Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Identification of Salmonella Typhimurium Peptidyl-prolyl cis-trans Isomerase B (PPIase B) and Assessment of their Role in the Protein Folding

Author(s): Manoj Kumawat*, Irungbam Karuna, Neeraj Ahlawat and Sushma Ahlawat*

Volume 27, Issue 8, 2020

Page: [744 - 750] Pages: 7

DOI: 10.2174/0929866527666200225124104

Price: $65

Abstract

Background: Peptidyl-prolyl cis-trans isomerase (PPIases) enzyme plays a vital role in protein folding. It catalyses the cis-trans isomerisation of peptide bonds, an essential step for newly synthesized protein to acquire its correct functional conformation in both prokaryotes and eukaryotes.

Objective: The present study showed the biochemical and molecular characterisation of cyclophilins (PpiB), a type of peptidyl-prolyl isomerases proteins from the pathogenic bacteria Salmonella Typhimurium.

Methods: Salmonella Typhimurium is one of the leading serovars responsible for human and animal salmonellosis globally, with the majority of human cases originating through the food chain. Here successful expression and purification of PpiB protein have been demonstrated and LC-MS based analyses showed high protein score and similarity with other PPi protein. Further the enzymatic activity of the purified recombinant PpiB was determined using Succinyl-Ala-Phe-Pro- Phe-p nitroanilide as substrate and enzyme-catalysed reaction.

Result: Km and Vmax were calculated and found to be Vm = 1.023 ± .06400 min/μg, Km = 0.6219 ± 0.1701 μM, respectively. We have reported for the first time the presence of Salmonella PPIase-B (PpiB) protein isoforms in salmonella genome having PPi activity.

Conclusion: Taken together, our data clearly showed that Salmonella Cyclophilin B (PpiB) protein is active and involved in diverse biological processes and highly similar to the different domain of Cyclophilin proteins.

Keywords: Salmonella typhimurium, cyclophilin B, peptidyl-prolyl cis-trans isomerase B, PPIase B, rotamase B, LC-MS.

Graphical Abstract

[1]
Kromina, K.; Ignatov, A.; Abdeeva, I. Role of peptidyl-prolylcis/trans-isomerases in pathologic processes. Biochem (Mosc). Suppl Ser. Membr. Cell Biol., 2008, 2(3), 195-202.
[2]
Zgajnar, N.R.; De Leo, S.A.; Lotufo, C.M.; Erlejman, A.G.; Piwien-Pilipuk, G.; Galigniana, M.D. Immunophilins FKBP51 and FKBP52. Biomolecules, 2019, 9(2), 52.
[http://dx.doi.org/10.3390/biom9020052] [PMID: 30717249]
[3]
Barik, S. Immunophilins: For the love of proteins. Cell. Mol. Life Sci., 2006, 63(24), 2889-2900.
[http://dx.doi.org/10.1007/s00018-006-6215-3] [PMID: 17075696]
[4]
Van de Venter, T. Emerging food-borne diseases: A global responsibility. Recent Pat. Food Nutr. Agric., 2000, 26, 4-13.
[5]
Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; O’Brien, S.J.; Jones, T.F.; Fazil, A.; Hoekstra, R.M. International collaboration on enteric disease ‘burden of illness’ studies. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis., 2010, 50(6), 882-889.
[http://dx.doi.org/10.1086/650733] [PMID: 20158401]
[6]
Taylor, J. Salmonella and salmonellosis. R. Soc. Health J., 1960, 80(4), 253-259.
[http://dx.doi.org/10.1177/146642406008000418] [PMID: 13837158]
[7]
Bakshi, C.S.; Singh, V.P.; Malik, M.; Singh, R.K.; Sharma, B. 55 kb plasmid and virulence-associated genes are positively correlated with Salmonella enteritidis pathogenicity in mice and chickens. Vet. Res. Commun., 2003, 27(6), 425-432.
[http://dx.doi.org/10.1023/A:1025720306045] [PMID: 14582741]
[8]
St Louis, M.E.; Morse, D.L.; Potter, M.E.; DeMelfi, T.M.; Guzewich, J.J.; Tauxe, R.V.; Blake, P.A.; Cartter, M.L.; Petersen, L.; Gallagher, K. The emergence of grade A eggs as a major source of Salmonella enteritidis infections. New implications for the control of salmonellosis. JAMA, 1988, 259(14), 2103-2107.
[http://dx.doi.org/10.1001/jama.1988.03720140023028] [PMID: 3279240]
[9]
Sanchez, S.; Hofacre, C.L.; Lee, M.D.; Maurer, J.J.; Doyle, M.P. Animal sources of salmonellosis in humans. J. Am. Vet. Med. Assoc., 2002, 221(4), 492-497.
[http://dx.doi.org/10.2460/javma.2002.221.492] [PMID: 12184697]
[10]
Lamas, A.; Fernandez-No, I.C.; Miranda, J.M.; Vázquez, B.; Cepeda, A.; Franco, C.M. Biofilm formation and morphotypes of Salmonella enterica subsp. arizonae differs from those of other Salmonella enterica subspecies in isolates from poultry houses. J. Food Prot., 2016, 79(7), 1127-1134.
[http://dx.doi.org/10.4315/0362-028X.JFP-15-568] [PMID: 27357031]
[11]
Miao, E.A.; Scherer, C.A.; Tsolis, R.M.; Kingsley, R.A.; Adams, L.G.; Bäumler, A.J.; Miller, S.I. Salmonella typhimurium leucine-rich repeat proteins are targeted to the SPI1 and SPI2 type III secretion systems. Mol. Microbiol., 1999, 34(4), 850-864.
[http://dx.doi.org/10.1046/j.1365-2958.1999.01651.x] [PMID: 10564523]
[12]
Pacifici, R.E.; Davies, K.J. Protein, lipid and DNA repair systems in oxidative stress: The free-radical theory of aging revisited. Gerontology, 1991, 37(1-3), 166-180.
[http://dx.doi.org/10.1159/000213257] [PMID: 2055497]
[13]
Visick, J.E.; Clarke, S. Repair, refold, recycle: How bacteria can deal with spontaneous and environmental damage to proteins. Mol. Microbiol., 1995, 16(5), 835-845.
[http://dx.doi.org/10.1111/j.1365-2958.1995.tb02311.x] [PMID: 7476182]
[14]
Kumawat, M.; Singh, P.K.; Rananaware, S.R.; Ahlawat, S. Comparative evaluation of structure and characteristic of peptidyl-prolyl cis-trans isomerase proteins and their function in Salmonella typhimurium stress responses and virulence. Folia Microbiol. (Praha), 2020, 65, 161-171.
[http://dx.doi.org/10.1007/s12223-019-00717-z] [PMID: 31111418]
[15]
Conway de Macario, E.; Macario, A.J. Stressors, stress and survival: Overview. Front. Biosci., 2000, 5, D780-D786.
[http://dx.doi.org/10.2741/A550] [PMID: 10966873]
[16]
Rowley, G.; Spector, M.; Kormanec, J.; Roberts, M. Pushing the envelope: Extracytoplasmic stress responses in bacterial pathogens. Nat. Rev. Microbiol., 2006, 4(5), 383-394.
[http://dx.doi.org/10.1038/nrmicro1394] [PMID: 16715050]
[17]
Obi, I.R.; Nordfelth, R.; Francis, M.S. Varying dependency of periplasmic peptidylprolyl cis-trans isomerases in promoting Yersinia pseudotuberculosis stress tolerance and pathogenicity. Biochem. J., 2011, 439(2), 321-332.
[http://dx.doi.org/10.1042/BJ20110767] [PMID: 21726196]
[18]
Galat, A. Peptidylprolyl cis/trans isomerases (immunophilins): Biological diversity--targets--functions. Curr. Top. Med. Chem., 2003, 3(12), 1315-1347.
[http://dx.doi.org/10.2174/1568026033451862] [PMID: 12871165]
[19]
Rahfeld, J-U.; Rücknagel, K.P.; Stoller, G.; Horne, S.M.; Schierhorn, A.; Young, K.D.; Fischer, G. Isolation and amino acid sequence of a new 22-kDa FKBP-like peptidyl-prolyl cis/trans-isomerase of Escherichia coli. Similarity to Mip-like proteins of pathogenic bacteria. J. Biol. Chem., 1996, 271(36), 22130-22138.
[http://dx.doi.org/10.1074/jbc.271.36.22130] [PMID: 8703024]
[20]
Kumawat, M.; Ahlawat, S.; Ahlawat, N.; Karuna, I. Molecular cloning of peptidyl-prolylcis-trans isomerase B gene (cyclophilins B) from poultry isolate Salmonella typhimurium. Indian J. Poult. Sci., 2016, 51(2), 218-222.
[http://dx.doi.org/10.5958/0974-8180.2016.00028.3]
[21]
Walsh, C.T.; Zydowsky, L.D.; McKeon, F.D. Cyclosporin A, the cyclophilin class of peptidylprolyl isomerases, and blockade of T cell signal transduction. J. Biol. Chem., 1992, 267(19), 13115-13118.
[PMID: 1618811]
[22]
Sekhar, K.; Priyanka, B.; Reddy, V.D.; Rao, K.V. Isolation and characterization of a pigeonpea cyclophilin (CcCYP) gene, and its over-expression in Arabidopsis confers multiple abiotic stress tolerance. Plant Cell Environ., 2010, 33(8), 1324-1338.
[http://dx.doi.org/10.1111/j.1365-3040.2010.02151.x] [PMID: 20374537]
[23]
Ünal, C.M.; Steinert, M. Microbial peptidyl-prolyl cis/trans isomerases (PPIases): Virulence factors and potential alternative drug targets. Microbiol. Mol. Biol. Rev., 2014, 78(3), 544-571.
[http://dx.doi.org/10.1128/MMBR.00015-14] [PMID: 25184565]
[24]
Reffuveille, F.; Connil, N.; Sanguinetti, M.; Posteraro, B.; Chevalier, S.; Auffray, Y.; Rince, A. Involvement of peptidylprolyl cis/trans isomerases in Enterococcus faecalis virulence. Infect. Immun., 2012, 80(5), 1728-1735.
[http://dx.doi.org/10.1128/IAI.06251-11] [PMID: 22331431]
[25]
Cahoon, L.A.; Freitag, N.E. Listeria monocytogenes virulence factor secretion: Don’t leave the cell without a chaperone. Front. Cell. Infect. Microbiol., 2014, 4, 13.
[http://dx.doi.org/10.3389/fcimb.2014.00013] [PMID: 24575392]
[26]
Skagia, A.; Zografou, C.; Venieraki, A.; Fasseas, C.; Katinakis, P.; Dimou, M. Functional analysis of the cyclophilin PpiB role in bacterial cell division. Genes Cells, 2017, 22(9), 810-824.
[http://dx.doi.org/10.1111/gtc.12514] [PMID: 28752912]
[27]
Roset, M.S.; García Fernández, L.; DelVecchio, V.G.; Briones, G. Intracellularly induced cyclophilins play an important role in stress adaptation and virulence of Brucella abortus. Infect. Immun., 2013, 81(2), 521-530.
[http://dx.doi.org/10.1128/IAI.01125-12] [PMID: 23230297]
[28]
Wiemels, R.E.; Cech, S.M.; Meyer, N.M.; Burke, C.A.; Weiss, A.; Parks, A.R.; Shaw, L.N.; Carroll, R.K. An intracellular peptidyl-prolyl cis/trans isomerase is required for folding and activity of the Staphylococcus aureus secreted virulence factor nuclease. J. Bacteriol., 2016, 199(1), e00453-e16.
[PMID: 27795319]
[29]
Brunelle, J.L.; Green, R. One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). Methods Enzymol., 2014, 541, 151-159.
[http://dx.doi.org/10.1016/B978-0-12-420119-4.00012-4] [PMID: 24674069]
[30]
Kruger, N.J. The Bradford method for protein quantitation. Methods Mol. Biol., 1994, 32, 9-15.
[31]
Hirosawa, M.; Hoshida, M.; Ishikawa, M.; Toya, T. MASCOT: Multiple alignment system for protein sequences based on three-way dynamic programming. Comput. Appl. Biosci., 1993, 9(2), 161-167.
[http://dx.doi.org/10.1093/bioinformatics/9.2.161] [PMID: 8481818]
[32]
Fischer, G.; Wittmann-Liebold, B.; Lang, K.; Kiefhaber, T.; Schmid, F.X. Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature, 1989, 337(6206), 476-478.
[http://dx.doi.org/10.1038/337476a0] [PMID: 2492638]
[33]
Wang, P.; Heitman, J. The cyclophilins. Genome Biol., 2005, 6(7), 226.
[http://dx.doi.org/10.1186/gb-2005-6-7-226] [PMID: 15998457]
[34]
Schiene-Fischer, C.; Aumüller, T.; Fischer, G. Peptide bond cis/trans isomerases: A biocatalysis perspective of conformational dynamics in proteins. Mol. Chaperones, 2011, 328, 35-67.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy