Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Δα,β-Butenolides [Furan-2(5H)-ones]: Ring Construction Approaches and Biological Aspects - A Mini-Review

Author(s): Andrés-Felipe Villamizar-Mogotocoro, Andrés-Felipe León-Rojas and Juan-Manuel Urbina-González*

Volume 17, Issue 8, 2020

Page: [922 - 945] Pages: 24

DOI: 10.2174/1570193X17666200220130735

Price: $65

Abstract

The five-membered oxacyclic system of furan-2(5H)-ones, commonly named as γ- butenolides or appropriately as Δα,β-butenolides, is of high interest since many studies have proven its bioactivity. During the past few years, Δα,β-butenolides have been important synthetic targets, with several reports of new procedures for their construction. A short compendium of the main different synthetic methodologies focused on the Δα,β-butenolide ring formation, along with selected examples of compounds with relevant biological activities of these promising pharmaceutical entities is presented.

Keywords: Δα, β-butenolide, butenolactone, furan-2(5H)-one, isocrotonolactone, unsaturated γ lactone, γ-butenolide.

Graphical Abstract

[1]
Rao, P.; Knaus, E.E. Evolution of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs): Cyclooxygenase (COX) inhibition and beyond. J. Pharm. Pharm. Sci., 2008, 11(2), 81s-110s.
[http://dx.doi.org/10.18433/J3T886] [PMID: 19203472]
[2]
Riendeau, D.; Percival, M.D.; Boyce, S.; Brideau, C.; Charleson, S.; Cromlish, W.; Ethier, D.; Evans, J.; Falgueyret, J.P.; Ford-Hutchinson, A.W.; Gordon, R.; Greig, G.; Gresser, M.; Guay, J.; Kargman, S.; Léger, S.; Mancini, J.A.; O’Neill, G.; Ouellet, M.; Rodger, I.W.; Thérien, M.; Wang, Z.; Webb, J.K.; Wong, E.; Chan, C.C. Biochemical and pharmacological profile of a tetrasubstituted furanone as a highly selective COX-2 inhibitor. Br. J. Pharmacol., 1997, 121(1), 105-117.
[http://dx.doi.org/10.1038/sj.bjp.0701076] [PMID: 9146894]
[3]
Kim, Y.; Nam, N-H.; You, Y-J.; Ahn, B-Z. Synthesis and cytotoxicity of 3,4-diaryl-2(5H)-furanones. Bioorg. Med. Chem. Lett., 2002, 12(4), 719-722.
[http://dx.doi.org/10.1016/S0960-894X(01)00831-9] [PMID: 11844709]
[4]
Bruder, M.; Vendramini-Costa, D.B.; de Carvalho, J.E.; Pilli, R.A. Design, synthesis and in vitro evaluation against human cancer cells of 5-methyl-5-styryl-2,5-dihydrofuran-2-ones, a new series of goniothalamin analogues. Bioorg. Med. Chem., 2013, 21(17), 5107-5117.
[http://dx.doi.org/10.1016/j.bmc.2013.06.044] [PMID: 23876338]
[5]
Bhardwaj, A.; Batchu, S.N.; Kaur, J.; Huang, Z.; Seubert, J.M.; Knaus, E.E. Cardiovascular properties of a nitric oxide releasing rofecoxib analogue: Beneficial anti-hypertensive activity and enhanced recovery in an ischemic reperfusion injury model. ChemMedChem, 2012, 7(8), 1365-1368.
[http://dx.doi.org/10.1002/cmdc.201200234] [PMID: 22689528]
[6]
Lin, P-C.; Shen, C-C.; Liao, C-K.; Jow, G-M.; Chiu, C-T.; Chung, T-H.; Wu, J-C. HYS-32, a novel analogue of combretastatin A-4, enhances connexin43 expression and gap junction intercellular communication in rat astrocytes. Neurochem. Int., 2013, 62(6), 881-892.
[http://dx.doi.org/10.1016/j.neuint.2013.02.027] [PMID: 23500605]
[7]
Borate, H.B.; Sawargave, S.P.; Chavan, S.P.; Chandavarkar, M.A.; Iyer, R.; Tawte, A.; Rao, D.; Deore, J.V.; Kudale, A.S.; Mahajan, P.S.; Kangire, G.S. Novel hybrids of fluconazole and furanones: Design, synthesis and antifungal activity. Bioorg. Med. Chem. Lett., 2011, 21(16), 4873-4878.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.022] [PMID: 21757344]
[8]
Schulz, D.; Ohlendorf, B.; Zinecker, H.; Schmaljohann, R.; Imhoff, J.F. Eutypoids B-E produced by a Penicillium sp. strain from the North Sea. J. Nat. Prod., 2011, 74(1), 99-101.
[http://dx.doi.org/10.1021/np100633k] [PMID: 21126094]
[9]
El Dine, R.S.; El Halawany, A.M.; Ma, C-M.; Hattori, M. Inhibition of the dimerization and active site of HIV-1 protease by secondary metabolites from the Vietnamese mushroom Ganoderma colossum. J. Nat. Prod., 2009, 72(11), 2019-2023.
[http://dx.doi.org/10.1021/np900279u] [PMID: 19813754]
[10]
Niu, X-M.; Li, S-H.; Sun, H-D.; Che, C-T. Prenylated phenolics from Ganoderma fornicatum. J. Nat. Prod., 2006, 69(9), 1364-1365.
[http://dx.doi.org/10.1021/np060218k] [PMID: 16989537]
[11]
Choi, H.; Hwang, H.; Chin, J.; Kim, E.; Lee, J.; Nam, S-J.; Lee, B.C.; Rho, B.J.; Kang, H. Tuberatolides, potent FXR antagonists from the Korean marine tunicate Botryllus tuberatus. J. Nat. Prod., 2011, 74(1), 90-94.
[http://dx.doi.org/10.1021/np100489u] [PMID: 21142112]
[12]
Avetisyan, A.A.; Dangyan, M.T. The Chemistry of Δαβ-butenolides. Russ. Chem. Rev., 1977, 46(7), 643-656.
[http://dx.doi.org/10.1070/RC1977v046n07ABEH002162]
[13]
Knight, D. Synthetic approaches to butenolides. Contemp. Org. Synth., 1994, 1(4), 287-315.
[http://dx.doi.org/10.1039/co9940100287]
[14]
Laduwahetty, T. Saturated and unsaturated lactones. Contemp. Org. Synth., 1995, 2(3), 133-149.
[http://dx.doi.org/10.1039/co9950200133]
[15]
Collins, I. Saturated and unsaturated lactones. Contemp. Org. Synth., 1996, 3(4), 295-321.
[http://dx.doi.org/10.1039/co9960300295]
[16]
Carter, N.B.; Nadany, A.E.; Sweeney, J.B. Recent developments in the synthesis of furan-2(5H)-ones J. Chem. Soc. Perkin 1, 2002, 21, 2324-2342.
[17]
De Souza, M.V.N. The furan-2(5H)-ones: Recent synthetic methodologies and its application in total synthesis of natural products. Mini Rev. Org. Chem., 2005, 2(2), 139-145.
[http://dx.doi.org/10.2174/1570193053544427]
[18]
Ugurchieva, T.M.; Veselovsky, V.V. Advances in the synthesis of natural butano- and butenolides. Russ. Chem. Rev., 2009, 78(4), 337-373.
[http://dx.doi.org/10.1070/RC2009v078n04ABEH003899]
[19]
Mao, B.; Fañanás-Mastral, M.; Feringa, B.L. Catalytic asymmetric synthesis of butenolides and butyrolactones. Chem. Rev., 2017, 117(15), 10502-10566.
[http://dx.doi.org/10.1021/acs.chemrev.7b00151] [PMID: 28640622]
[20]
Husain, A.; Khan, S.A.; Iram, F.; Iqbal, M.A.; Asif, M. Insights into the chemistry and therapeutic potential of furanones: A versatile pharmacophore. Eur. J. Med. Chem., 2019, 171, 66-92.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.021] [PMID: 30909021]
[21]
León-Rojas, A.F.; Urbina-González, J.M. Las furan-2[5H]-onas (∆α,β-butenolidas), su preparación e importancia biológica In: Av. En Quím. Universidad de los Andes, Mérida, , 2015; 10, pp. pp. 67-78.
[22]
Rao, Y.S. Chemistry of butenolides. Chem. Rev., 1964, 64(4), 353-388.
[http://dx.doi.org/10.1021/cr60230a002]
[23]
Rao, Y.S. Recent advances in the chemistry of unsaturated lactones. Chem. Rev., 1976, 76(5), 625-694.
[http://dx.doi.org/10.1021/cr60303a004]
[24]
Lima, C.G.S.; Monteiro, J.L.; de Melo Lima, T.; Weber Paixão, M.; Corrêa, A.G. Angelica lactones: From biomass-derived platform chemicals to value-added products. ChemSusChem, 2018, 11(1), 25-47.
[http://dx.doi.org/10.1002/cssc.201701469] [PMID: 28834397]
[25]
Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Sferrazza, A. Palladium-catalyzed reaction of arenediazonium tetrafluoroborates with methyl 4-hydroxy-2-butenoate: An approach to 4-aryl butenolides and an expeditious synthesis of rubrolide E. Synlett, 2009, 2009(8), 1277-1280.
[http://dx.doi.org/10.1055/s-0028-1088132]
[26]
Wu, J.; Zhu, Q.; Wang, L.; Fathi, R.; Yang, Z. Palladium-catalyzed cross-coupling reactions of 4-tosyl-2(5H)-furanone with boronic acids: A facile and efficient route to generate 4-substituted 2(5H)-furanones. J. Org. Chem., 2003, 68(2), 670-673.
[http://dx.doi.org/10.1021/jo020640f] [PMID: 12530910]
[27]
McRae, J.A.; Kuehner, A.L. The condensation of benzoin and benzyl with ethyl cyano-acetate. J. Am. Chem. Soc., 1930, 52(8), 3377-3382.
[http://dx.doi.org/10.1021/ja01371a059]
[28]
Hashem, A.I.; Abou-Elmagd, W.S.I.; Abd-Elaziz, A. Synthesis and reactions of some 2(3H)- and 2(5H)- furanone derivatives: A com-parative study. Eur. Chem. Bull., 2014, 3(10-12), 1064-1068.
[29]
Hashem, A.I.; Abou-Elmagd, W.S.I.; El-Bordany, E.A.; Abdel Aziz, A. Synthesis and reactions of a 2(5H)-. furanone bearing two furyl substituents. J. Heterocycl. Chem., 2019, 56(1), 218-225.
[http://dx.doi.org/10.1002/jhet.3398]
[30]
Cheikh, N.; Villemin, D.; Bar, N.; Lohier, J-F.; Choukchou-Braham, N.; Mostefa-Kara, B.; Sopkova, J. A Serendipitous conversion of enaminolactone nitriles with primary amines: A new synthesis of substituted 2-aminopyridine derivatives. Tetrahedron, 2013, 69(3), 1234-1247.
[http://dx.doi.org/10.1016/j.tet.2012.10.108]
[31]
Villemin, D.; Cheikh, N.; Liao, L.; Bar, N.; Lohier, J-F.; Sopkova, J.; Choukchou-Braham, N.; Mostefa-Kara, B. Two versatile routes towards cerpegin and analogues: Applications of a one pot reaction to new analogues of cerpegin. Tetrahedron, 2012, 68(24), 4906-4918.
[http://dx.doi.org/10.1016/j.tet.2012.03.057]
[32]
Dikshit, D.K.; Singh, S.; Singh, M.M.; Kamboj, V.P. Synthesis and biological activity of 2,3- and 3,4-diarylfurans and 2,3,4-triaryl-2,5-dihydrofurans. Indian J. Chem. Sect. B Org. Chem. Incl. Med. Chem., 1990, 29(10), 954-960.
[33]
Dikshit, D.K.; Singh, S.; Singh, M.M.; Kamboj, V.P. Synthesis and biological activity of 2,3- and 3,4-diarylfurans and 2,3,4-triaryl-2,5-dihydrofurans. ChemInform, 1991, 22(3)
[http://dx.doi.org/10.1002/chin.199103156]
[34]
Mao, W.; Zhu, C. Synergistic acid-promoted synthesis of highly substituted butenolides via the annulation of keto acids and tertiary alcohols. Org. Lett., 2015, 17(22), 5710-5713.
[http://dx.doi.org/10.1021/acs.orglett.5b03026] [PMID: 26551928]
[35]
Ghosh, A.K.; Cappiello, J.; Shin, D. Ring-closing metathesis strategy to unsaturated γ- and δ-lactones: Synthesis of hydroxyethylene isostere for protease inhibitors. Tetrahedron Lett., 1998, 39(26), 4651-4654.
[http://dx.doi.org/10.1016/S0040-4039(98)00887-9] [PMID: 30422130]
[36]
Mao, B.; Geurts, K.; Fañanás-Mastral, M.; van Zijl, A.W.; Fletcher, S.P.; Minnaard, A.J.; Feringa, B.L. Catalytic enantioselective synthesis of naturally occurring butenolides via hetero-allylic alkylation and ring closing metathesis. Org. Lett., 2011, 13(5), 948-951.
[http://dx.doi.org/10.1021/ol102994q] [PMID: 21268603]
[37]
Tan, K.; Yan, H.; Lu, P.; Liu, Y.; Ji, R.; Liu, Z.; Li, Y-M.; Yu, F-C.; Shen, Y. Access to multisubstituted 2(5 H)-furanones using hydrogen bonding-promoted ring-closing metathesis and polyamine workup. J. Org. Chem., 2019, 84(6), 3419-3430.
[http://dx.doi.org/10.1021/acs.joc.8b03293] [PMID: 30807154]
[38]
Selvakumar, N.; Kalyan Kumar, P.; Chandra Shekar Reddy, K.; Chandra Chary, B. Synthesis of substituted butenolides by the ring closing metathesis of two electron deficient olefins: A general route to the natural products of paraconic acids class. Tetrahedron Lett., 2007, 48(11), 2021-2024.
[http://dx.doi.org/10.1016/j.tetlet.2007.01.053]
[39]
Fürstner, A.; Langemann, K. Total syntheses of (+)-ricinelaidic acid lactone and of (−)-gloeosporone based on transition-metal-catalyzed C−C bond formations. J. Am. Chem. Soc., 1997, 119(39), 9130-9136.
[http://dx.doi.org/10.1021/ja9719945]
[40]
Albrecht, U.; Langer, P. Synthesis of spirocyclic butenolides by ring closing metathesis. Tetrahedron, 2007, 63(22), 4648-4654.
[http://dx.doi.org/10.1016/j.tet.2007.03.100]
[41]
Langer, P.; Albrecht, U. Synthesis of spirocyclic butenolides by ring closing metathesis. Synlett, 2002, 2002(11), 1841-1842.
[http://dx.doi.org/10.1055/s-2002-34906]
[42]
Schmidt, B.; Geißler, D. Ring-closing metathesis of acrylates: A comparative study. ChemCatChem, 2010, 2(4), 423-429.
[http://dx.doi.org/10.1002/cctc.200900282]
[43]
Bassetti, M.; D’Annibale, A.; Fanfoni, A.; Minissi, F. Synthesis of α,β-unsaturated 4,5-disubstituted γ-lactones via ring-closing metathesis catalyzed by the first-generation Grubbs’ catalyst. Org. Lett., 2005, 7(9), 1805-1808.
[http://dx.doi.org/10.1021/ol0504087] [PMID: 15844911]
[44]
Virolleaud, M-A.; Piva, O. Domino ring-closing metathesis/intramolecular transfer of an alkenyl subunit: A direct formation of functionalized butenolides and pyrones from α,β-and β,γ-unsaturated esters. Synlett, 2004, 2004(12), 2087-2090.
[45]
Hoye, T.R.; Donaldson, S.M.; Vos, T.J. An enyne metathesis/(4 + 2)-dimerization route to (+/-)-differolide. Org. Lett., 1999, 1(2), 277-279.
[http://dx.doi.org/10.1021/ol9905912] [PMID: 10822563]
[46]
Matthews, C.N.; Birum, G.H. Triphenylphosphoranylideneketene. Tetrahedron Lett., 1966, 7(46), 5707-5710.
[http://dx.doi.org/10.1016/S0040-4039(01)84182-4]
[47]
Bestmann, H.J. Phosphacumulene ylides and phosphaallene ylides. Angew. Chem. Int. Ed. Engl., 1977, 16(6), 349-364.
[48]
Bestmann, H.J.; Sandmeier, D. Simple synthesis of ketenylidenetriphenylphosphorane and its thioanalogs. Angew. Chem. Int. Ed. Engl., 1975, 14(9), 634.
[http://dx.doi.org/10.1002/anie.197506341]
[49]
Matsuo, K.; Shindo, M. Cu(II)-catalyzed acylation by thiol esters under neutral conditions: Tandem acylation-wittig reaction leading to a one-pot synthesis of butenolides. Org. Lett., 2010, 12(22), 5346-5349.
[http://dx.doi.org/10.1021/ol102407k] [PMID: 20979406]
[50]
Ohtsuki, K.; Matsuo, K.; Yoshikawa, T.; Moriya, C.; Tomita-Yokotani, K.; Shishido, K.; Shindo, M. Total synthesis of (+)- and (-)-sundiversifolide via intramolecular acylation and determination of the absolute configuration. Org. Lett., 2008, 10(6), 1247-1250.
[http://dx.doi.org/10.1021/ol8001333] [PMID: 18288857]
[51]
Crespo-Peña, A.; Monge, D.; Martín-Zamora, E.; Álvarez, E.; Fernández, R.; Lassaletta, J.M. Asymmetric formal carbonyl-ene reactions of formaldehyde tert-butyl hydrazone with α-keto esters: Dual activation by bis-urea catalysts. J. Am. Chem. Soc., 2012, 134(31), 12912-12915.
[http://dx.doi.org/10.1021/ja305209w] [PMID: 22823936]
[52]
Adam, J-M.; Foricher, J.; Hanlon, S.; Lohri, B.; Moine, G.; Schmid, R.; Stahr, H.; Weber, M.; Wirz, B.; Zutter, U. Development of a scalable synthesis of (s)-3-fluoromethyl-γ-butyrolactone, building block for Carmegliptin’s Lactam moiety. Org. Process Res. Dev., 2011, 15(3), 515-526.
[http://dx.doi.org/10.1021/op200019k]
[53]
Schobert, R.; Dietrich, M.; Mullen, G.; Urbina-Gonzalez, J-M. Phosphorus ylide based functionalizations of tetronic and tetramic acids. Synthesis, 2006, 2006(22), 3902-3914.
[http://dx.doi.org/10.1055/s-2006-950310]
[54]
Krawczyk, E.; Koprowski, M.; Łuczak, J. A stereoselective approach to optically active butenolides by Horner-Wadsworth-Emmons olefination reaction of α-hydroxy ketones. Tetrahedron Asymmetry, 2007, 18(15), 1780-1787.
[http://dx.doi.org/10.1016/j.tetasy.2007.07.027]
[55]
Aksin, O.; Dege, N.; Artok, L.; Türkmen, H.; Çetinkaya, B. Rhodium-catalyzed carbonylative arylation of alkynes with arylboronic acids: An efficient and straightforward method in the synthesis of 5-aryl-2(5H)-furanones. Chem. Commun. (Camb.), 2006, 2006(30), 3187-3189.
[http://dx.doi.org/10.1039/B604742D] [PMID: 17028738]
[56]
Hossaini, Z.; Hamadi, H.; Charati, F.R.; Khoobi, M.; Shafiee, A. isocyanide-based three-component synthesis of functionalized 5-alkylimino-2,5-dihydrofuran-3,4-dicarboxylate and their conversion to substituted furanones. J. Heterocycl. Chem., 2011, 48(3), 626-633.
[http://dx.doi.org/10.1002/jhet.633]
[57]
Neuhaus, J.D.; Willis, M.C. Homogeneous rhodium(I)-catalysis in de novo heterocycle syntheses. Org. Biomol. Chem., 2016, 14(22), 4986-5000.
[http://dx.doi.org/10.1039/C6OB00835F] [PMID: 27197887]
[58]
Genin, E.; Michelet, V.; Genêt, J-P. Rh-catalyzed addition of boronic acids to alkynes for the synthesis of trisubstituted alkenes in a biphasic system - mechanistic study and recycling of the Rh/m-TPPTC Catalyst. J. Organomet. Chem., 2004, 689(23), 3820-3830.
[http://dx.doi.org/10.1016/j.jorganchem.2004.07.025]
[59]
Genin, E.; Michelet, V.; Genêt, J-P. Efficient synthesis of trisubstituted alkenes in an aqueous-organic system using a versatile and recyclable Rh/M-Tpptc catalyst. Tetrahedron Lett., 2004, 45(21), 4157-4161.
[http://dx.doi.org/10.1016/j.tetlet.2004.03.136]
[60]
Hayashi, T.; Inoue, K.; Taniguchi, N.; Ogasawara, M. Rhodium-catalyzed hydroarylation of alkynes with arylboronic acids: 1,4-shift of rhodium from 2-aryl-1-alkenylrhodium to 2-alkenylarylrhodium intermediate. J. Am. Chem. Soc., 2001, 123(40), 9918-9919.
[http://dx.doi.org/10.1021/ja0165234] [PMID: 11583565]
[61]
Lautens, M.; Yoshida, M. Rhodium-catalyzed addition of arylboronic acids to alkynyl aza-heteroaromatic compounds in water. J. Org. Chem., 2003, 68(3), 762-769.
[http://dx.doi.org/10.1021/jo0205255] [PMID: 12558397]
[62]
Alfonsi, M.; Arcadi, A.; Chiarini, M.; Marinelli, F. Sequential rhodium-catalyzed stereo- and regioselective addition of organoboron derivatives to the alkyl 4-hydroxy-2-alkynoates/lactonizaction reaction. J. Org. Chem., 2007, 72(25), 9510-9517.
[http://dx.doi.org/10.1021/jo701629t] [PMID: 17983242]
[63]
Yamamoto, Y.; Kirai, N. Synthesis of 4-aryl-substituted butenolides and pentenolides by copper-catalyzed hydroarylation. Heterocycles, 2010, 80(1), 269-279.
[http://dx.doi.org/10.3987/COM-09-S(S)8]
[64]
Oh, C.H.; Park, S.J.; Ryu, J.H.; Gupta, A.K. Regioselective Pd-catalyzed alkylative lactonizations of 4-hydroxy-2-alkynecarb-oxylates with organoboronic acids. Tetrahedron Lett., 2004, 45(38), 7039-7042.
[http://dx.doi.org/10.1016/j.tetlet.2004.07.129]
[65]
Le, Z.; Ying, J.; Wu, X-F. More than a CO source: Palladium-Catalyzed carbonylative synthesis of butenolides from propargyl alcohols and TFBen. Org. Chem. Front., 2019, 6(17), 3158-3161.
[http://dx.doi.org/10.1039/C9QO00779B]
[66]
Egi, M.; Ota, Y.; Nishimura, Y.; Shimizu, K.; Azechi, K.; Akai, S. Efficient intramolecular cyclizations of phenoxyethynyl diols into multisubstituted α,β-unsaturated lactones. Org. Lett., 2013, 15(16), 4150-4153.
[http://dx.doi.org/10.1021/ol401824v] [PMID: 23905884]
[67]
Liu, L-P.; Xu, B.; Mashuta, M.S.; Hammond, G.B. Synthesis and structural characterization of stable organogold(I) compounds. Evidence for the mechanism of gold-catalyzed cyclizations. J. Am. Chem. Soc., 2008, 130(52), 17642-17643.
[http://dx.doi.org/10.1021/ja806685j] [PMID: 19055329]
[68]
Liu, Y.; Song, F.; Song, Z.; Liu, M.; Yan, B. Gold-catalyzed cyclization of (Z)-2-en-4-yn-1-ols: Highly efficient synthesis of fully substituted dihydrofurans and furans. Org. Lett., 2005, 7(24), 5409-5412.
[http://dx.doi.org/10.1021/ol052160r] [PMID: 16288518]
[69]
Lei, Y.; Wang, Z-Q.; Xie, Y-X.; Yu, S-C.; Tang, B-X.; Li, J-H. Base-mediated tandem reaction consisting of an acyl shift strategy leading to 4,5-disubstiuted furan-2(5H)-. Ones. Adv. Synth. Catal., 2011, 353(1), 31-35.
[http://dx.doi.org/10.1002/adsc.201000762]
[70]
Cui, F-H.; Su, S-X.; Xu, Y.; Liang, Y.; Wang, H.; Pan, Y-M. Capture of CO2 in air for 4,5-disubstituted furan-2(5h). Ones. Org. Chem. Front., 2016, 3(10), 1304-1308.
[http://dx.doi.org/10.1039/C6QO00328A]
[71]
Hu, Y.; Ding, Q.; Ye, S.; Peng, Y.; Wu, J. Rapid access to 4-substituted-pyrones and 2(5h)-furanones via a palladium-catalyzed C-OH bond activation. Tetrahedron, 2011, 67(38), 7258-7262.
[http://dx.doi.org/10.1016/j.tet.2011.07.048]
[72]
Rossi, R.; Lessi, M.; Manzini, C.; Marianetti, G.; Bellina, F. Synthesis and biological properties of 2(5H)-furanones featuring bromine atoms on the heterocyclic ring and/or brominated substituents. Curr. Org. Chem., 2017, 21(11), 964-1018.
[http://dx.doi.org/10.2174/1385272821666170111151917]
[73]
Nguyen, S.S.; Ferreira, A.J.; Long, Z.G.; Heiss, T.K.; Dorn, R.S.; Row, R.D.; Prescher, J.A. Butenolide synthesis from functionalized cyclopropenones. Org. Lett., 2019, 21(21), 8695-8699.
[http://dx.doi.org/10.1021/acs.orglett.9b03298] [PMID: 31622107]
[74]
Li, X.; Han, C.; Yao, H.; Lin, A. Organocatalyzed [3 + 2] annulation of cyclopropenones and β-ketoesters: An approach to substituted butenolides with a quaternary center. Org. Lett., 2017, 19(4), 778-781.
[http://dx.doi.org/10.1021/acs.orglett.6b03737] [PMID: 28133962]
[75]
Park, S.; Pak, G.; Oh, C.; Lee, J.; Kim, J.; Yu, C-M. Kinetic resolution of racemic aldehydes through asymmetric allenoate γ-addition: Synthesis of (+)-xylogiblactone A. Org. Lett., 2019, 21(18), 7660-7664.
[http://dx.doi.org/10.1021/acs.orglett.9b02982] [PMID: 31486655]
[76]
Yu, Q.; Ma, S. Copper-catalyzed cyclic oxytrifluoromethylation of 2,3-allenoic acids to trifluoromethylated butenolides. Chemistry, 2013, 19(40), 13304-13308.
[http://dx.doi.org/10.1002/chem.201302169] [PMID: 24026870]
[77]
Pan, S.; Huang, Y.; Xu, X-H.; Qing, F-L. Copper-assisted oxidative trifluoromethylthiolation of 2,3-allenoic acids with AgSCF3. Org. Lett., 2017, 19(17), 4624-4627.
[http://dx.doi.org/10.1021/acs.orglett.7b02249] [PMID: 28809499]
[78]
Zhou, K.; Zhang, J.; Qiu, G.; Wu, J. Copper(II)-catalyzed reaction of 2,3-allenoic acids, sulfur dioxide, and aryldiazonium tetrafluoroborates: Route to 4-sulfonylated furan-2(5 H)-ones. Org. Lett., 2019, 21(1), 275-278.
[http://dx.doi.org/10.1021/acs.orglett.8b03718] [PMID: 30566361]
[79]
Wu, Y.; Singh, R.P.; Deng, L. Asymmetric olefin isomerization of butenolides via proton transfer catalysis by an organic molecule. J. Am. Chem. Soc., 2011, 133(32), 12458-12461.
[http://dx.doi.org/10.1021/ja205674x] [PMID: 21766859]
[80]
Sakai, T.; Hirashima, S.I.; Matsushima, Y.; Nakano, T.; Ishii, D.; Yamashita, Y.; Nakashima, K.; Koseki, Y.; Miura, T. Synthesis of chiral γ,γ-disubstituted γ-butenolides via direct vinylogous aldol reaction of substituted furanone derivatives with aldehydes. Org. Lett., 2019, 21(8), 2606-2609.
[http://dx.doi.org/10.1021/acs.orglett.9b00574] [PMID: 30924673]
[81]
El Arba, M.; Dibrell, S.E.; Meece, F.; Frantz, D.E. Ru(II)-catalyzed synthesis of substituted furans and their conversion to butenolides. Org. Lett., 2018, 20(18), 5886-5888.
[http://dx.doi.org/10.1021/acs.orglett.8b02554] [PMID: 30204453]
[82]
Ollevier, T.; Bouchard, J-E.; Desyroy, V. Diastereoselective Mukaiyama aldol reaction of 2-(trimethylsilyloxy)furan catalyzed by bismuth triflate. J. Org. Chem., 2008, 73(1), 331-334.
[http://dx.doi.org/10.1021/jo702085p] [PMID: 18069852]
[83]
Peng, Y.; Duan, S-M.; Wang, Y-W. Concise synthesis of the DEFG ring system in rubriflordilactone B. Tetrahedron Lett., 2015, 56(30), 4509-4511.
[http://dx.doi.org/10.1016/j.tetlet.2015.05.117]
[84]
Mohammad, M.; Chintalapudi, V.; Carney, J.M.; Mansfield, S.J.; Sanderson, P.; Christensen, K.E.; Anderson, E.A. Convergent total syntheses of (-)-rubriflordilactone B and (-)-pseudo-rubriflordilactone B. Angew. Chem. Int. Ed. Engl., 2019, 58(50), 18177-18181.
[http://dx.doi.org/10.1002/anie.201908917] [PMID: 31595605]
[85]
Alexander, T.S.; Clay, T.J.; Maldonado, B.; Nguyen, J.M.; Martin, D.B.C. Comparative studies of palladium and copper-catalysed γ-arylation of silyloxy furans with diaryliodonium salts. Tetrahedron, 2019, 75(14), 2229-2238.
[http://dx.doi.org/10.1016/j.tet.2019.02.042]
[86]
Snieckus, V.; Dowling, M. Synthesis of γ-arylated butenolides by palladium or copper catalysis. Synfacts, 2019, 15(6), 594.
[http://dx.doi.org/10.1055/s-0037-1611586]
[87]
Suga, H.; Kitamura, T.; Kakehi, A.; Baba, T. Asymmetric Michael addition reactions of 2-silyloxyfurans catalyzed by binaphthyldiimine-Ni(II) complexes. Chem. Commun. (Camb.), 2004, 2004(12), 1414-1415.
[http://dx.doi.org/10.1039/B402826K] [PMID: 15179491]
[88]
Fournier, J.; Lozano, O.; Menozzi, C.; Arseniyadis, S.; Cossy, J. Palladium-catalyzed asymmetric allylic alkylation of cyclic dienol carbonates: Efficient route to enantioenriched γ-butenolides bearing an all-carbon α-quaternary stereogenic center. Angew. Chem. Int. Ed. Engl., 2013, 52(4), 1257-1261.
[http://dx.doi.org/10.1002/anie.201206368] [PMID: 23225348]
[89]
Aubert, S.; Katsina, T.; Arseniyadis, S. A Sequential Pd-AAA/cross-metathesis/cope rearrangement strategy for the stereoselective synthesis of chiral butenolides. Org. Lett., 2019, 21(7), 2231-2235.
[http://dx.doi.org/10.1021/acs.orglett.9b00521] [PMID: 30888193]
[90]
Xie, X.; Li, Y.; Fox, J.M. Selective syntheses of Δ(α,β) and Δ(β,γ) butenolides from allylic cyclopropenecarboxylates via tandem ring expansion/[3,3]-sigmatropic rearrangements. Org. Lett., 2013, 15(7), 1500-1503.
[http://dx.doi.org/10.1021/ol400264a] [PMID: 23514430]
[91]
Sugiyama, S.; Satoh, T. Asymmetric synthesis of both enantiomers of esters and γ-lactones from optically active 1-chlorovinyl p-tolyl sulfoxides and lithium ester enolates with the formation of a tertiary or a quaternary carbon stereogenic center at the β-position. Tetrahedron Asymmetry, 2005, 16(3), 665-673.
[http://dx.doi.org/10.1016/j.tetasy.2004.11.085]
[92]
Katae, T.; Sugiyama, S.; Satoh, T. Multisubstituted α,β-unsaturated γ-lactones from 1-chlorovinyl p-tolyl sulfoxides and tert-butyl carboxylates using pummerer-type cyclization as the key reaction. Synthesis, 2011, 2011(09), 1435-1441.
[http://dx.doi.org/10.1055/s-0030-1259987]
[93]
Zvarych, V.; Nakonechna, A.; Marchenko, M.; Khudyi, O.; Lubenets, V.; Khuda, L.; Kushniryk, O.; Novikov, V. Hydrogen peroxide oxygenation of furan-2-carbaldehyde via an easy, green method. J. Agric. Food Chem., 2019, 67(11), 3114-3117.
[http://dx.doi.org/10.1021/acs.jafc.8b06284] [PMID: 30811195]
[94]
Zhdankin, V.V. Hypervalent iodine (III) reagents in organic synthesis. ARKIVOC, 2009, 1, 1-62.
[95]
Ladziata, U.; Zhdankin, V.V. Hypervalent iodine (V) reagents in organic synthesis. ARKIVOC, 2006, 9, 26-58.
[96]
He, Y.; Pu, Y.; Shao, B.; Yan, J. Novel catalytic bromolactonization of alkenoic acids using iodobenzene and oxone®. J. Heterocycl. Chem., 2011, 48(3), 695-698.
[http://dx.doi.org/10.1002/jhet.617]
[97]
Soldatova, N.; Postnikov, P.; Troyan, A.A.; Yoshimura, A.; Yusubov, M.S.; Zhdankin, V.V. Mild and efficient synthesis of iodylarenes using oxone as oxidant. Tetrahedron Lett., 2016, 57(37), 4254-4256.
[http://dx.doi.org/10.1016/j.tetlet.2016.08.038]
[98]
Singh, F.V.; Rehbein, J.; Wirth, T. Facile oxidative rearrangements using hypervalent iodine reagents. ChemistryOpen, 2012, 1(6), 245-250.
[http://dx.doi.org/10.1002/open.201200037] [PMID: 24551514]
[99]
Ding, R.; Liu, Y.; Liu, L.; Li, H.; Tao, S.; Sun, B.; Tian, H. A facile synthesis of γ-butenolides via cyclization of 3-alkenoic acids with dimethyl sulfoxide and oxalyl bromide. Synth. Commun., 2019, 49(21), 3001-3007.
[http://dx.doi.org/10.1080/00397911.2019.1652914]
[100]
Ding, R.; Lan, L.; Li, S.; Liu, Y.; Yang, S.; Tian, H.; Sun, B. A novel method for the chlorolactonization of alkenoic acids using diphenyl sulfoxide/oxalyl chloride. Synthesis, 2018, 50(13), 2555-2566.
[http://dx.doi.org/10.1055/s-0037-1609687]
[101]
Ding, R.; Li, Y.; Liu, Y.; Sun, B.; Yang, S.; Tian, H. Synthesis of butenolides by reactions of 3-alkenoic acids with diphenyl sulfoxide/oxalyl chloride. Flavour Fragrance J., 2018, 33(6), 397-404.
[http://dx.doi.org/10.1002/ffj.3464]
[102]
Ding, R.; Li, J.; Jiao, W.; Han, M.; Liu, Y.; Tian, H.; Sun, B. A highly efficient method for the bromination of alkenes, alkynes and ketones using dimethyl sulfoxide and oxalyl bromide. Synthesis, 2018, 50(21), 4325-4335.
[http://dx.doi.org/10.1055/s-0037-1609560]
[103]
Browne, D.M.; Niyomura, O.; Wirth, T. Catalytic use of selenium electrophiles in cyclizations. Org. Lett., 2007, 9(16), 3169-3171.
[http://dx.doi.org/10.1021/ol071223y] [PMID: 17608489]
[104]
Wirth, T. Organoselenium Chemistry: Synthesis and Reactions; John Wiley & Sons: Weinheim, 2012.
[105]
Kawamata, Y.; Hashimoto, T.; Maruoka, K. A chiral electrophilic selenium catalyst for highly enantioselective oxidative cyclization. J. Am. Chem. Soc., 2016, 138(16), 5206-5209.
[http://dx.doi.org/10.1021/jacs.6b01462] [PMID: 27064419]
[106]
Prasit, P.; Wang, Z.; Brideau, C.; Chan, C-C.; Charleson, S.; Cromlish, W.; Ethier, D.; Evans, J.F.; Ford-Hutchinson, A.W.; Gauthier, J.Y.; Gordon, R.; Guay, J.; Gresser, M.; Kargman, S.; Kennedy, B.; Leblanc, Y.; Léger, S.; Mancini, J.; O’Neill, G.P.; Ouellet, M.; Percival, M.D.; Perrier, H.; Riendeau, D.; Rodger, I.; Zamboni, R.; Thérien, M.; Vickers, P.; Wong, E.; Xu, L-J.; Young, R.N.; Zamboni, R.; Boyce, S.; Rupniak, N.; Forrest, M.; Visco, D.; Patrick, D. The discovery of rofecoxib, [MK 966, Vioxx, 4-(4′-methylsulfonylphenyl)-3-phenyl-2(5H)-furanone], an orally active cyclooxygenase-2-inhibitor. Bioorg. Med. Chem. Lett., 1999, 9(13), 1773-1778.
[http://dx.doi.org/10.1016/S0960-894X(99)00288-7] [PMID: 10406640]
[107]
Waxman, H.A. The lessons of Vioxx-drug safety and sales. N. Engl. J. Med., 2005, 352(25), 2576-2578.
[http://dx.doi.org/10.1056/NEJMp058136] [PMID: 15972862]
[108]
Ramajayam, R. Medicinal chemistry of vicinal diaryl scaffold: A mini review. Eur. J. Med. Chem., 2019, 162, 1-17.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.054] [PMID: 30396033]
[109]
Wang, Z.; Leger, S.; Grimm, E. Diaryl-5-alkyl-5-methyl-2(5h)- furanones as selective cyclooxygenase-2 inhibitors. WO199923087 A1 1999.
[110]
Chen, Q-H.; Rao, P.N.; Knaus, E.E. Synthesis and biological evaluation of a novel class of rofecoxib analogues as dual inhibitors of cyclooxygenases (COXs) and lipoxygenases (LOXs). Bioorg. Med. Chem., 2006, 14(23), 7898-7909.
[http://dx.doi.org/10.1016/j.bmc.2006.07.047] [PMID: 16904331]
[111]
Rowland, S.E.; Clark, P.; Gordon, R.; Mullen, A.K.; Guay, J.; Dufresne, L.; Brideau, C.; Cote, B.; Ducharme, Y.; Mancini, J.; Chan, C.C.; Audoly, L.; Xu, D. Pharmacological characterization of a selective COX-2 inhibitor MF-tricyclic, [3-(3,4-difluorophenyl)-4-(4-(methylsulfonyl)phenyl)-2-(5H)-furanone], in multiple preclinical species. Eur. J. Pharmacol., 2007, 560(2-3), 216-224.
[http://dx.doi.org/10.1016/j.ejphar.2007.01.008] [PMID: 17316604]
[112]
Zarghi, A.; Praveen Rao, P.N.; Knaus, E.E. Sulfonamido, azidosulfonyl and N-acetylsulfonamido analogues of rofecoxib: 4-[4-(N-acetylsulfonamido)phenyl]-3-(4-methanesulfonylphenyl)-2(5H)furanone is a potent and selective cyclooxygenase-2 inhibitor. Bioorg. Med. Chem. Lett., 2004, 14(8), 1957-1960.
[http://dx.doi.org/10.1016/j.bmcl.2004.01.076] [PMID: 15050636]
[113]
Navidpour, L.; Amini, M.; Shafaroodi, H.; Abdi, K.; Ghahremani, M.H.; Dehpour, A.R.; Shafiee, A. Design and synthesis of new water-soluble tetrazolide derivatives of celecoxib and rofecoxib as selective cyclooxygenase-2 (COX-2) inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(17), 4483-4487.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.032] [PMID: 16806914]
[114]
Zarghi, A.; Praveen Rao, P.N.; Knaus, E.E. Synthesis and biological evaluation of methanesulfonamide analogues of rofecoxib: Replacement of methanesulfonyl by methanesulfonamido decreases cyclooxygenase-2 selectivity. Bioorg. Med. Chem., 2007, 15(2), 1056-1061.
[http://dx.doi.org/10.1016/j.bmc.2006.10.023] [PMID: 17067801]
[115]
Eren, G.; Unlü, S.; Nuñez, M-T.; Labeaga, L.; Ledo, F.; Entrena, A.; Banoğlu, E.; Costantino, G.; Şahin, M.F. Synthesis, biological evaluation, and docking studies of novel heterocyclic diaryl compounds as selective COX-2 inhibitors. Bioorg. Med. Chem., 2010, 18(17), 6367-6376.
[http://dx.doi.org/10.1016/j.bmc.2010.07.009] [PMID: 20692174]
[116]
Sun, L.; Vasilevich, N.I.; Fuselier, J.A.; Coy, D.H. Abilities of 3,4-diarylfuran-2-one analogs of combretastatin A-4 to inhibit both proliferation of tumor cell lines and growth of relevant tumors in nude mice. Anticancer Res., 2004, 24(1), 179-186.
[PMID: 15015595]
[117]
Clark, B.; Capon, R.J.; Lacey, E.; Tennant, S.; Gill, J.H.; Bulheller, B.; Bringmann, G. Gymnoascolides A-C: Aromatic butenolides from an Australian isolate of the soil ascomycete Gymnoascus reessii. J. Nat. Prod., 2005, 68(8), 1226-1230.
[http://dx.doi.org/10.1021/np050145p] [PMID: 16124766]
[118]
Hosoe, T.; Iizuka, T.; Komai, S.; Wakana, D.; Itabashi, T.; Nozawa, K.; Fukushima, K.; Kawai, K. 4-benzyl-3-phenyl-5H-furan-2-one, a vasodilator isolated from Malbranchea filamentosa IFM 41300. Phytochemistry, 2005, 66(23), 2776-2779.
[http://dx.doi.org/10.1016/j.phytochem.2005.08.014] [PMID: 16213536]
[119]
Choi, Y.H.; Hong, S.S.; Shin, Y.S.; Hwang, B.Y.; Park, S-Y.; Lee, D. Phenolic compounds from Pueraria lobata protect PC12 cells against Aβ-induced toxicity. Arch. Pharm. Res., 2010, 33(10), 1651-1654.
[http://dx.doi.org/10.1007/s12272-010-1014-7] [PMID: 21052940]
[120]
Vasisht, K.; Karan, M.; Dhobe, M. Novel compounds as memory enhancers. WO2013/179309 A1 2013.
[121]
Xiao, W-L.; Yang, L-M.; Gong, N-B.; Wu, L.; Wang, R-R.; Pu, J-X.; Li, X-L.; Huang, S-X.; Zheng, Y-T.; Li, R-T.; Lu, Y.; Zheng, Q-T.; Sun, H-D. Rubriflordilactones A and B, two novel bisnortriterpenoids from Schisandra rubriflora and their biological activities. Org. Lett., 2006, 8(5), 991-994.
[http://dx.doi.org/10.1021/ol060062f] [PMID: 16494492]
[122]
Nam, N-H.; Kim, Y.; You, Y-J.; Hong, D-H.; Kim, H-M.; Ahn, B.Z. Synthesis and cytotoxicity of some rigid derivatives of methyl 2,5-dihydroxycinnamate. Arch. Pharm. Res., 2002, 25(5), 590-599.
[http://dx.doi.org/10.1007/BF02976927] [PMID: 12433188]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy