Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Highly Selective Hydroiodination of Carbon-Carbon Double or Triple Bonds

Author(s): Yuki Yamamoto, Shin-ichi Kawaguchi, Shintaro Kodama, Akihiro Nomoto and Akiya Ogawa*

Volume 24, Issue 18, 2020

Page: [2153 - 2168] Pages: 16

DOI: 10.2174/1385272824666191227111257

Price: $65

Abstract

Iodine is an element that exhibits characteristic features of heavy halogen, and several compounds containing iodine constitute important synthetic intermediates due to synthetically easy manipulation. To utilize iodine units for organic synthesis, a highly regio- and stereoselective introduction of iodine to versatile building blocks is significant, and a lot of research works for the selective introduction of iodine to alkynes or alkenes have been conducted. In this review article, we describe regio- and stereoselective hydroiodination to multiple bonds of building blocks, and its synthetic applications as key intermediates to construct several important compounds in organic chemistry.

Keywords: Hydroiodination, regio- and stereoselective synthesis, alkene and alkyne activations, green synthesis, cross-coupling, iodine reagents.

Graphical Abstract

[1]
Anastas, P.; Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[2]
Sheldon, R.A. Fundamentals of green chemistry: efficiency in reaction design. Chem. Soc. Rev., 2012, 41(4), 1437-1451.
[http://dx.doi.org/10.1039/C1CS15219J] [PMID: 22033698]
[3]
Yusubov, M.S.; Zhdankin, V.V. Iodine catalysis: a green alternative to transition metals in organic chemistry and technology. Resour. Technol., 2015, 1(1), 49-67.
[4]
(a)Tohma, H.; Kita, Y. Hypervalent iodine reagents for the oxidation of alcohols and their application to complex molecule synthesis. Adv. Synth. Catal., 2004, 346(2–3), 114-124.
(b)Dohi, T.; Kita, Y. Hypervalent iodine reagents as a new entrance to organocatalysts. Chem. Commun. (Camb.), 2009, 2009(16), 2073-2085.
[http://dx.doi.org/10.1039/b821747e] [PMID: 19360157]
(c)Uyanik, M.; Ishihara, K. Hypervalent iodine-mediated oxidation of alcohols. Chem. Commun. (Camb.), 2009, 2009(16), 2086-2099.
[http://dx.doi.org/10.1039/b823399c] [PMID: 19360158]
(d)Yoshimura, A.; Zhdankin, V.V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev., 2016, 116(5), 3328-3435.
[http://dx.doi.org/10.1021/acs.chemrev.5b00547] [PMID: 26861673]
[5]
Kerr, J.A. Bond dissociation energies by kinetic methods. Chem. Rev., 1966, 66(5), 465-500.
[http://dx.doi.org/10.1021/cr60243a001]
[6]
(a)Küpper, F.C.; Feiters, M.C.; Olofsson, B.; Kaiho, T.; Yanagida, S.; Zimmermann, M.B.; Carpenter, L.J.; Luther, G.W., III; Lu, Z.; Jonsson, M.; Kloo, L. Commemorating two centuries of iodine research: an interdisciplinary overview of current research. Angew. Chem. Int. Ed. Engl., 2011, 50(49), 11598-11620.
[http://dx.doi.org/10.1002/anie.201100028] [PMID: 22113847]
(b)Kambe, N.; Iwasaki, T.; Terao, J. Pd-catalyzed cross-coupling reactions of alkyl halides. Chem. Soc. Rev., 2011, 40(10), 4937-4947.
[http://dx.doi.org/10.1039/c1cs15129k] [PMID: 21785791]
(c)Nobuta, T.; Tada, N.; Fujiya, A.; Kariya, A.; Miura, T.; Itoh, A. Molecular iodine catalyzed cross-dehydrogenative coupling reaction between two sp3 C-H bonds using hydrogen peroxide. Org. Lett., 2013, 15(3), 574-577.
[http://dx.doi.org/10.1021/ol303389t] [PMID: 23331076]
(d)Morimoto, K.; Sakamoto, K.; Ohnishi, Y.; Miyamoto, T.; Ito, M.; Dohi, T.; Kita, Y. Metal-free oxidative para cross-coupling of phenols. Chemistry, 2013, 19(27), 8726-8731.
[http://dx.doi.org/10.1002/chem.201301028] [PMID: 23696108]
[7]
Kawaguchi, S.; Minamida, Y.; Ohe, T.; Nomoto, A.; Sonoda, M.; Ogawa, A. Synthesis and properties of perfluoroalkyl phosphine ligands: photoinduced reaction of diphosphines with perfluoroalkyl iodides. Angew. Chem. Int. Ed. Engl., 2013, 52(6), 1748-1752.
[http://dx.doi.org/10.1002/anie.201207383] [PMID: 23293088]
[8]
Kawaguchi, S-i.; Minamida, Y.; Okuda, T.; Sato, Y.; Saeki, T.; Yoshimura, A.; Nomoto, A.; Ogawa, A. Photoinduced synthesis of P-perfluoroalkylated phosphines from triarylphosphines and their application in the copper-free cross-coupling of acid chlorides and terminal alkynes. Adv. Synth. Catal., 2015, 357(11), 2509-2519.
[http://dx.doi.org/10.1002/adsc.201500294]
[9]
Kawaguchi, S-I.; Saga, Y.; Sato, Y.; Minamida, Y.; Nomoto, A.; Ogawa, A. P-fluorous phosphines as electron-poor/fluorous hybrid functional ligands for precious metal catalysts: synthesis of Rh(I), Ir(I), Pt(II), and Au(I) complexes bearing P-fluorous phosphine ligands. Inorganics, 2017, 5(1), 5.
[http://dx.doi.org/10.3390/inorganics5010005]
[10]
Jasperse, C.P.; Curran, D.P.; Fevig, T.L. Radical reactions in natural product synthesis. Chem. Rev., 1991, 91(6), 1237-1286.
[http://dx.doi.org/10.1021/cr00006a006]
[11]
Renaud, P.; Sibi, M.P. Radicals in Organic Synthesis, 1st ed; Wiley-VCH: New York, 2001.
[http://dx.doi.org/10.1002/9783527618293]
[12]
Ohtsuki, A.; Goto, A.; Kaji, H. Visible-light-induced reversible complexation mediated living radical polymerization of methacrylates with organic catalysts. Macromolecules, 2013, 46(1), 96-102.
[http://dx.doi.org/10.1021/ma302244j]
[13]
Studer, A.; Curran, D.P. Catalysis of radical reactions: a radical chemistry perspective. Angew. Chem. Int. Ed. Engl., 2016, 55(1), 58-102.
[http://dx.doi.org/10.1002/anie.201505090] [PMID: 26459814]
[14]
Tsuchii, K.; Ogawa, A. A highly selective photoinduced selenoperfluoroalkylation of terminal acetylenes by using a novel binary system of perfluoroalkyl iodide and diphenyl diselenide. Tetrahedron Lett., 2003, 44(49), 8777-8780.
[http://dx.doi.org/10.1016/j.tetlet.2003.09.182]
[15]
Tamai, T.; Nomoto, A.; Tsuchii, K.; Minamida, Y.; Mitamura, T.; Sonoda, M.; Ogawa, A. Highly selective perfluoroalkylchalcogenation of alkynes by the combination of iodoperfluoroalkanes and organic dichalcogenides upon photoirradiation. Tetrahedron, 2012, 68(51), 10516-10522.
[http://dx.doi.org/10.1016/j.tet.2012.09.026]
[16]
Ogawa, A.; Imura, M.; Kamada, N.; Hirao, T. Highly regioselective iodoperfluoroalkylation of allenes with perfluoroalkyl iodides upon irradiation with near-UV light. Tetrahedron Lett., 2001, 42(13), 2489-2492.
[http://dx.doi.org/10.1016/S0040-4039(01)00207-6]
[17]
Tsuchii, K.; Imura, M.; Kamada, N.; Hirao, T.; Ogawa, A. An efficient photoinduced iodoperfluoroalkylation of carbon-carbon unsaturated compounds with perfluoroalkyl iodides. J. Org. Chem., 2004, 69(20), 6658-6665.
[http://dx.doi.org/10.1021/jo0495889] [PMID: 15387587]
[18]
Tsuchii, K.; Ueta, Y.; Kamada, N.; Einaga, Y.; Nomoto, A.; Ogawa, A. A facile photoinduced iodoperfluoroalkylation of dienes, diynes, and enynes with perfluoroalkyl iodides via selective radical cyclization. Tetrahedron Lett., 2005, 46(42), 7275-7278.
[http://dx.doi.org/10.1016/j.tetlet.2005.07.088]
[19]
Dong, C.P.; Nakamura, K.; Taniguchi, T.; Mita, S.; Kodama, S.; Kawaguchi, S.I.; Nomoto, A.; Ogawa, A.; Mizuno, T.; Mizuno, T. Synthesis of aryl iodides from arylhydrazines and iodine. ACS Omega, 2018, 3(8), 9814-9821.
[http://dx.doi.org/10.1021/acsomega.8b01559] [PMID: 31459110]
[20]
Shimizu, M.; Baba, T.; Toudou, S.; Hachiya, I. Aza-Prins reaction promoted by titanium tetraiodide and iodine. Chem. Lett., 2007, 36(1), 12-13.
[http://dx.doi.org/10.1246/cl.2007.12]
[21]
Shimizu, M.; Okura, K.; Arai, T.; Hachiya, I. Titanium tetraiodide-promoted tandem Prins reaction of alkynes with acetals: synthesis of (Z,Z)-1,5-diiodo-1,3,5-triarylpenta-1,4-dienes. Chem. Lett., 2010, 39(10), 1052-1054.
[http://dx.doi.org/10.1246/cl.2010.1052]
[22]
Hachiya, I.; Shimizu, M. Chemoselective reductions and iodinations using titanium tetraiodide. Tetrahedron Lett., 2014, 55(17), 2781-2788.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.052]
[23]
Liu, Y.; Huang, D.; Huang, J.; Maruoka, K. Hypervalent iodine mediated chemoselective iodination of alkynes. J. Org. Chem., 2017, 82(22), 11865-11871.
[http://dx.doi.org/10.1021/acs.joc.7b01555] [PMID: 28803465]
[24]
Kropp, P.J.; Crawford, S.D. Surface-mediated reactions 4. Hydrohalogenation of alkynes. J. Org. Chem., 1994, 59(11), 3102-3112.
[http://dx.doi.org/10.1021/jo00090a031]
[25]
Landini, D.; Rolla, F. Addition of hydrohalogenic acids to alkenes in aqueous-organic, two-phase systems in the presence of catalytic amounts of onium salts. J. Org. Chem., 1980, 45(17), 3527-3529.
[http://dx.doi.org/10.1021/jo01305a038]
[26]
Cao, W.; Chen, P.; Wang, L.; Wen, H.; Liu, Y.; Wang, W.; Tang, Y. A highly regio- and stereoselective syntheses of α-halo enamides, vinyl thioethers, and vinyl esters with aqueous hydrogen halide in two-phase systems. Org. Lett., 2018, 20(15), 4507-4511.
[http://dx.doi.org/10.1021/acs.orglett.8b01809] [PMID: 30004711]
[27]
Pagni, R.M.; Kabalka, G.W.; Boothe, R.; Gaetano, K.; Stewart, L.J.; Conaway, R.; Dial, C.; Gray, D.; Larson, S.; Luidhardt, T. Reactions of unsaturated compounds with iodine and bromine on γ-alumina. J. Org. Chem., 1988, 53(19), 4477-4482.
[http://dx.doi.org/10.1021/jo00254a011]
[28]
Irifune, S.; Kibayashi, T.; Ishii, Y.; Ogawa, M. A facile synthesis of alkyl iodides and deuterated alkyl iodides by hydroiodination and deuterioiodination of olefins. Synthesis, 1988, 1988(5), 366-369.
[http://dx.doi.org/10.1055/s-1988-27575]
[29]
Kamiya, N.; Chikami, Y.; Ishii, Y. Stereoselective synthesis of internal alkenyl iodides from alkynes via addition of hydrogen iodide generated in situ from a chlorotrimethylsilane/sodium iodide/water system. Synlett, 1990, 1990(11), 675-676.
[http://dx.doi.org/10.1055/s-1990-21207]
[30]
Reddy, C.K.; Periasamy, M. A new, simple procedure for the generation and addition of HI to alkenes and alkynes using Bl3: N,N-Diethylaniline complex and acetic acid. Tetrahedron Lett., 1990, 31(13), 1919-1920.
[http://dx.doi.org/10.1016/S0040-4039(00)98817-8]
[31]
Luo, F-T. Hsieh, Li-C. Stereoselective hydroiodination of 3-substituted derivatives of propynoic acid. J. Chin. Chem. Soc. (Taipei), 1994, 41(6), 871-873.
[http://dx.doi.org/10.1002/jccs.199400121]
[32]
Broomfield, C.E. Preparation of pure anhydrous solutions of hydrogen iodide in acetic acid. Org. Process Res. Dev., 1997, 1(1), 88-89.
[http://dx.doi.org/10.1021/op9600116]
[33]
Ma, S.; Wei, Q. Hydrohalogenation reactions of 1,2-allenic sulfones. A novel synthesis of 2-haloallylic sulfones. J. Org. Chem., 1999, 64(3), 1026-1028.
[http://dx.doi.org/10.1021/jo981592v] [PMID: 11674181]
[34]
Das, B.; Srinivas, Y.; Holla, H.; Narender, R. An efficient and facile hydroiodination of alkenes and alkynes using polymethylhydrosiloxane-iodine system. Chem. Lett., 2007, 36(6), 800-801.
[http://dx.doi.org/10.1246/cl.2007.800]
[35]
Kropp, P.J.; Daus, K.A.; Crawford, S.D.; Tubergen, M.W.; Kepler, K.D.; Craig, S.L.; Wilson, V.P. Surface-mediated reactions 1. Hydrohalogenation of alkenes and alkynes. J. Am. Chem. Soc., 1990, 112(20), 7433-7434.
[http://dx.doi.org/10.1021/ja00176a075]
[36]
Xiao, J.; Han, L-B. Ready access to organoiodides: practical hydroiodination and double-hydroiodination of carbon–carbon unsaturated bonds with I2. Tetrahedron, 2019, 75(25), 3510-3515.
[http://dx.doi.org/10.1016/j.tet.2019.05.019]
[37]
Kawaguchi, S.; Ogawa, A. Highly selective hydroiodation of alkynes using an iodine-hydrophosphine binary system. Org. Lett., 2010, 12(9), 1893-1895.
[http://dx.doi.org/10.1021/ol1005246] [PMID: 20359187]
[38]
Kawaguchi, S-i.; Masuno, H.; Sonoda, M.; Nomoto, A.; Ogawa, A. Highly regioselective hydroiodination of terminal alkynes and silylalkynes with iodine and phosphorus reagents leading to internal iodoalkenes. Tetrahedron, 2012, 68(47), 9818-9825.
[http://dx.doi.org/10.1016/j.tet.2012.08.096]
[39]
Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16(50), 4467-4470.
[http://dx.doi.org/10.1016/S0040-4039(00)91094-3]
[40]
Vitérisi, A.; Orsini, A.; Weibel, J.M.; Pale, P. A mild access to silver acetylides from trimethylsilyl acetylenes. Tetrahedron Lett., 2006, 47(16), 2779-2781.
[http://dx.doi.org/10.1016/j.tetlet.2006.02.067]
[41]
Kawaguchi, S-i.; Gonda, Y.; Masuno, H.; Vũ, H.T.; Yamaguchi, K.; Shinohara, H.; Sonoda, M.; Ogawa, A. A convenient hydroiodination of alkynes using I2/PPh3/H2O and its application to the one-pot synthesis of trisubstituted alkenes via iodoalkenes using Pd-catalyzed cross-coupling reactions. Tetrahedron Lett., 2014, 55(50), 6779-6783.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.039]
[42]
Sato, A.H.; Mihara, S.; Iwasawa, T. One-step synthesis of (1-iodovinyl) arenes from trimethylsilyl ethynylarene through iodotrimethylsilane-mediated hydroiodation. Tetrahedron Lett., 2012, 53(28), 3585-3589.
[http://dx.doi.org/10.1016/j.tetlet.2012.05.004]
[43]
Sato, A.H.; Ohashi, K.; Iwasawa, T. Regio- and stereospecific synthesis of (E)-α-iodoenamide moieties from ynamides through iodotrimethylsilane-mediated hydroiodation. Tetrahedron Lett., 2013, 54(10), 1309-1311.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.101]
[44]
Sato, A.H.; Ohashi, K.; Ito, K.; Iwasawa, T. Regio- and stereoselective synthesis of 1-(1-halovinyl)-1H-indoles from 1-ethynyl-1H-indoles with in situ generated HX. Tetrahedron Lett., 2013, 54(22), 2878-2881.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.107]
[45]
Cui, X.; Burgess, K. Catalytic homogeneous asymmetric hydrogenations of largely unfunctionalized alkenes. Chem. Rev., 2005, 105(9), 3272-3296.
[http://dx.doi.org/10.1021/cr0500131] [PMID: 16159153]
[46]
Horiuti, J.; Polanyi, M. A catalyzed reaction of hydrogen with water. Nature, 1933, 132, 819.
[http://dx.doi.org/10.1038/132819a0]
[47]
Horiuti, J.; Polanyi, M. Catalytic interchange of hydrogen between water and ethylene and between water and benzene. Nature, 1934, 134, 377-378.
[http://dx.doi.org/10.1038/134377b0]
[48]
Zeng, C.; Shen, G.; Yang, F.; Chen, J.; Zhang, X.; Gu, C.; Zhou, Y.; Fan, B. Rhodium-catalyzed generation of anhydrous hydrogen iodide: an effective method for the preparation of iodoalkanes. Org. Lett., 2018, 20(21), 6859-6862.
[http://dx.doi.org/10.1021/acs.orglett.8b02980] [PMID: 30350672]
[49]
Maruoka, K.; Sano, H.; Shinoda, K.; Nakai, S.; Yamamoto, H. Organoborane-catalyzed hydroalumination of olefins. J. Am. Chem. Soc., 1986, 108(19), 6036-6038.
[http://dx.doi.org/10.1021/ja00279a061] [PMID: 22175369]
[50]
Takami, K.; Yorimitsu, H.; Oshima, K. Trans-hydrometalation of alkynes by a combination of InCl3 and DIBAL-H: one-pot access to functionalized (Z)-alkenes. Org. Lett., 2002, 4(17), 2993-2995.
[http://dx.doi.org/10.1021/ol026401w] [PMID: 12182607]
[51]
Takami, K.; Mikami, S.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. Triethylborane-mediated hydrogallation and hydroindation: novel access to organogalliums and organoindiums. J. Org. Chem., 2003, 68(17), 6627-6631.
[http://dx.doi.org/10.1021/jo0344790] [PMID: 12919026]
[52]
Yamakawa, T.; Kinoshita, H.; Miura, K. Synthetic utility of tribenzyltin hydride and its derivatives as easily accessible, removable, and decomposable organotin reagents. J. Organomet. Chem., 2013, 724, 129-134.
[http://dx.doi.org/10.1016/j.jorganchem.2012.11.007]
[53]
Gao, F.; Hoveyda, A.H. α-Selective Ni-catalyzed hydroalumination of aryl- and alkyl-substituted terminal alkynes: practical syntheses of internal vinyl aluminums, halides, or boronates. J. Am. Chem. Soc., 2010, 132(32), 10961-10963.
[http://dx.doi.org/10.1021/ja104896b] [PMID: 20698643]
[54]
Brown, H.C.; Midland, M.M. Organic syntheses via free-radical displacement reactions of organoboranes. Angew. Chem. Int. Ed. Engl., 1972, 11(8), 692-700.
[http://dx.doi.org/10.1002/anie.197206921]
[55]
Ma, X.; Herzon, S.B. Cobalt bis(acetylacetonate)-tert-butyl hydroperoxide-triethylsilane: a general reagent combination for the Markovnikov-selective hydrofunctionalization of alkenes by hydrogen atom transfer. Beilstein J. Org. Chem., 2018, 14, 2259-2265.
[http://dx.doi.org/10.3762/bjoc.14.201] [PMID: 30202480]
[56]
Swanson, D.R.; Nguyen, T.; Noda, Y.; Negishi, E-i. A convenient procedure for hydrozirconation of alkynes with i-BuZrCp2Cl generated in situ by treatment of Cp2ZrCl2 with t-BuMgCl. J. Org. Chem., 1991, 56(7), 2590-2591.
[http://dx.doi.org/10.1021/jo00007a062]
[57]
Zhao, Y.; Snieckus, V. A practical in situ generation of the Schwartz reagent. Reduction of tertiary amides to aldehydes and hydrozirconation. Org. Lett., 2014, 16(2), 390-393.
[http://dx.doi.org/10.1021/ol403183a] [PMID: 24359276]
[58]
Bartoli, G.; Cipolletti, R.; Di Antonio, G.; Giovannini, R.; Lanari, S.; Marcolini, M.; Marcantoni, E. A convergent approach to (R)-Tiagabine by a regio- and stereocontrolled hydroiodination of alkynes. Org. Biomol. Chem., 2010, 8(15), 3509-3517.
[http://dx.doi.org/10.1039/c005042c] [PMID: 20532411]
[59]
Shimizu, M.; Toyoda, T.; Baba, T. An intriguing hydroiodination of alkenes and alkynes with titanium tetraiodide. Synlett, 2005, 2005(16), 2516-2518.
[http://dx.doi.org/10.1055/s-2005-872679]
[60]
Das, M.; Kaicharla, T.; Teichert, J.F. Stereoselective alkyne hydrohalogenation by trapping of transfer hydrogenation intermediates. Org. Lett., 2018, 20(16), 4926-4929.
[http://dx.doi.org/10.1021/acs.orglett.8b02055] [PMID: 30062890]
[61]
Zoubir, M.E.; Brown, J.A.; Ratovelomanana-Vidal, V.; Michelet, V. Iridium-catalyzed hydroiodination of functionalized alkynes. J. Organomet. Chem., 2011, 696, 433-441.
[http://dx.doi.org/10.1016/j.jorganchem.2010.10.052]
[62]
Dérien, S.; Klein, H.; Bruneau, C. Selective ruthenium-catalyzed hydrochlorination of alkynes: one-step synthesis of vinylchlorides. Angew. Chem. Int. Ed. Engl., 2015, 54(41), 12112-12115.
[http://dx.doi.org/10.1002/anie.201505144] [PMID: 26329762]
[63]
Muragishi, K.; Asahara, H.; Nishiwaki, N. Hydrohalogenation of ethynylpyridines involving nucleophilic attack of a halide ion. ACS Omega, 2017, 2(4), 1265-1272.
[http://dx.doi.org/10.1021/acsomega.7b00133] [PMID: 31457502]
[64]
Konradsson, P.; Mootoo, D.R.; McDevitt, R.E.; Fraser-Reid, B. Iodonium ion generated in situ from N-iodosuccinimide and trifluoromethanesulphonic acid promotes direct linkage of ‘disarmed’ pent-4-enyl glycosides. J. Chem. Soc. Chem. Commun., 1990, 270-272.
[http://dx.doi.org/10.1039/C39900000270]
[65]
Thottumkara, P.P.; Vinod, T.K. Oxidative cleavage of alkenes using an in situ generated iodonium ion with oxone as a terminal oxidant. Org. Lett., 2010, 12(24), 5640-5643.
[http://dx.doi.org/10.1021/ol1023807] [PMID: 21080687]
[66]
Okitsu, T.; Yumitate, S.; Sato, K.; In, Y.; Wada, A. Substituent effect of bis(pyridines)iodonium complexes as iodinating reagents: control of the iodocyclization/oxidation process. Chemistry, 2013, 19(16), 4992-4996.
[http://dx.doi.org/10.1002/chem.201204423] [PMID: 23450750]
[67]
Barluenga, J.; Gonzάlez, J.M.; Campos, P.J.; Asensio, G.I.I. (Py)2BF4, a new reagent in organic synthesis: general method for the 1,2-iodofunctionali-zation of olefins. Angew. Chem. Int. Ed. Engl., 1985, 24(4), 319-320.
[http://dx.doi.org/10.1002/anie.198503191]
[68]
Barluenga, J.; Rodríguez, M.A.; Campos, P.J.; Asensio, G. A general and useful copper(II)-promoted iodofunctionalization of unsaturated systems. J. Chem. Soc. Chem. Commun., 1987, 19, 1491-1492.
[http://dx.doi.org/10.1039/C39870001491]
[69]
Barluenga, J.; Rodríguez, M.A.; Campos, P.J. An efficient method for the copper(II)-promoted stereoselective iodofunctionalization of alkenes. J. Chem. Soc., Perkin Trans. 1, 1990, 10, 2807-2809.
[http://dx.doi.org/10.1039/P19900002807]
[70]
Campos, P.J.; Garcia, B.; Rodríguez, M.A. A simple and versatile method for the hydroiodination of alkenes and alkynes using I2 and Et3SiH in the presence of copper(II). Tetrahedron Lett., 2002, 43(35), 6111-6112.
[http://dx.doi.org/10.1016/S0040-4039(02)01335-7]
[71]
Feray, L.; Perfetti, P.; Betrand, M. AlCl3–NaI(NaBr)–t-BuOH: Mild, chemo- and stereoselective reagents for hydrohalogenation of propiolic derivatives. Tetrahedron, 2009, 65(42), 8733-8737.
[http://dx.doi.org/10.1016/j.tet.2009.08.032]
[72]
Feray, L.; Perfetti, P.; Bertrand, M. Mild stereoselective hydrohalogenation leading to (Z)-halopropenamides at room temperature. Synlett, 2009, 2009(1), 89-91.
[http://dx.doi.org/10.1055/s-0028-1087489]
[73]
Xu, Y.; Yin, Z.; Lin, X.; Gan, Z.; He, Y.; Gao, L.; Song, Z. 1,4-Hydroiodination of dienyl alcohols with TMSI to form homoallylic alcohols containing a multisubstituted Z-alkene and application to Prins cyclization. Org. Lett., 2015, 17(8), 1846-1849.
[http://dx.doi.org/10.1021/acs.orglett.5b00485] [PMID: 25825952]
[74]
Suta, K.; Turks, M.R. In(III) and Hf(IV) triflate-catalyzed hydration and catalyst-free hydrohalogenation of aryl acetylenes in liquid sulfur dioxide. ACS Omega, 2018, 3(12), 18065-18077.
[http://dx.doi.org/10.1021/acsomega.8b01630] [PMID: 31458393]
[75]
Kropp, P.J.; Daus, K.A.; Tubergen, M.W.; Kepler, K.D.; Wilson, V.P.; Craig, S.L.; Baillargeon, M.M.; Breton, G.W. Surface-mediated reactions. 3. Hydrohalogenation of alkenes. J. Am. Chem. Soc., 1993, 115(8), 3071-3079.
[http://dx.doi.org/10.1021/ja00061a005]
[76]
Petrone, D.A.; Franzoni, I.; Ye, J.; Rodríguez, J.F.; Poblador-Bahamonde, A.I.; Lautens, M. Palladium-catalyzed hydrohalogenation of 1,6-enynes: hydrogen halide salts and alkyl halides as convenient HX surrogates. J. Am. Chem. Soc., 2017, 139(9), 3546-3557.
[http://dx.doi.org/10.1021/jacs.7b00482] [PMID: 28195710]
[77]
Bissember, A.C.; Levina, A.; Fu, G.C. A mild, palladium-catalyzed method for the dehydrohalogenation of alkyl bromides: synthetic and mechanistic studies. J. Am. Chem. Soc., 2012, 134(34), 14232-14237.
[http://dx.doi.org/10.1021/ja306323x] [PMID: 22905894]
[78]
Chen, W.; Walker, J.C.L.; Oestreich, M. Metal-free transfer hydroiodination of C−C multiple bonds. J. Am. Chem. Soc., 2019, 141(2), 1135-1140.
[http://dx.doi.org/10.1021/jacs.8b12318] [PMID: 30550280]
[79]
Keess, S.; Oestreich, M. Cyclohexa-1,4-dienes in transition-metal-free ionic transfer processes. Chem. Sci. (Camb.), 2017, 8(7), 4688-4695.
[http://dx.doi.org/10.1039/C7SC01657C] [PMID: 28936336]
[80]
Oestreich, M. Transfer hydrosilylation. Angew. Chem. Int. Ed. Engl., 2016, 55(2), 494-499.
[http://dx.doi.org/10.1002/anie.201508879] [PMID: 26597123]
[81]
Chatterjee, I.; Qu, Z-W.; Grimme, S.; Oestreich, M.B. (C6F5)3-catalyzed transfer of dihydrogen from one unsaturated hydrocarbon to another. Angew. Chem. Int. Ed. Engl., 2015, 54(41), 12158-12162.
[http://dx.doi.org/10.1002/anie.201504941] [PMID: 26418183]
[82]
Yuan, W.; Orecchia, P.; Oestreich, M. Cyclohexa-1,3-diene-based dihydrogen and hydrosilane surrogates in B(C6F5)3-catalysed transfer processes. Chem. Commun. (Camb.), 2017, 53(75), 10390-10393.
[http://dx.doi.org/10.1039/C7CC06195A] [PMID: 28876009]
[83]
Chatterjee, I.; Oestreich, M. Brønsted acid-catalyzed transfer hydrogenation of imines and alkenes using cyclohexa-1,4-dienes as dihydrogen surrogates. Org. Lett., 2016, 18(10), 2463-2466.
[http://dx.doi.org/10.1021/acs.orglett.6b01016] [PMID: 27181437]
[84]
Nicolaou, K.C.; Edmonds, D.J.; Bulger, P.G. Cascade reactions in total synthesis. Angew. Chem. Int. Ed. Engl., 2006, 45(43), 7134-7186.
[http://dx.doi.org/10.1002/anie.200601872] [PMID: 17075967]
[85]
Sydnes, M.O. One-pot reactions: a step towards greener chemistry. Curr. Green Chem., 2014, 1(3), 216-226.
[http://dx.doi.org/10.2174/2213346101666140221225404]
[86]
Hayashi, Y. Pot economy and one-pot synthesis. Chem. Sci. (Camb.), 2016, 7(2), 866-880.
[http://dx.doi.org/10.1039/C5SC02913A] [PMID: 28791118]
[87]
Luo, F-T.; Fwu, S-L.; Huang, W-S. One-pot conversion of terminal alkynes into gem-disubstituted-alkenes. Tetrahedron Lett., 1992, 33(45), 6839-6840.
[http://dx.doi.org/10.1016/S0040-4039(00)61789-6]
[88]
Luo, F-T.; Hsieh, L-C.; Fwu, S-L.; Hwang, W-S. Synthesis of β-disubstituted enones from ynones. An alternative route to 1,4-addition of cuprate to the ynone system. J. Chin. Chem. Soc. (Taipei), 1994, 41(5), 605-607.
[http://dx.doi.org/10.1002/jccs.199400082]
[89]
Luo, F-T.; Hsieh, L-C. Palladium-catalyzed cross coupling reactions of β-iodo β,γ-enones-enones with organozinc chlorides. J. Org. Chem., 1996, 61(25), 9060-9061.
[http://dx.doi.org/10.1021/jo961113x] [PMID: 11667900]
[90]
Yamaguchi, K.; Kawaguchi, S-i.; Sonoda, M.; Tanimori, S. Ogawa, A. Copper-catalyzed tandem reaction directed toward synthesis of 2,2-disubstituted quinazolinones from vinyl halides and 2-aminobenzamides. Tetrahedron Lett., 2017, 58(43), 4043-4047.
[http://dx.doi.org/10.1016/j.tetlet.2017.09.001]
[91]
Tianpanich, K.; Prachya, S.; Wiyakrutta, S.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. Radical scavenging and antioxidant activities of isocoumarins and a phthalide from the endophytic fungus Colletotrichum sp. J. Nat. Prod., 2011, 74(1), 79-81.
[http://dx.doi.org/10.1021/np1003752] [PMID: 21174408]
[92]
Rukachaisirikul, V.; Rodglin, A.; Sukpondma, Y.; Phongpaichit, S.; Buatong, J.; Sakayaroj, J. Phthalide and isocoumarin derivatives produced by an Acremonium sp. isolated from a mangrove Rhizophora apiculata. J. Nat. Prod., 2012, 75(5), 853-858.
[http://dx.doi.org/10.1021/np200885e] [PMID: 22524636]
[93]
Kraus, G.A.; Cho, H.; Crowley, S.; Roth, B.; Sugimoto, H.; Prugh, S. Phthalide annulation: the synthesis of kalafungin, pachybasin, and chrysophanol. J. Org. Chem., 1983, 48(20), 3439-3444.
[http://dx.doi.org/10.1021/jo00168a013]
[94]
Kawaguchi, S-i.; Nakamura, K.; Yamaguchi, K.; Sato, Y.; Gonda, Y.; Nishioka, M.; Sonoda, M.; Nomoto, A.; Ogawa, A. Hydroiodination-triggered cascade reaction with I2/PPh3/H2O: metal-free access to 3-substituted phthalides from 2-alkynylbenzoates. Eur. J. Org. Chem., 2017, 2017(36), 5343-5346.
[http://dx.doi.org/10.1002/ejoc.201700839]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy