Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

In silico and In vitro Investigation of a Likely Pathway for Anti-Cancerous Effect of Thrombocidin-1 as a Novel Anticancer Peptide

Author(s): Abbas Tanhaian, Elyas Mohammadi, Roghayyeh Vakili-Ghartavol, Mohammad Reza Saberi, Mehdi Mirzayi* and Mahmoud Reza Jaafari*

Volume 27, Issue 8, 2020

Page: [751 - 762] Pages: 12

DOI: 10.2174/0929866527666200219115129

Price: $65

Abstract

Background: Antimicrobial and antifungal activities of Thrombocidin-1 (TC-1) is shown previously, however, the anti-cancerous feature of this peptide is still uncovered.

Objective: The objective is to evaluate anti-cancerous feature of recombinant TC-1.

Methods: In this study, based on the significant similarity of rTC-1 and IL-8 in case of coding sequence, tertiary structure, and also docking and molecular dynamic simulation (MD) results with CXCR1, a receptor which has positive correlation with different cancers, a likely pathway for anticancerous effect of rTC-1 was proposed. In addition, the coding sequence of TC-1+6xhistidine (rTC-1) was inserted into the pET22b(+) vector and cloned and expressed by E. coli BL21 and finally purified through nickel affinity column. Afterward, the retrieved rTC-1 was used in MTT assay against mouse colon adenocarcinoma, hepatocellular carcinoma, chondrosarcoma, mouse melanoma, and breast adenocarcinoma cell lines to investigate its probable anticancer application.

Results: Docking and MD simulation results showed that rTC-1 and IL-8 share almost the same residues in the interaction with CXCR1 receptor. Besides, the stability of the rTC-1_CXCR11-38 complex was shown during 100ns MD simulation. In addition, the successful expression and purification of rTC-1 depict an 8kD peptide. The IC50 results of MTT assay revealed that rTC-1 has cytotoxic effect on C26-A and SW1353 cancerous cell lines.

Conclusion: Therefore, apart from probable anti-cancerous effect of rTC-1 on C26-A and SW1353 cell lines, this peptide may be able to mimic the anti-cancerous pathway of IL-8.

Keywords: Thrombocidin-1, recombinant peptide, anti-cancer peptide, cancerous cell lines, molecular dynamic simulations, docking studies.

Graphical Abstract

[1]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[2]
Kumar, A.; Sasmal, D.; Sharma, N.; Bhaskar, A.; Chandra, S.; Mukhopadhyay, K.; Kumar, M. Deltamethrin, a pyrethroid insecticide, could be a promising candidate as an anticancer agent. Med. Hypotheses, 2015, 85(2), 145-147.
[http://dx.doi.org/10.1016/j.mehy.2015.04.018] [PMID: 25981874]
[3]
Raguz, S.; Yagüe, E. Resistance to chemotherapy: New treatments and novel insights into an old problem. Br. J. Cancer, 2008, 99(3), 387-391.
[http://dx.doi.org/10.1038/sj.bjc.6604510] [PMID: 18665178]
[4]
Gaspar, D.; Veiga, A.S.; Castanho, M.A. From antimicrobial to anticancer peptides. A review. Front. Microbiol., 2013, 4, 294.
[http://dx.doi.org/10.3389/fmicb.2013.00294] [PMID: 24101917]
[5]
Chaudhary, J.; Munshi, M. Scanning electron microscopic analysis of breast aspirates. Cytopathology, 1995, 6(3), 162-167.
[http://dx.doi.org/10.1111/j.1365-2303.1995.tb00469.x] [PMID: 7669927]
[6]
Chan, S.C.; Hui, L.; Chen, H.M. Enhancement of the cytolytic effect of anti-bacterial cecropin by the microvilli of cancer cells. Anticancer Res., 1998, 18(6A), 4467-4474.
[PMID: 9891511]
[7]
Waugh, D.J.; Wilson, C. The interleukin-8 pathway in cancer. Clin. Cancer Res., 2008, 14(21), 6735-6741.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4843] [PMID: 18980965]
[8]
Park, S.H.; Casagrande, F.; Cho, L.; Albrecht, L.; Opella, S.J. Interactions of interleukin-8 with the human chemokine receptor CXCR1 in phospholipid bilayers by NMR spectroscopy. J. Mol. Biol., 2011, 414(2), 194-203.
[http://dx.doi.org/10.1016/j.jmb.2011.08.025] [PMID: 22019593]
[9]
Park, S.H.; Das, B.B.; Casagrande, F.; Tian, Y.; Nothnagel, H.J.; Chu, M.; Kiefer, H.; Maier, K.; De Angelis, A.A.; Marassi, F.M.; Opella, S.J. Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature, 2012, 491(7426), 779-783.
[http://dx.doi.org/10.1038/nature11580] [PMID: 23086146]
[10]
Chen, L.; Fan, J.; Chen, H.; Meng, Z.; Chen, Z.; Wang, P.; Liu, L. The IL-8/CXCR1 axis is associated with cancer stem cell-like properties and correlates with clinical prognosis in human pancreatic cancer cases. Sci. Rep., 2014, 4, 5911.
[http://dx.doi.org/10.1038/srep05911] [PMID: 25081383]
[11]
Skelton, N.J.; Quan, C.; Reilly, D.; Lowman, H. Structure of a CXC chemokine-receptor fragment in complex with interleukin-8. Structure, 1999, 7(2), 157-168.
[http://dx.doi.org/10.1016/S0969-2126(99)80022-7] [PMID: 10368283]
[12]
Young, H.; Roongta, V.; Daly, T.J.; Mayo, K.H. NMR structure and dynamics of monomeric neutrophil-activating peptide. Biochem. J., 1999, 338(3), 591-598.
[13]
Walz, A.; Dewald, B.; von Tscharner, V.; Baggiolini, M. Effects of the neutrophil-activating peptide NAP-2, platelet basic protein, connective tissue-activating peptide III and platelet factor 4 on human neutrophils. J. Exp. Med., 1989, 170(5), 1745-1750.
[http://dx.doi.org/10.1084/jem.170.5.1745] [PMID: 2681518]
[14]
Moser, B.; Barella, L.; Mattei, S.; Schumacher, C.; Boulay, F.; Colombo, M.P.; Baggiolini, M. Expression of transcripts for two interleukin 8 receptors in human phagocytes, lymphocytes and melanoma cells. Biochem. J., 1993, 294(1), 285-292.
[http://dx.doi.org/10.1042/bj2940285]
[15]
Krijgsveld, J.; Zaat, S.A.; Meeldijk, J.; van Veelen, P.A.; Fang, G.; Poolman, B.; Brandt, E.; Ehlert, J.E.; Kuijpers, A.J.; Engbers, G.H.; Feijen, J.; Dankert, J. Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines. J. Biol. Chem., 2000, 275(27), 20374-20381.
[http://dx.doi.org/10.1074/jbc.275.27.20374] [PMID: 10877842]
[16]
Nguyen, L.T.; Kwakman, P.H.; Chan, D.I.; Liu, Z.; de Boer, L.; Zaat, S.A.; Vogel, H.J. Exploring platelet chemokine antimicrobial activity: NMR backbone dynamics studies of NAP-2 and TC-1. Antimicrob. Agents Chemother., 2011, 55(5), 2074-2083.
[http://dx.doi.org/10.1128/AAC.01351-10]
[17]
Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 2008, 9, 40.
[http://dx.doi.org/10.1186/1471-2105-9-40] [PMID: 18215316]
[18]
Wu, S.; Zhang, Y. MUSTER: Improving protein sequence profile-profile alignments by using multiple sources of structure information. Proteins, 2008, 72(2), 547-556.
[http://dx.doi.org/10.1002/prot.21945] [PMID: 18247410]
[19]
Berendsen, H.J.; van der Spoel, D.; van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun., 1995, 91(1-3), 43-56.
[http://dx.doi.org/10.1016/0010-4655(95)00042-E]
[20]
Lindahl, E.; Hess, B.; Van Der Spoel, D. GROMACS 3.0: A package for molecular simulation and trajectory analysis. Mol. Model. Annual, 2001, 7(8), 306-317.
[21]
Chiu, S.W.; Pandit, S.A.; Scott, H.L.; Jakobsson, E. An improved united atom force field for simulation of mixed lipid bilayers. J. Phys. Chem. B, 2009, 113(9), 2748-2763.
[http://dx.doi.org/10.1021/jp807056c] [PMID: 19708111]
[22]
Berendsen, H.J.; Postma, J.V.; van Gunsteren, W.F.; DiNola, A.; Haak, J. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[23]
Mark, P.; Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A, 2001, 105(43), 9954-9960.
[http://dx.doi.org/10.1021/jp003020w]
[24]
Hess, B.; Bekker, H.; Berendsen, H.J.; Fraaije, J.G. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem., 1997, 18(12), 1463-1472.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463: AID-JCC4>3.0.CO;2-H]
[25]
Grubmüller, H.; Heller, H.; Windemuth, A.; Schulten, K. Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol. Simul., 1991, 6(1-3), 121-142.
[http://dx.doi.org/10.1080/08927029108022142]
[26]
Piche, S.W. Steepest descent algorithms for neural network controllers and filters. IEEE Trans. Neural Netw., 1994, 5(2), 198-212.
[http://dx.doi.org/10.1109/72.279185] [PMID: 18267791]
[27]
DeLano, W.L. PyMOL. An Open-Source Molecular Graphics Tool. 2002.Available from:. https://www.ccp4.ac.uk/newsletters/newsletter40/11_pymol.pdf
[28]
Hamm, L.L.; Nakhoul, N.; Hering-Smith, K.S. Acid-base homeostasis. Clin. J. Am. Soc. Nephrol., 2015, 10(12), 2232-2242.
[http://dx.doi.org/10.2215/CJN.07400715] [PMID: 26597304]
[29]
Corbeil, C.R.; Williams, C.I.; Labute, P. Variability in docking success rates due to dataset preparation. J. Comput. Aided Mol. Des., 2012, 26(6), 775-786.
[http://dx.doi.org/10.1007/s10822-012-9570-1] [PMID: 22566074]
[30]
Kant, K.; Lal, U.R.; Kumar, A.; Ghosh, M. A merged molecular docking, ADME-T and dynamics approaches towards the genus of Arisaema as herpes simplex virus type 1 and type 2 inhibitors. Comput. Biol. Chem., 2019, 78, 217-226.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.12.005] [PMID: 30579134]
[31]
Rana, R.; Sharma, R.; Kumar, A. Repurposing of Fluvastatin against Candida albicans CYP450 lanosterol 14 α-demethylase, a target enzyme for antifungal therapy: An in silico and In vitro study. Curr. Mol. Med., 2019, 19(7), 506-524.
[http://dx.doi.org/10.2174/1566524019666190520094644] [PMID: 31109273]
[32]
Gupta, M.; Sharma, R.; Kumar, A. Comparative potential of Simvastatin, Rosuvastatin and Fluvastatin against bacterial infection: An in silico and in vitro study. Orient. Pharm. Exp. Med., 2019, 19, 259-275.
[http://dx.doi.org/10.1007/s13596-019-00359-z]
[33]
Gupta, M.; Kant, K.; Sharma, R.; Kumar, A. Evaluation of in silico Anti-parkinson Potential of β-asarone. Cent. Nerv. Syst. Agents Med. Chem., 2018, 18(2), 128-135.
[http://dx.doi.org/10.2174/1871524918666180416153742] [PMID: 29658442]
[34]
Mohammadhasani, S.; Mohammadi, E.; Sekhavati, M.H. Region-based epitope prediction, docking and dynamic studies of OMP31 as a dominant antigen in human and sheep Brucella. Int. J. Pept. Res. Ther., 2019. [ahead of print
[http://dx.doi.org/10.1007/s10989-019-09847-x]
[35]
Mohammadi, E.; Dashty, S. Epitope prediction, modeling, and docking studies for H3L protein as an agent of smallpox. BioTechnologia, 2019, 100(1), 69-80.
[http://dx.doi.org/10.5114/bta.2019.83213]
[36]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[37]
Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44(D1), D1087-D1093.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]
[38]
Tanhaiean, A.; Azghandi, M.; Razmyar, J.; Mohammadi, E.; Sekhavati, M.H. Recombinant production of a chimeric antimicrobial peptide in E. coli and assessment of its activity against some avian clinically isolated pathogens. Microb. Pathog., 2018, 122, 73-78.
[http://dx.doi.org/10.1016/j.micpath.2018.06.012] [PMID: 29890331]
[39]
Maniatis, T.; Fritsch, E.F.; Sambrook, J. In: Molecular cloning: A laboratory manual., Cold Spring Harbor, NY. 1982, 545.
[40]
de Souza Cândido, E.; e Silva Cardoso, M.H.; Sousa, D.A.; Viana, J.C.; de Oliveira-Júnior, N.G.; Miranda, V.; Franco, O.L. The use of versatile plant antimicrobial peptides in agribusiness and human health. Peptides, 2014, 55, 65-78.
[http://dx.doi.org/10.1016/j.peptides.2014.02.003] [PMID: 24548568]
[41]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[42]
Florento, L.; Matias, R.; Tuaño, E.; Santiago, K.; Dela Cruz, F.; Tuazon, A. Comparison of cytotoxic activity of anticancer drugs against various human tumor cell lines using in vitro cell-based approach. Int. J. Biomed. Sci., 2012, 8(1), 76-80.
[PMID: 23675259]
[43]
Hayon, T.; Dvilansky, A.; Shpilberg, O.; Nathan, I. Appraisal of the MTT-based assay as a useful tool for predicting drug chemosensitivity in leukemia. Leuk. Lymphoma, 2003, 44(11), 1957-1962.
[http://dx.doi.org/10.1080/1042819031000116607] [PMID: 14738150]
[44]
Kumar, A.; Sasmal, D.; Jadav, S.S.; Sharma, N. Mechanism of immunoprotective effects of curcumin in DLM-induced thymic apoptosis and altered immune function: An in silico and in vitro study. Immunopharmacol. Immunotoxicol., 2015, 37(6), 488-498.
[http://dx.doi.org/10.3109/08923973.2015.1091004] [PMID: 26471321]
[45]
Kumar, A.; Sasmal, D.; Sharma, N. Mechanism of deltamethrin induced thymic and splenic toxicity in mice and its protection by piperine and curcumin: In vivo study. Drug Chem. Toxicol., 2018, 41(1), 33-41.
[http://dx.doi.org/10.1080/01480545.2017.1286352] [PMID: 28633599]
[46]
Sato, T.; Kameya, Y. In: PRISM: A symbolic-statistical modeling language.Proceedings of the 15th International Joint Conference on Artificial Intelligence, 19972, , pp. 1330-1339.
[47]
Swift, M.L. GraphPad prism, data analysis, and scientific graphing. J. Chem. Inf. Comput. Sci., 1997, 37(2), 411-412.
[http://dx.doi.org/10.1021/ci960402j]
[48]
Brown, F.; Mire-Sluis, A. The design and analysis of potency assays for biotechnology products; Karger: London, 2002.
[49]
Tanhaeian, A.; Mohammadi, E.; Mansury, D.; Zeinali, T. Assessment of a novel antimicrobial peptide against clinically isolated animal pathogens and prediction of its thermal-stability. Microb. Drug Resist., 2019. Epub ahead of print
[http://dx.doi.org/10.1089/mdr.2019.0062] [PMID: 31618135]
[50]
Jacob, K.S.; Ganguly, S.; Kumar, P.; Poddar, R.; Kumar, A. Homology model, molecular dynamics simulation and novel pyrazole analogs design of Candida albicans CYP450 lanosterol 14 α-demethylase, a target enzyme for antifungal therapy. J. Biomol. Struct. Dyn., 2017, 35(7), 1446-1463.
[http://dx.doi.org/10.1080/07391102.2016.1185380] [PMID: 27142238]
[51]
Liu, L.; Xu, K.; Wang, H.; Tan, P.K.; Fan, W.; Venkatraman, S.S.; Li, L.; Yang, Y-Y. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat. Nanotechnol., 2009, 4(7), 457-463.
[http://dx.doi.org/10.1038/nnano.2009.153] [PMID: 19581900]
[52]
E-Kobon. T.; Thongararm, P.; Roytrakul, S.; Meesuk, L.; Chumnanpuen, P. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions. Comput. Struct. Biotechnol. J., 2015, 14, 49-57.
[http://dx.doi.org/10.1016/j.csbj.2015.11.005] [PMID: 26862373]
[53]
Yazdi, F.T.; Tanhaeian, A.; Azghandi, M.; Vasiee, A.; Alizadeh Behbahani, B.; Mortazavi, S.A.; Roshanak, S. Heterologous expression of Thrombocidin-1 in Pichia pastoris: Evaluation of its antibacterial and antioxidant activity. Microb. Pathog., 2019, 127, 91-96.
[http://dx.doi.org/10.1016/j.micpath.2018.11.047] [PMID: 30513368]
[54]
Shi, D. Cancer cell surface negative charges: A bio-physical manifestation of the Warburg effect. Nano LIFE, 2017, 7(03n04), 1771001.
[http://dx.doi.org/10.1142/S1793984417710015]
[55]
Fairbrother, W.J.; Skelton, N.J. Three dimensional structures of the chemokine family. Chemoattractant Ligands and Their Receptors, 1996, 55, 86.
[56]
Murphy, P.M.; Tiffany, H.L. Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science, 1991, 253(5025), 1280-1283.
[http://dx.doi.org/10.1126/science.1891716] [PMID: 1891716]
[57]
Holmes, W.E.; Lee, J.; Kuang, W.J.; Rice, G.C.; Wood, W.I. Structure and functional expression of a human interleukin-8 receptor. Science, 1991, 253(5025), 1278-1280.
[http://dx.doi.org/10.1126/science.1840701] [PMID: 1840701]
[58]
Ginestier, C.; Liu, S.; Diebel, M.E.; Korkaya, H.; Luo, M.; Brown, M.; Wicinski, J.; Cabaud, O.; Charafe-Jauffret, E.; Birnbaum, D.; Guan, J.L.; Dontu, G.; Wicha, M.S. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J. Clin. Invest., 2010, 120(2), 485-497.
[http://dx.doi.org/10.1172/JCI39397] [PMID: 20051626]
[59]
Clore, G.M.; Appella, E.; Yamada, M.; Matsushima, K.; Gronenborn, A.M. Three-dimensional structure of interleukin 8 in solution. Biochemistry, 1990, 29(7), 1689-1696.
[http://dx.doi.org/10.1021/bi00459a004] [PMID: 2184886]
[60]
Lowman, H.B.; Slagle, P.H.; DeForge, L.E.; Wirth, C.M.; Gillece-Castro, B.L.; Bourell, J.H.; Fairbrother, W.J. Exchanging interleukin-8 and melanoma growth-stimulating activity receptor binding specificities. J. Biol. Chem., 1996, 271(24), 14344-14352.
[http://dx.doi.org/10.1074/jbc.271.24.14344] [PMID: 8662882]
[61]
Williams, G.; Borkakoti, N.; Bottomley, G.A.; Cowan, I.; Fallowfield, A.G.; Jones, P.S.; Kirtland, S.J.; Price, G.J.; Price, L. Mutagenesis studies of interleukin-8. Identification of a second epitope involved in receptor binding. J. Biol. Chem., 1996, 271(16), 9579-9586.
[http://dx.doi.org/10.1074/jbc.271.16.9579] [PMID: 8621632]
[62]
Pakianathan, D.R.; Kuta, E.G.; Artis, D.R.; Skelton, N.J.; Hébert, C.A. Distinct but overlapping epitopes for the interaction of a CC-chemokine with CCR1, CCR3 and CCR5. Biochemistry, 1997, 36(32), 9642-9648.
[http://dx.doi.org/10.1021/bi970593z] [PMID: 9289016]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy