Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Exploring the Role of Asp1116 in Selective Drug Targeting of CREBcAMP- Responsive Element-binding Protein Implicated in Prostate Cancer

Author(s): Oluwayimika E. Akinsiku, Opeyemi S. Soremekun, Fisayo A. Olotu and Mahmoud E.S. Soliman*

Volume 23, Issue 3, 2020

Page: [178 - 184] Pages: 7

DOI: 10.2174/1386207323666200219122057

Price: $65

Abstract

Background: The selective targeting of CREB-cAMP-responsive element-binding protein (CBP) has recently evolved as a vital therapeutic approach for curtailing its aberrant upregulation associated with the development of prostate cancer. Inhibition of CBP has been discovered to be an important therapeutic option in androgen receptor signalling pathway mediated prostate cancer. Y08197, a novel selective inhibitor of CBP, has shown promising therapeutic outcome in prostate carcinogenesis over non-selective analogues such as CPI-637.

Methods/Results: Herein, we used molecular dynamics simulation to gain insights into the mechanistic and selective targeting of Y08197 at the bromodomain active site. Molecular Mechanics/ Poisson-Boltzmann Surface Area (MM/PBSA) analysis revealed a similar inhibitory effect between Y08197 and CPI-637. Furthermore, in exploring the selective affinity of Y08197 towards CBP in combination with Bromodomain and PHD finger-containing protein 1(BRPF1), our findings highlighted Asp1116 as the ‘culprit’ residue responsible for this selective targeting. Upon binding, Asp1116 assumed a conformation that altered the architecture of the bromodomain active site, thereby orienting the helices around the active site in a more compacted position. In addition to some specific structural perturbations mediated by Asp1116 on the dynamics of CBP, our study revealed that the strong hydrogen bond interaction (N-H...O) elicited in CBP-Y08197 sequestered Y08197 tightly into the CBP bromodomain active site.

Conclusion: Conclusively, the inhibition and selective pattern of Y08197 can be replicated in future structure-based CBP inhibitors and other bromodomain implicated in carcinogenesis.

Keywords: CBP, BRPF1, prostate cancer, Y08197, molecular dynamic simulation, CBP inhibitors.

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I. Global Cancer Statistics 2018 :. GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. 2018, 394-424.
[2]
Kaarbø, M.; Klokk, T.I.; Saatcioglu, F. Androgen signaling and its interactions with other signaling pathways in prostate cancer. Bioessays, 2007, 1227-1238.
[http://dx.doi.org/10.1002/bies.20676]
[3]
Penticuff, J.C.; Kyprianou, N. Pathophysiology of Castration-Resistant Prostate Cancer. In: Managing Metastatic Prostate Cancer In Your Urological Oncology Practice; Springer Nature: Switzerland, 2016; pp. 5-23.
[http://dx.doi.org/10.1007/978-3-319-31341-2]
[4]
Bellmunt, J.; Oh, W.K. Castration-resistant prostate cancer: new science and therapeutic prospects. Ther. Adv. Med. Oncol., 2010, 2, 189-207.
[http://dx.doi.org/10.1177/1758834009359769]
[5]
Racca, F. Resistant Prostate Cancer Treatment (MCRPC). GU, CNS and Sarcoma Programme Oncology Department Vall d’ Hebron University Hospital, Barcelona, Spain.
[6]
Yuan, X.; Balk, S.P. Mechanisms mediating androgen receptor reactivation after castration. Urol. Oncol., 2009, 27(1), 36-41.
[http://dx.doi.org/10.1016/j.urolonc.2008.03.021] [PMID: 19111796]
[7]
Comuzzi, B.; Nemes, C.; Schmidt, S.; Jasarevic, Z.; Lodde, M.; Pycha, A.; Bartsch, G.; Offner, F.; Culig, Z.; Hobisch, A. The androgen receptor co-activator CBP is up-regulated following androgen withdrawal and is highly expressed in advanced prostate cancer. J. Pathol., 2004, 204(2), 159-166.
[http://dx.doi.org/10.1002/path.1609] [PMID: 15378487]
[8]
Rathkopf, D.E.; Scher, H.I. Apalutamide for the treatment of prostate cancer. Expert Rev. Anticancer Ther., 2018, 18(9), 823-836.
[http://dx.doi.org/10.1080/14737140.2018.1503954] [PMID: 30101644]
[9]
Zou, L. Y08197 is a novel and selective CBP/EP300 bromodomain inhibitor for the treatment of prostate cancer. Acta Pharmacol. Sin., 2018, 2019, 1-12.
[http://dx.doi.org/10.1038/s41401-019-0237-5] [PMID: 31097763]
[10]
Zhu, J.; Dong, J.; Batiste, L.; Unzue, A.; Dolbois, A.; Pascanu, V.; Śledź, P.; Nevado, C.; Caflisch, A. Binding motifs in the CBP bromodomain: An analysis of 20 crystal structures of complexes with small molecules. ACS Med. Chem. Lett., 2018, 9(9), 929-934.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00286] [PMID: 30258543]
[11]
Zhu, J.; Zhou, C.; Caflisch, A. Structure-based discovery of selective BRPF1 bromodomain inhibitors. Eur. J. Med. Chem., 2018, 155, 337-352.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.037] [PMID: 29902720]
[12]
Eswar, N.; Webb, B.; Marti-Renom, M.A.; Madhusudhan, M.S.; Eramian, D.; Shen, M-Y.; Pieper, U.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Protein Sci., 2007, 50, 2.9.1-2.9.31.
[http://dx.doi.org/10.1002/0471140864.ps0209s50]
[13]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys., 1983, 79(2), 926-935.
[http://dx.doi.org/10.1063/1.445869]
[14]
Weedbrook, C.; Pirandola, S.; Cerf, N.J.; Ralph, T.C.; Shapiro, J.H.; Lloyd, S. Gaussian quantum information. Rev. Mod. Phys., 2012, 84, 621.
[http://dx.doi.org/10.1103/RevModPhys.84.621]
[15]
Yang, Z.; Lasker, K.; Schneidman-Duhovny, D.; Webb, B.; Huang, C.C.; Pettersen, E.F.; Goddard, T.D.; Meng, E.C.; Sali, A.; Ferrin, T.E. UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J. Struct. Biol., 2012, 179(3), 269-278.
[http://dx.doi.org/10.1016/j.jsb.2011.09.006] [PMID: 21963794]
[16]
David, A. Case. AmberTools12 Reference Manual; Russell J; Bertrand Russell Arch, 2012, p. 535.
[17]
Salomon-ferrer, R.; Case, D.A.; Walker, R.C. An overview of the amber biomolecular simulation package. WIREs, 2020, 3, 189-210.
[http://dx.doi.org/10.1002/wcms.1121]
[18]
Roe, D.R.; Cheatham, T.E. III PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput., 2013, 9(7), 3084-3095.
[http://dx.doi.org/10.1021/ct400341p] [PMID: 26583988]
[19]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[20]
Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D.A.; Cheatham, T.E., III Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res., 2000, 33(12), 889-897.
[http://dx.doi.org/10.1021/ar000033j] [PMID: 11123888]
[21]
Krieger, E.; Nabuurs, S.B.; Vriend, G. Homology modeling. Struct. Bioinforma, 2003, 44, 507-521.
[22]
Soremekun, O.S.; Olotu, F.A.; Agoni, C.; Soliman, M.E.S. Drug promiscuity: Exploring the polypharmacology potential of 1, 3, 6-trisubstituted 1, 4-diazepane-7-ones as an inhibitor of the ‘god father’ of immune checkpoint. Comput. Biol. Chem., 2019, 80, 433-440.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.05.009] [PMID: 31146119]
[23]
Martínez, L. Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS One, 2015, 10(3) e0119264
[http://dx.doi.org/10.1371/journal.pone.0119264] [PMID: 25816325]
[24]
Soremekun, O.S.; Olotu, F.A.; Agoni, C.; Soliman, M.E.S. Recruiting Monomer for Dimer Formation: Resolving the antagonistic mechanisms of novel immune check point inhibitors against programmed death ligand-1 in cancer immunotherapy. Mol. Simul., 2019, 45(10), 777-789.
[http://dx.doi.org/10.1080/08927022.2019.1593977]
[25]
Zhao, H.; Tang, S.; Xu, X.; Du, L. Hydrogen bonding interaction between atmospheric gaseous amides and methanol. Int. J. Mol. Sci., 2017, 18(1), 4.
[26]
Hubbard, R.E.; Haider, K.M. Hydrogen bonds in proteins: role and strength. Encycl. Life Sci., 2010, 2010
[http://dx.doi.org/10.1002/978047001 5902.a0003011.pub2]
[27]
Lawal, M.; Olotu, F.A.; Soliman, M.E.S. Across the blood-brain barrier: Neurotherapeutic screening and characterization of naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimer’s disease using bioinformatics and computational tools. Comput. Biol. Med., 2018, 98, 168-177.
[http://dx.doi.org/10.1016/j.compbiomed.2018.05.012] [PMID: 29860210]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy