloid monomers are neuroprotective. J. Neurosci., 2009, 29(34), 10582-10587.
[http://dx.doi.org/10.1523/JNEUROSCI.1736-09.2009] [PMID: 19710311]
[30]
Giuffrida, M.L.; Caraci, F.; De Bona, P.; Pappalardo, G.; Nicoletti, F.; Rizzarelli, E.; Copani, A. The monomer state of beta-amyloid: where the Alzheimer’s disease protein meets physiology. Rev. Neurosci., 2010, 21(2), 83-93.
[http://dx.doi.org/10.1515/REVNEURO.2010.21.2.83] [PMID: 20614800]
[31]
Giuffrida, M.L.; Tomasello, M.F.; Pandini, G.; Caraci, F.; Battaglia, G.; Busceti, C.; Di Pietro, P.; Pappalardo, G.; Attanasio, F.; Chiechio, S.; Bagnoli, S.; Nacmias, B.; Sorbi, S.; Vigneri, R.; Rizzarelli, E.; Nicoletti, F.; Copani, A. Monomeric ß-amyloid interacts with type-1 insulin-like growth factor receptors to provide energy supply to neurons. Front. Cell. Neurosci., 2015, 9, 297.
[http://dx.doi.org/10.3389/fncel.2015.00297] [PMID: 26300732]
[32]
Brunden, K.R.; Yao, Y.; Potuzak, J.S.; Ferrer, N.I.; Ballatore, C.; James, M.J.; Hogan, A.M.; Trojanowski, J.Q.; Smith, A.B., III; Lee, V.M. The characterization of microtubule-stabilizing drugs as possible therapeutic agents for Alzheimer’s disease and related tauopathies. Pharmacol. Res., 2011, 63(4), 341-351.
[http://dx.doi.org/10.1016/j.phrs.2010.12.002] [PMID: 21163349]
[33]
Di Meco, A.; Lauretti, E.; Vagnozzi, A.N.; Praticò, D. Zileuton restores memory impairments and reverses amyloid and tau pathology in aged mice. Neurobiol. Aging, 2014, 35, 2458-2464.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.05.016] [PMID: 24973121]
[34]
Li, H.; Liu, C-C.; Zheng, H.; Huang, T.Y. Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer’s disease -conformist, nonconformist, and realistic prospects for AD pathogenesis. Transl. Neurodegener., 2018, 7(1), 34.
[http://dx.doi.org/10.1186/s40035-018-0139-3] [PMID: 30603085]
[35]
Huang, X.Q.; Zhang, X.Y.; Wang, X.R.; Yu, S.Y.; Fang, S.H.; Lu, Y.B.; Zhang, W.P.; Wei, E.Q. Transforming growth factor β1-induced astrocyte migration is mediated in part by activating 5-lipoxygenase and cysteinyl leukotriene receptor 1. J. Neuroinflammation, 2012, 9, 145.
[http://dx.doi.org/10.1186/1742-2094-9-145] [PMID: 22734808]
[36]
Ciaramella, A.; Salani, F.; Bizzoni, F.; Orfei, M.D.; Caltagirone, C.; Spalletta, G.; Bossù, P. Myeloid dendritic cells are decreased in peripheral blood of Alzheimer’s disease patients in association with disease progression and severity of depressive symptoms. J. Neuroinflammation, 2016, 13, 18.
[http://dx.doi.org/10.1186/s12974-016-0483-0] [PMID: 26811068]
[37]
Teaktong, T.; Graham, A.J.; Court, J.A.; Perry, R.H.; Jaros, E.; Johnson, M.; Hall, R.; Perry, E.K. Nicotinic acetylcholine receptor immunohistochemistry in Alzheimer’s disease and dementia with Lewy bodies: differential neuronal and astroglial pathology. J. Neurol. Sci., 2004, 225(1-2), 39-49.
[http://dx.doi.org/10.1016/j.jns.2004.06.015] [PMID: 15465084]
[38]
Singh, P.; Sharma, B. Reversal in cognition impairments, cholinergic dysfunction, and cerebral oxidative stress through the modulation of ryanodine receptors (RyRs) and Cysteinyl leukotriene-1 (CysLT1) receptors. Curr. Neurovasc. Res., 2016, 13(1), 10-21.
[http://dx.doi.org/10.2174/1567202612666151026105610] [PMID: 26500103]
[39]
Tanaka, M.; Shih, P.Y.; Gomi, H.; Yoshida, T.; Nakai, J.; Ando, R.; Furuichi, T.; Mikoshiba, K.; Semyanov, A.; Itohara, S. Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses. Mol. Brain, 2013, 6, 6.
[http://dx.doi.org/10.1186/1756-6606-6-6] [PMID: 23356992]
[40]
Cai, Z.; Hussain, M.D.; Yan, L.J. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int. J. Neurosci., 2014, 124(5), 307-321.
[http://dx.doi.org/10.3109/00207454.2013.833510] [PMID: 23930978]
[41]
Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487.
[http://dx.doi.org/10.1038/nature21029] [PMID: 28099414]
[42]
Biber, K.; Bhattacharya, A.; Campbell, B.M.; Piro, J.R.; Rohe, M.; Staal, R.G.W.; Talanian, R.V.; Möller, T. Microglial drug targets in ad: opportunities and challenges in drug discovery and development. Front. Pharmacol., 2019, 10, 840.
[http://dx.doi.org/10.3389/fphar.2019.00840] [PMID: 31507408]
[43]
Ardura-Fabregat, A.; Boddeke, E.W.G.M.; Boza-Serrano, A.; Brioschi, S.; Castro-Gomez, S.; Ceyzériat, K.; Dansokho, C.; Dierkes, T.; Gelders, G.; Heneka, M.T.; Hoeijmakers, L.; Hoffmann, A.; Iaccarino, L.; Jahnert, S.; Kuhbandner, K.; Landreth, G.; Lonnemann, N.; Löschmann, P.A.; McManus, R.M.; Paulus, A.; Reemst, K.; Sanchez-Caro, J.M.; Tiberi, A.; Van der Perren, A.; Vautheny, A.; Venegas, C.; Webers, A.; Weydt, P.; Wijasa, T.S.; Xiang, X.; Yang, Y. Targeting neuroinflammation to treat Alzheimer’s Disease. CNS Drugs, 2017, 31(12), 1057-1082.
[http://dx.doi.org/10.1007/s40263-017-0483-3] [PMID: 29260466]
[44]
Wes, P.D.; Sayed, F.A.; Bard, F.; Gan, L. Targeting microglia for the treatment of Alzheimer’s Disease. Glia, 2016, 64(10), 1710-1732.
[http://dx.doi.org/10.1002/glia.22988] [PMID: 27100611]
[45]
McGeer, P.L.; McGeer, E.G. Targeting microglia for the treatment of Alzheimer’s disease. Expert Opin. Ther. Targets, 2015, 19(4), 497-506.
[http://dx.doi.org/10.1517/14728222.2014.988707] [PMID: 25435348]
[46]
Hamelin, L.; Lagarde, J.; Dorothée, G.; Leroy, C.; Labit, M.; Comley, R.A.; de Souza, L.C.; Corne, H.; Dauphinot, L.; Bertoux, M.; Dubois, B.; Gervais, P.; Colliot, O.; Potier, M.C.; Bottlaender, M.; Sarazin, M. Clinical IMABio3 team. Early and protective microglial activation in Alzheimer’s disease: a prospective study using 18F-DPA-714 PET imaging. Brain, 2016, 139(Pt 4), 1252-1264.
[http://dx.doi.org/10.1093/brain/aww017] [PMID: 26984188]
[47]
Bouvier, D.S.; Murai, K.K. Synergistic actions of microglia and astrocytes in the progression of Alzheimer’s disease. J. Alzheimers Dis., 2015, 45(4), 1001-1014.
[http://dx.doi.org/10.3233/JAD-143156] [PMID: 25663025]
[48]
Chen, W.W.; Zhang, X.; Huang, W.J. Role of neuroinflammation in neurodegenerative diseases. (Review). Mol. Med. Rep., 2016, 13(4), 3391-3396.
[http://dx.doi.org/10.3892/mmr.2016.4948] [PMID: 26935478]
[49]
Zhang, F.; Jiang, L. Neuroinflammation in Alzheimer’s disease. Neuropsychiatr. Dis. Treat., 2015, 11, 243-256.
[http://dx.doi.org/10.2147/NDT.S75546] [PMID: 25673992]
[50]
Thawkar, B.S.; Kaur, G. Inhibitors of NF-κB and P2X7/NLRP3/Caspase 1 pathway in microglia: Novel therapeutic opportunities in neuroinflammation induced early-stage Alzheimer’s disease. J. Neuroimmunol., 2019, 326, 62-74.
[http://dx.doi.org/10.1016/j.jneuroim.2018.11.010] [PMID: 30502599]
[51]
Bhattacharya, A.; Jones, D.N.C. Emerging role of the P2X7-NLRP3-IL1β pathway in mood disorders. Psychoneuroendocrinology, 2018, 98, 95-100.
[http://dx.doi.org/10.1016/j.psyneuen.2018.08.015] [PMID: 30121550]
[52]
McGeer, P.L.; Guo, J.P.; Lee, M.; Kennedy, K.; McGeer, E.G. Alzheimer’s Disease Can Be Spared by nonsteroidal anti-inflammatory drugs. J. Alzheimers Dis., 2018, 62(3), 1219-1222.
[http://dx.doi.org/10.3233/JAD-170706] [PMID: 29103042]
[53]
Rangasamy, S.B.; Jana, M.; Roy, A.; Corbett, G.T.; Kundu, M.; Chandra, S.; Mondal, S.; Dasarathi, S.; Mufson, E.J.; Mishra, R.K.; Luan, C.H.; Bennett, D.A.; Pahan, K. Selective disruption of TLR2-MyD88 interaction inhibits inflammation and attenuates Alzheimer’s pathology. J. Clin. Invest., 2018, 128(10), 4297-4312.
[http://dx.doi.org/10.1172/JCI96209] [PMID: 29990310]
[54]
Pourbadie, H.G.; Sayyah, M.; Khoshkholgh-Sima, B.; Choopani, S.; Nategh, M.; Motamedi, F.; Shokrgozar, M.A. Early minor stimulation of microglial TLR2 and TLR4 receptors attenuates Alzheimer’s disease-related cognitive deficit in rats: behavioral, molecular, and electrophysiological evidence. Neurobiol. Aging, 2018, 70, 203-216.
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.06.020] [PMID: 30031930]
[55]
Illes, P.; Rubini, P.; Huang, L.; Tang, Y. The P2X7 receptor: a new therapeutic target in Alzheimer’s disease. Expert Opin. Ther. Targets, 2019, 23(3), 165-176.
[http://dx.doi.org/10.1080/14728222.2019.1575811] [PMID: 30691318]
[56]
Bhattacharya, A.; Biber, K. The microglial ATP-gated ion channel P2X7 as a CNS drug target. Glia, 2016, 64(10), 1772-1787.
[http://dx.doi.org/10.1002/glia.23001] [PMID: 27219534]
[57]
Heneka, M.T.; McManus, R.M.; Latz, E. Inflammasome signalling in brain function and neurodegenerative disease. Nat. Rev. Neurosci., 2018, 19(10), 610-621.
[http://dx.doi.org/10.1038/s41583-018-0055-7] [PMID: 30206330]
[58]
Thal, D.R. The role of astrocytes in amyloid β-protein toxicity and clearance. Exp. Neurol., 2012, 236(1), 1-5.
[http://dx.doi.org/10.1016/j.expneurol.2012.04.021] [PMID: 22575598]
[59]
Pekny, M.; Pekna, M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol. Rev., 2014, 94(4), 1077-1098.
[http://dx.doi.org/10.1152/physrev.00041.2013] [PMID: 25287860]
[60]
Wojsiat, J.; Zoltowska, K.M.; Laskowska-Kaszub, K.; Wojda, U. Oxidant/antioxidant imbalance in Alzheimer’s Disease: therapeutic and diagnostic prospects. Oxid. Med. Cell. Longev., 2018, 20186435861
[http://dx.doi.org/10.1155/2018/6435861] [PMID: 29636850]
[61]
Chen, Z.; Zhong, C. Oxidative stress in Alzheimer’s disease. Neurosci. Bull., 2014, 30(2), 271-281.
[http://dx.doi.org/10.1007/s12264-013-1423-y] [PMID: 24664866]
[62]
Bonda, D.J.; Lee, H.G.; Blair, J.A.; Zhu, X.; Perry, G.; Smith, M.A. Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics, 2011, 3(3), 267-270.
[http://dx.doi.org/10.1039/c0mt00074d] [PMID: 21298161]
[63]
Brown, D.R. Metals in neurodegenerative disease. Metallomics, 2011, 3(3), 226-228.
[http://dx.doi.org/10.1039/c1mt90005f] [PMID: 21327191]
[64]
Lanza, V.; Milardi, D.; Di Natale, G.; Pappalardo, G. Repurposing of Copper(II)-chelating drugs for the treatment of neurodegenerative diseases. Curr. Med. Chem., 2018, 25(4), 525-539.
[http://dx.doi.org/10.2174/0929867324666170518094404] [PMID: 28521682]
[65]
Li, Y.; Jiao, Q.; Xu, H.; Du, X.; Shi, L.; Jia, F.; Jiang, H. Biometal dyshomeostasis and toxic metal accumulations in the development of Alzheimer’s Disease. Front. Mol. Neurosci., 2017, 10, 339.
[http://dx.doi.org/10.3389/fnmol.2017.00339] [PMID: 29114205]
[66]
Garza-Lombó, C.; Posadas, Y.; Quintanar, L.; Gonsebatt, M.E.; Franco, R. Neurotoxicity linked to dysfunctional metal ion homeostasis and xenobiotic metal exposure: redox signaling and oxidative stress. Antioxid. Redox Signal., 2018, 28(18), 1669-1703.
[http://dx.doi.org/10.1089/ars.2017.7272] [PMID: 29402131]
[67]
Ong, W-Y.; Farooqui, T.; Kokotos, G.; Farooqui, A.A. Synthetic and natural inhibitors of phospholipases A2: their importance for understanding and treatment of neurological disorders. ACS Chem. Neurosci., 2015, 6(6), 814-831.
[http://dx.doi.org/10.1021/acschemneuro.5b00073] [PMID: 25891385]
[68]
Ha, J.S.; Dho, S.H.; Youm, T.H.; Kwon, K.S.; Park, S.S. Astrocytic phospholipase A2 contributes to neuronal glutamate toxicity. Brain Res., 2014, 1590, 97-106.
[http://dx.doi.org/10.1016/j.brainres.2014.10.015] [PMID: 25451090]
[69]
Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol., 2018, 14(3), 133-150.
[http://dx.doi.org/10.1038/nrneurol.2017.188] [PMID: 29377008]
[70]
Engelhardt, B.; Carare, R.O.; Bechmann, I.; Flügel, A.; Laman, J.D.; Weller, R.O. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol., 2016, 132(3), 317-338.
[http://dx.doi.org/10.1007/s00401-016-1606-5] [PMID: 27522506]
[71]
Wong, K.H.; Riaz, M.K.; Xie, Y.; Zhang, X.; Liu, Q.; Chen, H.; Bian, Z.; Chen, X.; Lu, A.; Yang, Z. Review of current strategies for delivering alzheimer’s disease drugs across the blood-brain barrier. Int. J. Mol. Sci., 2019, 20(2), 381-406.
[http://dx.doi.org/10.3390/ijms20020381] [PMID: 30658419]
[72]
Fisher, Y.; Nemirovsky, A.; Baron, R.; Monsonego, A. Dendritic cells regulate amyloid-β-specific T-cell entry into the brain: the role of perivascular amyloid-β. J. Alzheimers Dis., 2011, 27(1), 99-111.
[http://dx.doi.org/10.3233/JAD-2011-102034] [PMID: 21765208]
[73]
Salminen, A.; Kauppinen, A.; Kaarniranta, K. Hypoxia/ischemia activate processing of Amyloid Precursor Protein: impact of vascular dysfunction in the pathogenesis of Alzheimer’s disease. J. Neurochem., 2017, 140(4), 536-549.
[http://dx.doi.org/10.1111/jnc.13932] [PMID: 27987381]
[74]
Chen, C.H.; Zhou, W.; Liu, S.; Deng, Y.; Cai, F.; Tone, M.; Tone, Y.; Tong, Y.; Song, W. Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int. J. Neuropsychopharmacol., 2012, 15(1), 77-90.
[http://dx.doi.org/10.1017/S1461145711000149] [PMID: 21329555]
[75]
Montagne, A.; Nation, D.A.; Pa, J.; Sweeney, M.D.; Toga, A.W.; Zlokovic, B.V. Brain imaging of neurovascular dysfunction in Alzheimer’s disease. Acta Neuropathol., 2016, 131(5), 687-707.
[http://dx.doi.org/10.1007/s00401-016-1570-0] [PMID: 27038189]
[76]
Henley, D.B.; Sundell, K.L.; Sethuraman, G.; Dowsett, S.A.; May, P.C. Safety profile of semagacestat, a gamma-secretase inhibitor: IDENTITY trial findings. Curr. Med. Res. Opin., 2014, 30(10), 2021-2032.
[http://dx.doi.org/10.1185/03007995.2014.939167] [PMID: 24983746]
[77]
Chu, J.; Praticò, D. The 5-Lipoxygenase as modulator of Alzheimer’s γ-secretase and therapeutic target. Brain Res. Bull., 2016, 126(Pt 2), 207-212.
[http://dx.doi.org/10.1016/j.brainresbull.2016.03.010] [PMID: 27005438]
[78]
Ghosh, A.K.; Brindisi, M.; Tang, J. Developing β-secretase inhibitors for treatment of Alzheimer’s disease. J. Neurochem., 2012, 120(1)(Suppl. 1), 71-83.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07476.x] [PMID: 22122681]
[79]
Zhang, C. Natural compounds that modulate BACE1-processing of amyloid-beta precursor protein in Alzheimer’s disease. Discov. Med., 2012, 14(76), 189-197.
[PMID: 23021373]
[80]
Llano, D.A.; Li, J.; Waring, J.F.; Ellis, T.; Devanarayan, V.; Witte, D.G.; Lenz, R.A. Cerebrospinal fluid cytokine dynamics differ between Alzheimer disease patients and elderly controls. Alzheimer Dis. Assoc. Disord., 2012, 26(4), 322-328.
[http://dx.doi.org/10.1097/WAD.0b013e31823b2728] [PMID: 22089638]
[81]
Gezen-Ak, D.; Dursun, E.; Hanağası, H.; Bilgiç, B.; Lohman, E.; Araz, Ö.S.; Atasoy, İ.L.; Alaylıoğlu, M.; Önal, B.; Gürvit, H.; Yılmazer, S. BDNF, TNFα, HSP90, CFH, and IL-10 serum levels in patients with early or late onset Alzheimer’s disease or mild cognitive impairment. J. Alzheimers Dis., 2013, 37(1), 185-195.
[http://dx.doi.org/10.3233/JAD-130497] [PMID: 23948885]
[82]
Honma, T.; Hatta, K.; Hitomi, Y.; Kambayashi, Y.; Hibino, Y.; Konoshita, T.; Nakamura, H. Increased systemic inflammatory interleukin-1ß and interleukin-6 during agitation as predictors of Alzheimer’s disease. Int. J. Geriatr. Psychiatry, 2013, 28(3), 233-241.
[http://dx.doi.org/10.1002/gps.3816] [PMID: 22535710]
[83]
Hsieh, H.L.; Yang, C.M. Role of redox signaling in neuroinflammation and neurodegenerative diseases. BioMed Res. Int., 2013, 2013484613
[http://dx.doi.org/10.1155/2013/484613]
[84]
Falkowska, A.; Gutowska, I.; Goschorska, M.; Nowacki, P.; Chlubek, D.; Baranowska-Bosiacka, I. Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism. Int. J. Mol. Sci., 2015, 16(11), 25959-25981.
[http://dx.doi.org/10.3390/ijms161125939] [PMID: 26528968]
[85]
Pekny, M.; Wilhelmsson, U.; Pekna, M. The dual role of astrocyte activation and reactive gliosis. Neurosci. Lett., 2014, 565, 30-38.
[http://dx.doi.org/10.1016/j.neulet.2013.12.071] [PMID: 24406153]
[86]
Siavelis, J.C.; Bourdakou, M.M.; Athanasiadis, E.I.; Spyrou, G.M.; Nikita, K.S. Bioinformatics methods in drug repurposing for Alzheimer’s disease. Brief. Bioinform., 2016, 17(2), 322-335.
[http://dx.doi.org/10.1093/bib/bbv048] [PMID: 26197808]
[87]
Williams, G.; Gatt, A.; Clarke, E.; Corcoran, J.; Doherty, P.; Chambers, D.; Ballard, C. Drug repurposing for Alzheimer’s disease based on transcriptional profiling of human iPSC-derived cortical neurons. Transl. Psychiatry, 2019, 9(1), 220.
[http://dx.doi.org/10.1038/s41398-019-0555-x] [PMID: 31492831]
[88]
Kim, T-W. Drug repositioning approaches for the discovery of new therapeutics for Alzheimer’s disease. Neurotherapeutics, 2015, 12(1), 132-142.
[http://dx.doi.org/10.1007/s13311-014-0325-7] [PMID: 25549849]
[89]
Lai, J.; Mei, Z.L.; Wang, H.; Hu, M.; Long, Y.; Miao, M.X.; Li, N.; Hong, H. Montelukast rescues primary neurons against Aβ1-42-induced toxicity through inhibiting CysLT1R-mediated NF-κB signaling. Neurochem. Int., 2014, 75, 26-31.
[http://dx.doi.org/10.1016/j.neuint.2014.05.006] [PMID: 24879954]
[90]
Rozin, S.I. Case series using montelukast in patients with memory loss and dementia. Open Neurol. J., 2017, 11, 7-10.
[http://dx.doi.org/10.2174/1874205X01711010007] [PMID: 28567133]
[91]
Ilarraza, R.; Wu, Y.; Adamko, D.J. Montelukast inhibits leukotriene stimulation of human dendritic cells in vitro. Int. Arch. Allergy Immunol., 2012, 159(4), 422-427.
[http://dx.doi.org/10.1159/000338818] [PMID: 22846852]
[92]
Kumar, A.; Prakash, A.; Pahwa, D.; Mishra, J. Montelukast potentiates the protective effect of rofecoxib against kainic acid-induced cognitive dysfunction in rats. Pharmacol. Biochem. Behav., 2012, 103(1), 43-52.
[http://dx.doi.org/10.1016/j.pbb.2012.07.015] [PMID: 22878042]
[93]
Al-Amran, F.G.; Hadi, N.R.; Hashim, A.M. Cysteinyl leukotriene receptor antagonist montelukast ameliorates acute lung injury following haemorrhagic shock in rats. Eur. J. Cardiothorac. Surg., 2013, 43(2), 421-427.
[http://dx.doi.org/10.1093/ejcts/ezs312] [PMID: 22851661]
[94]
Lai, J.; Hu, M.; Wang, H.; Hu, M.; Long, Y.; Miao, M.X.; Li, J.C.; Wang, X.B.; Kong, L.Y.; Hong, H. Montelukast targeting the cysteinyl leukotriene receptor 1 ameliorates Aβ1-42-induced memory impairment and neuroinflammatory and apoptotic responses in mice. Neuropharmacology, 2014, 79, 707-714.
[http://dx.doi.org/10.1016/j.neuropharm.2014.01.011] [PMID: 24456746]
[95]
Shi, S.S.; Yang, W.Z.; Tu, X.K.; Wang, C.H.; Chen, C.M.; Chen, Y. 5-Lipoxygenase inhibitor zileuton inhibits neuronal apoptosis following focal cerebral ischemia. Inflammation, 2013, 36(6), 1209-1217.
[http://dx.doi.org/10.1007/s10753-013-9657-4] [PMID: 23695166]
[96]
Joshi, Y.B.; Praticò, D. The 5-lipoxygenase pathway: oxidative and inflammatory contributions to the Alzheimer’s disease phenotype. Front. Cell. Neurosci., 2015, 8(436), 436.
[http://dx.doi.org/10.3389/fncel.2014.00436] [PMID: 25642165]
[97]
Giannopoulos, P.F.; Chu, J.; Sperow, M.; Li, J.G.; Yu, W.H.; Kirby, L.G.; Abood, M.; Praticò, D. Pharmacologic inhibition of 5-lipoxygenase improves memory, rescues synaptic dysfunction, and ameliorates tau pathology in a transgenic model of tauopathy. Biol. Psychiatry, 2015, 78(10), 693-701.
[http://dx.doi.org/10.1016/j.biopsych.2015.01.015] [PMID: 25802082]
[98]
Chu, J.; Giannopoulos, P.F.; Ceballos-Diaz, C.; Golde, T.E.; Praticò, D. 5-Lipoxygenase gene transfer worsens memory, amyloid, and tau brain pathologies in a mouse model of Alzheimer disease. Ann. Neurol., 2012, 72(3), 442-454.
[http://dx.doi.org/10.1002/ana.23642] [PMID: 23034916]
[99]
Manev, H.; Chen, H.; Dzitoyeva, S.; Manev, R. Cyclooxygenases and 5-lipoxygenase in Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(2), 315-319.
[http://dx.doi.org/10.1016/j.pnpbp.2010.07.032] [PMID: 20691748]
[100]
Ikonomovic, M.D.; Abrahamson, E.E.; Uz, T.; Manev, H.; Dekosky, S.T. Increased 5-lipoxygenase immunoreactivity in the hippocampus of patients with Alzheimer’s disease. J. Histochem. Cytochem., 2008, 56(12), 1065-1073.
[http://dx.doi.org/10.1369/jhc.2008.951855] [PMID: 18678882]
[101]
Firuzi, O.; Zhuo, J.; Chinnici, C.M.; Wisniewski, T.; Praticò, D. 5-Lipoxygenase gene disruption reduces amyloid-beta pathology in a mouse model of Alzheimer’s disease. FASEB J., 2008, 22(4), 1169-1178.
[http://dx.doi.org/10.1096/fj.07-9131.com] [PMID: 17998412]
[102]
Sheng, M.; Lu, H.; Liu, P.; Li, Y.; Ravi, H.; Peng, S-L.; Diaz-Arrastia, R.; Devous, M.D.; Womack, K.B. Sildenafil improves vascular and metabolic function in patients with Alzheimer’s Disease. J. Alzheimers Dis., 2017, 60(4), 1351-1364.
[http://dx.doi.org/10.3233/JAD-161006] [PMID: 29036811]
[103]
Tousi, B. The emerging role of bexarotene in the treatment of Alzheimer’s disease: current evidence. Neuropsychiatr. Dis. Treat., 2015, 11, 311-315.
[http://dx.doi.org/10.2147/NDT.S61309] [PMID: 25709453]
[104]
Okereke, O.I.; Meadows, M-E. More evidence of an inverse association between cancer and Alzheimer Disease. JAMA Netw. Open, 2019, 2(6)e196167
[http://dx.doi.org/10.1001/jamanetworkopen.2019.6167] [PMID: 31225887]
[105]
Shoaib, M.; Kamal, M.A.; Rizvi, S.M.D. Repurposed drugs as potential therapeutic candidates for the management of Alzheimer’s Disease. Curr. Drug Metab., 2017, 18(9), 842-852.
[http://dx.doi.org/10.2174/1389200218666170607101622] [PMID: 28595531]
[106]
Moir, R.D.; Lathe, R.; Tanzi, R.E. The antimicrobial protection hypothesis of Alzheimer’s disease. Alzheimers Dement., 2018, 14(12), 1602-1614.
[http://dx.doi.org/10.1016/j.jalz.2018.06.3040] [PMID: 30314800]
[107]
Cummings, J.; Lee, G.; Ritter, A.; Sabbagh, M.; Zhong, K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement. (N. Y.), 2019, 5, 272-293.
[http://dx.doi.org/10.1016/j.trci.2019.05.008] [PMID: 31334330]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy