Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Stereoselective Synthesis of Multisubstituted α-fluoro-β-lactams

Author(s): Atsushi Tarui, Yukiko Karuo, Kazuyuki Sato, Kentaro Kawai and Masaaki Omote*

Volume 24, Issue 18, 2020

Page: [2169 - 2180] Pages: 12

DOI: 10.2174/1385272824666200221114707

Price: $65

Abstract

β-Lactams, found in β -lactam antibiotics, are the structurally distorted cyclic compounds being subjected to nucleophilic acyl substitution reaction. α-Fluorination of β -lactams is a simple and expedient approach to control the reactivity of β-lactam ring toward nucleophilic attack, which would hopefully lead to the new design of future antibiotics. From the viewpoint of obtaining multisubstituted α -fluoro-β-lactams, α -bromo-α- fluoro-β-lactams are considered as key compounds for structure functionalization, including nucleophilic substitution reaction, aldol-type reaction and metal-catalyzed crosscoupling reaction. All the reactions can be conducted smoothly to afford a variety of multisubstituted α-fluoro-β-lactams. During the course of the examination, chiral α,α-difluoro- β-lactams and α -bromo-β-fluoro-α-lactams are successfully obtained, which are considered potent precursors for making stereocontrolled multisubstituted α-fluoro-β-lactams.

Keywords: Fluorine, β-lactam, β-amino acid, stereoselective synthesis, cross-coupling, Reformatsky reaction.

Graphical Abstract

[1]
Turos, E.; Coates, C.; Shim, J.Y.; Wang, Y.; Leslie, J.M.; Long, T.E.; Reddy, G.S.K.; Ortiz, A.; Culbreath, M.; Dickey, S.; Lim, D.V.; Alonso, E.; Gonzalez, J. N-Methylthio β-lactam antibacterials: effects of the C3/C4 ring substituents on anti-MRSA activity. Bioorg. Med. Chem., 2005, 13(23), 6289-6308.
[http://dx.doi.org/10.1016/j.bmc.2005.08.011] [PMID: 16185880]
[2]
Galletti, P.; Giacomini, D. Monocyclic β-lactams: new structures for new biological activities. Curr. Med. Chem., 2011, 18(28), 4265-4283.
[http://dx.doi.org/10.2174/092986711797200480] [PMID: 21861821]
[3]
Gudino, M.E.; Tourinan, N.B.; Arbona, V.; Cadenas, A.G.; Blazquez, M.A.; Garcya, F.N. β-lactam antibiotics modify root architecture and indole glucosinolate metabolism in Arabidopsis thaliana. Plant Cell Physiol., 2018, 59(10), 2086-2098.
[http://dx.doi.org/10.1093/pcp/pcy128]
[4]
Waters, E.M.; Rudkin, J.K.; Coughlan, S.; Clair, G.C.; Adkins, J.N.; Gore, S.; Xia, G.; Black, N.S.; Downing, T.; O’Neill, E.; Kadioglu, A.; O’Gara, J.P. Redeploying β-lactam antibiotics as a novel antivirulence strategy for the treatment of methicillin-resistant Staphylococcus aureus infections. J. Infect. Dis., 2017, 215(1), 80-87.
[http://dx.doi.org/10.1093/infdisjiw/461]
[5]
Oh, J.; Patel, J.; Park, H.B.; Crawford, J.M. β-Lactam biotransformations activate innate immunity. J. Org. Chem., 2018, 83(13), 7173-7179.
[http://dx.doi.org/10.1021/acs.joc.8b00241]
[6]
Gutierrez, B.G.; Galera, S.P.; Salamanca, E.; de Cueto, M.; Calbo, E.; Almirante, B.; Viale, P.; Oliver, A.; Pintado, V.; Gasch, O.; Martinez, L.M.; Pitout, J.; Akova, M.; Pena, C.; Molina, J.; Hernandez, A.; Venditti, M.; Prim, N.; Origueen, J.; Bou, G.; Tacconelli, E.; Tumbarello, M.; Hamprecht, A.; Giamarellou, H.; Almela, M.; Perez, F.; Schwaber, M.J.; Bermejo, J.; Lowman, W.; Hsueh, P.R.; Rillo, M.M.; Natera, C.; Souli, M.; Bonomo, R.A.; Carmeli, Y.; Paterson, D.L.; Pascual, A.; Bano, J.R. A multinational, preregistered cohort study of β-lactam/β-lactamase inhibitor combinations for treatment of bloodstream infections due to extended-spectrum-β-lactamase-producing Enterobacteriaceae. Antimicrob. Agents Chemother., 2016, 60, 4159-4169.
[http://dx.doi.org/10.1128/aac.00365-16]
[7]
Kvaerno, L.; Ritter, T.; Werder, M.; Hauser, H.; Carreira, E.M. An in vitro assay for evaluation of small-molecule inhibitors of cholesterol absorption. Angew. Chem. Int. Ed., 2004, 43(35), 4653-4656.
[http://dx.doi.org/10.1002/anie.200460348]
[8]
Kværnø, L.; Werder, M.; Hauser, H.; Carreira, E.M. Synthesis and in vitro evaluation of inhibitors of intestinal cholesterol absorption. J. Med. Chem., 2005, 48(19), 6035-6053.
[http://dx.doi.org/10.1021/jm050422p]
[9]
Drazic, T.; Sachdev, V.; Leopold, C.; Patankar, J.V.; Malnar, M.; Hecimovic, S.; Frank, S.L.; Habus, I.; Kratky, D. Synthesis and evaluation of novel amide amino-β-lactam derivatives as cholesterol absorption inhibitors. Bioorg. Med. Chem., 2015, 23(10), 2353-2359.
[http://dx.doi.org/10.1016%2Fj.bmc.2015.03.067] [PMID: 25882530]
[10]
Bari, S.S.; Bhalla, A. Spirocyclic β-lactams: synthesis and biological evaluation of novel heterocycles.Heterocyclic Scaffolds; Banik, B.K., Ed.; Springer: Berlin, 2010, Vol. 22, pp. 49-99.
[11]
Ritter, T.; Kvaerno, L.; Werder, M.; Hauser, H.; Carreira, E.M. Heterocyclic ring scaffolds as small-molecule cholesterol absorption inhibitors. Org. Biomol. Chem., 2005, 3(19), 3514-3523.
[http://dx.doi.org/10.1039/b510100j] [PMID: 216172689]
[12]
Burnett, D.A. β-Lactam cholesterol absorption inhibitors. Curr. Med. Chem., 2004, 11(14), 1873-1887.
[http://dx.doi.org/10.2174/0929867043364865] [PMID: 216172689]
[13]
Drazic, T.; Molcanov, K.; Malnar, M.; Hecimovic, S.; Habus, I.; Sachdev, V.; Patankar, J.V.; Obrowsky, S.; Frank, S.L.; Kratky, D. Novel amino-β-lactam derivatives as potent cholesterol absorption inhibitors. Eur. J. Med. Chem., 2014, 87, 722-734.
[http://dx.doi.org/10.1016%2Fj.ejmech.2014.10.014] [PMID: 25305716]
[14]
Burnett, D.A.; Caplen, M.A.; Davis, H.R.; Burrier, R.E.; Clader, J.W. 2-Azetidinones as inhibitors of cholesterol absorption. J. Med. Chem., 1994, 37(12), 1733-1736.
[http://dx.doi.org/10.1021/jm00038a001] [PMID: 8021912]
[15]
Ojima, I. Recent advances in the β-lactam synthon method. Acc. Chem. Res., 1995, 28(9), 383-389.
[http://dx.doi.org/10.1021/ar00057a004 ]
[16]
Navarro, G.G.; Lopez, M.T.G.; Muniz, R.G. Easy access to orthogonally protected α-alkyl aspartic acid and α-alkyl asparagine derivatives by controlled opening of β-lactams. Tetrahedron, 2003, 44, 6145-6148.
[http://dx.doi.org/10.1016/S0040-4039(03)01453-9 ]
[17]
Romo, D.; Rzasa, R.M.; Shea, H.A.; Park, K.; Langenhan, J.M.; Sun, L.; Akhiezer, A.; Liu, J.O. Total synthesis and immunosuppressive activity of (-)-pateamine A and related compounds: implementation of a β-lactam-based macrocyclization. J. Am. Chem. Soc., 1998, 120(47), 12237-12254.
[http://dx.doi.org/10.1021/ja981846u]
[18]
Tiong, E.A.; Gleason, J.L. Stereoselective formation of α-quaternary stereocenters in the Mannich reaction. Org. Lett., 2009, 11, 1725-1728.
[http://dx.doi.org/10.1021/ol802643k]
[19]
Hafez, A.M.; Dudding, T.; Wagerle, T.R.; Shah, M.H.; Taggi, A.E.; Lectka, T. A multistage, one-pot procedure mediated by a single catalyst: a new approach to the catalytic asymmetric synthesis of β-amino acids. J. Org. Chem., 2003, 68(15), 5819-5825.
[http://dx.doi.org/10.1021/jo034150e]]
[20]
Durham, T.B.; Miller, M.J. An enantioselective synthesis of differentially protected erythro-α,β-diamino acids and its application to the synthesis of an analogue of rhodopeptin B5. J. Org. Chem., 2003, 68(1), 35-42.
[http://dx.doi.org/www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1021%2Fjo016276m]
[21]
Mehra, V.; Singh, P.; Manhas, N.; Kumar, V. β-Lactam-synthon-interceded facile synthesis of functionally decorated thiohydantoins. Synlett, 2014, 25(8), 1124-1126.
[http://dx.doi.org/10.1055/s-0033-1341049]
[22]
Kamath, A.; Ojima, I. Advances in the chemistry of β-lactam and its medicinal applications. Tetrahedron, 2012, 68(52), 10640-10664.
[http://dx.doi.org/10.1016%2Fj.tet.2012.07.090] [PMID: 23264702]
[23]
Deshmukh, A.R.A.S.; Bhawal, B.M.; Krishnaswamy, D.; Govande, V.V.; Shinkre, B.A.; Jayanthi, A. Azetidin-2-ones, synthon for biologically important compounds. Curr. Med. Chem., 2004, 11(14), 1889-1920.
[http://dx.doi.org/10.2174/0929867043364874] [PMID: 15279573]
[24]
Page, M.I. The mechanisms of reactions of β-lactam antibiotics. Acc. Chem. Res., 1984, 17, 144-151.
[http://dx.doi.org/10.1021/ar00100a005]
[25]
Ibeji, C.U.; Lawal, M.M.; Tolufashe, G.F.; Govender, T.; Naicker, T.; Maguire, G.E.M.; Lamichhane, G.; Kruger, H.G.; Honarparvar, B. The driving force for the acylation of β-lactam antibiotics by L,D-transpeptidase 2: Quantum Mechanics/Molecular Mechanics (QM/MM) study. ChemPhysChem, 2019, 20, 116-1134.
[http://dx.doi.org/10.1002/cphc.201900173] [PMID: 30969480]
[26]
O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C-F bond. Chem. Soc. Rev., 2008, 37(2), 308-319.
[http://dx.doi.org/10.1039/B711844A]
[27]
Wang, J.; Roselló, M.S.; Aceña, J.; Pozo, C.; Sorochinsky, A.E.; Fustero, S.; Soloshonok, V.A.; Liu, H. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem. Rev., 2014, 114(4), 2432-2506.
[http://dx.doi.org/10.1021/cr4002879] [PMID: 24299176]
[28]
Zhu, Y.; Han, J.; Wang, J.; Shibata, N.; Sodeoka, M.; Soloshonok, V.A.; Coelho, J.A.S.; Toste, F.D. Modern approaches for asymmetric construction of carbon-fluorine quaternary stereogenic centers: synthetic challenges and pharmaceutical needs. Chem. Rev., 2018, 118(7), 3887-3964.
[http://dx.doi.org/10.1021/jm00038a001] [PMID: 8021912]
[29]
Hagmann, W.K. The many roles for fluorine in medicinal chemistry. J. Med. Chem., 2008, 51, 4359-4369.
[http://dx.doi.org/10.1021/acs.chemrev.7b00778]
[30]
Jeschke, P. The unique role of fluorine in the design of active ingredients for modern crop protection. ChemBioChem, 2004, 5(5), 570-589.
[http://dx.doi.org/10.1002/cbic.200300833]
[31]
Palomo, C.; Aizpura, J.M.; Ganboa, I.; Oiarbide, M. Asymmetric synthesis of β-lactams by Staudinger ketene-imine cycloaddition reaction. Eur. J. Org. Chem., 1999, 1999(12), 3223-3235.
[http://dx.doi.org/10.1002/(SICI)1099-0690(199912)1999:12%3C3223:AID-EJOC3223%3E3.0.CO;2-1]]
[32]
Landa, A.; Mielgo, A.; Oiarbide, M.; Palomo, C. Asymmetric synthesis of β-lactams by the Staudinger reaction. Org. React., 2018, 95, 423-594.
[http://dx.doi.org/onlinelibrary.wiley.com/doi/10.1002/0471264180.or095.02/abstract]
[33]
Romero, E.; Minard, C.; Benchekroun, M.; Ventre, S.; Retailleau, P.; Dodd, R.H.; Cariou, K. Base-mediated generation of Ketenimines from Ynamides: direct access to azetidinimines by an imino-Staudinger synthesis. Chemistry, 2017, 23(53), 12991-12994.
[http://dx.doi.org/10.1002/chem.201702545]
[34]
Rai, A.; Singh, P.K.; Shukla, P.; Rai, V.K. Carbocation catalyzed carboxylic acid activation in Staudinger reaction for stereoselective synthesis of β-lactams. Tetrahedron Lett., 2016, 57(46), 5084-5088.
[http://dx.doi.org/10.1016/j.tetlet.2016.10.012]
[35]
Karlsson, S.; Bergman, R.; Loefberg, C.; Moore, P.R.; Ponten, F.; Tholander, J.; Soerensen, H. Development of a large-scale route to an MCH1 receptor antagonist: investigation of a Staudinger Ketene-imine cycloaddition in batch and flow mode. Org. Process Res. Dev., 2015, 19(12), 2067-2074.
[http://dx.doi.org/10.1021/acs.oprd.5b00319]
[36]
Lee, E.C.; Hodous, B.L.; Bergin, E.; Shih, C.; Fu, G.C. Catalytic asymmetric Staudinger reactions to form β-lactams: an unanticipated dependence of diastereoselectivity on the choice of the nitrogen substituent. J. Am. Chem. Soc., 2005, 127, 11586-11587.
[http://dx.doi.org/10.1021/ja052058p ]
[37]
Kaupang, Å.; Hansen, T.B. α-Bromodiazoacetamides - a new class of diazo compounds for catalyst-free, ambient temperature intramolecular C-H insertion reactions. Beilstein J. Org. Chem., 2013, 9, 1407-1413.
[http://dx.doi.org/10.3762/bjoc.9.157] [PMID: 23946835]
[38]
Synofzik, J.; Dar’in, D.; Novikov, M.S.; Kantin, G.; Bakulina, O.; Krasavin, M. α-Acyl-α-diazoacetates in transition-metal-free β-lactam synthesis. J. Org. Chem., 2019, 84(18), 12101-12110.
[http://dx.doi.org/10.1021/acs.joc.9b02030]
[39]
Mandler, M.D.; Truong, P.M.; Zavalij, P.Y.; Doyle, M.P. Catalytic conversion of diazocarbonyl compounds to imines: applications to the synthesis of tetrahydropyrimidines and β-lactams. Org. Lett., 2014, 16, 740-743.
[http://dx.doi.org/10.1021/ol403427s] [PMID: 24423056]
[40]
Chen, L.; Zhang, L.; Shao, Y.; Xu, G.; Zhang, X.; Tang, S.; Sun, J. Rhodium-catalyzed C=N bond formation through a rebound hydrolysis mechanism and application in β-lactam synthesis. Org. Lett., 2019, 21(11), 4124-4127.
[http://dx.doi.org/10.1021/acs.orglett.9b01312]
[41]
Paul, N.D.; Chirila, A.; Lu, H.; Zhang, X.P.; de Bruin, B. Carbene radicals in cobalt(II)-porphyrin-catalysed carbene carbonylation reactions: a catalytic approach to ketenes. Chemistry, 2013, 19, 12953-12958.
[http://dx.doi.org/10.1002%2Fchem.201301731] [PMID: 24038393]
[42]
Mames, A.; Stecko, S.; Mikozajczyk, P.; Soluch, M.; Furman, B.; Chmielewski, M. Direct, catalytic synthesis of carbapenams via cycloaddition/rearrangement cascade reaction: unexpected acetylenes’ structure effect. J. Org. Chem., 2010, 75(22), 7580-7587.
[http://dx.doi.org/10.1021/jo101355h]
[43]
Hosseini, A.; Schreiner, P.R. Synthesis of exclusively 4-substituted β-lactams through the Kinugasa reaction utilizing calcium carbide. Org. Lett., 2019, 21, 3746-3749.
[http://dx.doi.org/10.1021/acs.orglett.9b01192]
[44]
Shu, T.; Zhao, L.; Li, S.; Chen, X-Y.; von Essen, C.; Rissanen, K.; Enders, D. Asymmetric aynthesis of spirocyclic β-lactams through copper-catalyzed Kinugasa/Michael Domino reactions. Angew. Chem. Int. Ed., 2018, 57(34), 10985-10988.
[http://dx.doi.org/10.1002/anie.201806931]
[45]
Kumar, Y.; Singh, P.; Bhargava, G. Cu(I) mediated Kinugasa reactions of α,β-unsaturated nitrones: a facile, diastereoselective route to 3-(hydroxy/bromo)methyl-1-aryl-4-(-styryl)azetidin-2-ones. New J. Chem., 2016, 40(10), 8216-8219.
[http://dx.doi.org/10.1039/C6NJ01747A]
[46]
Wolosewicz, K.; Michalak, M.; Adamek, J.; Furman, B. Studies on the enantioselective Kinugasa reaction: efficient synthesis of β-lactams catalyzed by N-PINAP/CuX complexes. Eur. J. Org. Chem., 2016, 2016(12), 2212-2219.
[http://dx.doi.org/10.1002/ejoc.201600050]
[47]
Grzeszczyk, B.; Polawska, K.; Shaker, Y.M.; Stecko, S.; Mames, A.; Woznica, M.; Chmielewski, M.; Furman, B. Asymmetric Kinugasa reaction involving six-membered cyclic nitrones. Tetrahedron, 2012, 68(52), 10633-10639.
[http://dx.doi.org/10.1016/j.tet.2012.09.031]
[48]
Welch, J.T.; Araki, K.; Kawecki, R.; Wichtowski, J.A. Stereocontrol by the carbon-fluorine bond and its application to asymmetric synthesis of 3-fluoro-β-lactams. J. Org. Chem., 1993, 58, 2454-2462.
[http://dx.doi.org/10.1002/chin.199331157]
[49]
Kawecki, R.; Welch, J.T. Free radical chain reactions of 3-fluoro-3-iodo-β-lactams. Tetrahedron Lett., 1993, 34(19), 3087-3090.
[http://dx.doi.org/10.1002/chin.199340176]
[50]
Tarui, A.; Kawashima, N.; Sato, K.; Omote, M.; Miwa, Y.; Minami, H.; Ando, A. Simple, chemoselective, and diastereoselective Reformatsky-type synthesis of α-bromo-α-fluoro-β-lactams. Tetrahedron Lett., 2010, 51(15), 2000-2003.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.023]]
[51]
Tarui, A.; Kawashima, N.; Kawakita, T.; Sato, K.; Omote, M.; Ando, A. Direct and diastereoselective alkylation and aldol reactions of α-bromo-α-fluoro-β-lactams. J. Org. Chem., 2013, 78(16), 7903-7911.
[http://dx.doi.org/10.1021/jo401072h]
[52]
Tarui, A.; Kondo, S.; Sato, K.; Omote, M.; Minami, H.; Miwa, Y.; Ando, A. Ni-catalyzed α-arylation of secondary α-bromo-α-fluoro-β-lactam: cross-coupling of a secondary fluorine-containing electrophile. Tetrahedron, 2013, 69(5), 1559-1565.
[http://dx.doi.org/10.1016/j.tet.2012.12.002]
[53]
Tarui, A.; Miyata, E.; Tanaka, A.; Sato, K.; Omote, M.; Ando, A. Stereoselective Suzuki coupling reaction of an α-bromo-α-fluoro-β-lactam. Synlett, 2015, 26(1), 55-58.
[http://dx.doi.org/10.1055/s-0034-1379637]
[54]
Terao, J.; Watanabe, H.; Ikumi, A.; Kuniyasu, H.; Kambe, N. Nickel-catalyzed cross-coupling reaction of Grignard reagents with alkyl halides and tosylates: remarkable effect of 1,3-butadienes. J. Am. Chem. Soc., 2002, 124(16), 4222-4223.
[http://dx.doi.org/10.1021/ja025828v]
[55]
Hama, T.; Liu, X.; Culkin, D.A.; Hartwig, J.F. Palladium-catalyzed α-arylation of esters and amides under more neutral conditions. J. Am. Chem. Soc., 2003, 125(37), 11176-11177.
[http://dx.doi.org/10.1021/ja036792p]
[56]
Tobisu, M.; Hyodo, I.; Chatani, N. Nickel-catalyzed reaction of arylzinc reagents with N-aromatic heterocycles: a straightforward approach to C-H bond arylation of electron-deficient heteroaromatic compounds. J. Am. Chem. Soc., 2009, 131(34), 12070-12071.
[http://dx.doi.org/10.1021/ja9053509 ]
[57]
Colbon, P.; Ruan, J.; Purdie, M.; Xiao, J. Direct acylation of aryl chlorides with aldehydes by palladium-pyrrolidine co-catalysis. Org. Lett., 2010, 12, 3670-3673.
[http://dx.doi.org/10.1021/ol101466g ] [PMID: 20704412]
[58]
Molander, G.A.; Traister, K.M.; Barcellos, T. Palladium-catalyzed α-arylation of 2-chloroacetates and 2-chloroacetamides. J. Org. Chem., 2013, 15(19), 4123-4131.
[http://dx.doi.org/10.1021/ol402391z ]
[59]
Cornella, J.; Martin, R. Ni-catalyzed stereoselective arylation of inert C-O bonds at low temperatures. Org. Lett., 2013, 15, 6298-6301.
[http://dx.doi.org/10.1021/ol4031815 ]
[60]
Molander, G.A.; Traister, K.M.; O’Neill, B.T. Reductive cross-coupling of nonaromatic, heterocyclic bromides with aryl and heteroaryl bromides. J. Org. Chem., 2014, 79(12), 5771-5780.
[http://dx.doi.org/10.1021/jo500905m] [PMID: 24892751]
[61]
Chen, M.; Zheng, X.; Li, W.; He, J.; Lei, A. Palladium-catalyzed aerobic oxidative cross-coupling reactions of terminal alkynes with alkylzinc reagents. J. Am. Chem. Soc., 2010, 132(12), 4101-4103.
[http://dx.doi.org/10.1021/ja100630p] [PMID: 20218583]
[62]
Xu, J.; Ahmed, E.A.; Xiao, B.; Lu, Q.Q.; Wang, Y.L.; Yu, C.G.; Fu, Y. Pd-catalyzed regioselective activation of gem-difluorinated cyclopropanes: a highly efficient approach to 2-fluorinated allylic scaffolds. Angew. Chem. Int. Ed., 2015, 54(28), 8231-8235.
[http://dx.doi.org/10.1002/anie.201502308 ]
[63]
Fischer, C.; Fu, G.C. Asymmetric nickel-catalyzed Negishi cross-couplings of secondary α-bromo amides with organozinc reagents. J. Am. Chem. Soc., 2005, 127(13), 4594-4595.
[http://dx.doi.org/10.1021/ja0506509] [PMID: 15796523]
[64]
Liu, C.; He, C.; Shi, W.; Chen, M.; Lei, A. Ni-catalyzed mild arylation of α-halocarbonyl compounds with arylboronic acids. Org. Lett., 2007, 9(26), 5601-5604.
[http://dx.doi.org/10.1021/ol702456z] [PMID: 18052180]
[65]
Lou, S.; Fu, G.C. Nickel/bis(oxazoline)-catalyzed asymmetric Kumada reactions of alkyl electrophiles: cross-couplings of racemic α-bromoketones. J. Am. Chem. Soc., 2010, 132, 1264-1266.
[http://dx.doi.org/10.1021%2Fja909689t] [PMID: 20050651]
[66]
Lundin, P.M.; Fu, G.C. Asymmetric Suzuki cross-couplings of activated secondary alkyl electrophiles: arylations of racemic α-chloroamides. J. Am. Chem. Soc., 2010, 132(32), 11027-11029.
[http://dx.doi.org/10.1021%2Fja105148g] [PMID: 20698665]
[67]
Lou, S.; Fu, G.C. Nickel-catalyzed enantioselective Negishi cross-coupling of racemic secondary α-bromo amides with alkylzinc reagents: (S)-N-benzyl-7-cyano-2-ethyl-N-phenylheptanamide. Org. Synth., 2010, 87, 330-338.
[PMID: 21533010]
[68]
Liu, C.; Liu, D.; Zhang, W.; Zhou, L.; Lei, A. Nickel-catalyzed aromatic C-H alkylation with secondary or tertiary alkyl-bromine bonds for the construction of indolones. Org. Lett., 2013, 15(24), 6166-6169.
[http://dx.doi.org/10.1021/ol403021p] [PMID: 24224695]
[69]
Liang, Y.; Fu, G.C. Catalytic asymmetric synthesis of tertiary alkyl fluorides: Negishi cross-couplings of racemic α,α-dihaloketones. J. Am. Chem. Soc., 2014, 136(14), 5520-5524.
[http://dx.doi.org/10.1021%2Fja501815p] [PMID: 24678878]
[70]
Yin, H.; Fu, G.C. Mechanistic investigation of enantioconvergent Kumada reactions of racemic α-bromoketones catalyzed by a nickel/bis(oxazoline) complex. J. Am. Chem. Soc., 2019, 141, 15433-15440.
[http://dx.doi.org/10.1021/jacs.9b08185 ]
[71]
Cozzi, P.G. A catalytic, Me2Zn-mediated, enantioselective Reformatsky reaction with ketones. Angew. Chem. Int. Ed., 2006, 45(18), 2951-2954.
[http://dx.doi.org/10.1002/anie.200504239] [PMID: 16555342]
[72]
Hayashi, M.; Tanaka, T. Catalytic enantioselective Reformatsky reaction of alkyl iodoacetate with aldehydes catalyzed by chiral schiff base. Chem. Lett., 2008, 37(12), 1298-1299.
[http://dx.doi.org/10.1246/cl.2008.1298 ]
[73]
Ibáñez, M.Á.F.; Maciá, B.; Minnaard, A.J.; Feringa, B.L. Catalytic enantioselective Reformatsky reaction with aldehydes. Angew. Chem. Int. Ed., 2008, 47(7), 1317-1319.
[http://dx.doi.org/10.1002/anie.200704841] [PMID: 18176931]
[74]
Ibáñez, M.Á.F.; Maciá, B.; Minnaard, A.J.; Feringa, B.L. Catalytic enantioselective Reformatsky reaction with ketones. Chem. Commun., 2008, 10(18), 2571-2573.
[http://dx.doi.org/10.1039/b801749b] [PMID: 18506247]
[75]
Cozzi, P.G.; Benfatti, F.; Capdevila, M.G.; Mignogna, A. Me2Zn mediated, tert-butylhydroperoxide promoted, catalytic enantioselective Reformatsky reaction with aldehydes. Chem. Commun. (Camb.), 2008, 2008(28), 3317-3318.
[http://dx.doi.org/10.1039/B805197F] [PMID: 18622456]
[76]
Cozzi, P.G.; Mignogna, A.; Vicennati, P. Dimethylzinc-mediated, oxidatively promoted Reformatsky reaction of ethyl iodoacetate with aldehydes and ketones. Adv. Synth. Catal., 2008, 350(7-8), 975-978.
[http://dx.doi.org/10.1002/adsc.200700572 ]
[77]
Lin, N.; Chen, M.M.; Luo, R.S.; Deng, Y.Q.; Lu, G. Indolinylmethanol catalyzed enantioselective Reformatsky reaction with ketones. Tetrahedron Asymmetry, 2010, 21, 2816-2824.
[http://dx.doi.org/10.1039/B805197F] [PMID: 18622456]
[78]
Cozzi, P.G.; Rivalta, E. Highly enantioselective one-pot, three-component imino-Reformatsky reaction. Angew. Chem. Int. Ed., 2005, 44(23), 3600-3603.
[http://dx.doi.org/10.1002/anie.200462757] [PMID: 15880540]
[79]
Cozzi, P.G. A catalytic enantioselective imino-Reformatsky reaction. Adv. Synth. Catal., 2006, 348(15), 2075-2079.
[http://dx.doi.org/10.1002/adsc.200606178]]
[80]
Braun, M.; Vonderhagen, A.; Waldmüller, D. Enantioselective Reformatsky reaction of methyl bromodifluoroacetate. Liebigs Ann., 1995, 1995(8), 1447-1450.
[http://dx.doi.org/10.1002/jlac.1995199508196]
[81]
Thaler, T.; Kloetzing, R.J.; Knochel, P. An improved asymmetric Reformatsky reaction mediated by (−)-N,N-dimethylaminoisoborneol. Org. Lett., 2006, 8, 1125-1128.
[http://dx.doi.org/10.1021/ol0531381]
[82]
Fornalczyk, M.; Singh, K.; Stuart, A.M. Enantioselective Reformatsky reaction of ethyl iododifluoroacetate with ketones. Org. Biomol. Chem., 2012, 10, 3332-3342.
[http://dx.doi.org/10.1039/C2OB25081K] [PMID: 18622456]
[83]
Fornalczyk, M.; Singh, K.; Stuart, A.M. Synthesis of α-fluoro-β-hydroxy esters by an enantioselective Reformatsky-type reaction. Chem. Commun. (Camb.), 2012, 48, 3500-3502.
[http://dx.doi.org/10.1039/C2CC17985G]
[84]
Wolf, C.; Moskowitz, M. Bisoxazolidine-catalyzed enantioselective Reformatsky reaction. J. Org. Chem., 2011, 76, 6372-6376.
[http://dx.doi.org/10.1021/jo200774e]
[85]
Li, Y.; He, B. Asymmetric Reformatsky reaction of aldehydes catalyzed by novel β-amino alcohols and zinc complexes. Synth. Commun., 2014, 44, 1938-1943.
[http://dx.doi.org/10.1080/00397911.2013.879898]
[86]
Maestro, A.; Marigorta, E.M.; Palacios, F.; Vicario, J. Enantioselective aza-Reformatsky reaction with ketimines. Org. Lett., 2019, 21(23), 9473-9477.
[http://dx.doi.org/10.1021/acs.orglett.9b03669]
[87]
Marcotte, S.; Pannecoucke, X.; Feasson, C.; Quirion, J.C. Enantioselective synthesis of α,α-difluoro-β-amino acid and 3,3-difluoroazetidin-2-one via the Reformatsky-type reaction of ethyl bromodifluoroacetate with chiral 1,3-oxazolidines. J. Org. Chem., 1999, 64, 8461-8464.
[http://dx.doi.org/10.1021/jo990868b] [PMID: 18622456]
[88]
Tarui, A.; Kondo, K.; Taira, H.; Sato, K.; Omote, M.; Kumadaki, I.; Ando, A. The diastereoselective synthesis of difluoro-β-lactam using Reformatsky-Honda reaction. Heterocycles, 2007, 73(1), 203-208.
[http://dx.doi.org/10.3987/COM-07-S(U)29]
[89]
Tarui, A.; Ozaki, D.; Nakajima, N.; Yokota, Y.; Sokeirik, Y.S.; Sato, K.; Omote, M.; Kumadaki, I.; Ando, A. Rhodium-catalyzed Reformatsky-type reaction for asymmetric synthesis of difluoro-β-lactams using menthyl group as a chiral auxiliary. Tetrahedron Lett., 2008, 49, 3839-3843.
[http://dx.doi.org/10.1016/j.tetlet.2008.04.101]
[90]
March, T.L.; Johnston, M.R.; Duggan, P.J. Diastereoselective synthesis of aliphatic α,α-difluoro-β3-amino esters via a sonocatalyzed Reformatsky reaction. Org. Lett., 2012, 14, 182-185.
[http://dx.doi.org/10.1021/ol202969w F] [PMID: 22121827]
[91]
Fontenelle, C.Q.; Conroy, M.; Light, M.; Poisson, T.; Pannecoucke, X.; Linclau, B. Stereoselectivity of the Honda–Reformatsky reaction in reactions with ethyl bromodifluoroacetate with α-oxygenated sulfinylimines. J. Org. Chem., 2014, 79, 4186-4195.
[http://dx.doi.org/10.1021/jo500396p]
[92]
Cao, C.R.; Jiang, M.; Liu, J.T. Metal-mediated Reformatsky reaction of bromodifluoromethyl ketone and imine. Eur. J. Org. Chem., 2015, 2015(5), 1144-1151.
[http://dx.doi.org/10.1002/ejoc.201403424]
[93]
Tarui, A.; Nishimura, H.; Ikebata, T.; Tahira, A.; Sato, K.; Omote, M.; Minami, H.; Miwa, Y.; Ando, A. Ligand-promoted asymmetric imino-Reformatsky reaction of ethyl dibromofluoroacetate. Org. Lett., 2014, 16, 2080-2083.
[http://dx.doi.org/10.1021/ol500631j]
[94]
Tarui, A.; Ikebata, T.; Sato, K.; Omote, M.; Ando, A. Enantioselective synthesis of α,α-difluoro-β-lactams using amino alcohol ligands. Org. Biomol. Chem., 2014, 12(33), 6484-6489.
[http://dx.doi.org/10.1039/C4OB01184H] [PMID: 18622456]
[95]
Kitamura, M.; Suga, S.; Niwa, M.; Noyori, R. Self and nonself recognition of asymmetric catalysts. Nonlinear effects in the amino alcohol-promoted enantioselective addition of dialkylzincs to aldehydes. J. Am. Chem. Soc., 1995, 117, 4832-4842.
[http://dx.doi.org/10.1021/ja00122a013]
[96]
Soai, K.; Yokoyama, S.; Hayasaka, T.; Chiral, N. N-dialkylnorephedrines as catalysts of the highly enantioselective addition of dialkylzincs to aliphatic and aromatic aldehydes. The asymmetric synthesis of secondary aliphatic and aromatic alcohols of high optical purity. J. Org. Chem., 1991, 56, 4264-4268.
[http://dx.doi.org/10.1021/jo00013a035]
[97]
Ojima, I.; Sun, C.M.; Park, Y.H. New and efficient coupling method for the synthesis of peptides bearing the norstatine residue and their analogs. J. Org. Chem., 1994, 59, 1249-1250.
[http://dx.doi.org/10.1021/jo00085a008]
[98]
Li, X.G.; Lähitie, M.; Kanerva, L.T. Burkholderia cepacia lipase and activated β-lactams in β-dipeptide and β-amino amide synthesis. Tetrahedron Asymmetry, 2008, 19, 1857-1861.
[http://dx.doi.org/10.1016/j.tetasy.2008.07.017]
[99]
Liu, N.; Cao, S.; Shen, L.; Wu, J.; Yu, J.; Zhang, J.; Li, H.; Qian, X. New gem-difluoromethylene-containing isocyanide as a useful building block for the synthesis of difluorinated pseudopeptides via Ugi reaction. Tetrahedron Lett., 2009, 50, 1982-1985.
[http://dx.doi.org/10.1016/j.tetlet.2009.02.056]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy