Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Precision Medicine Approach in Prostate Cancer

Author(s): Majid Assadi, Narges Jokar, Mojtaba Ghasemi, Iraj Nabipour, Ali Gholamrezanezhad and Hojjat Ahmadzadehfar*

Volume 26, Issue 31, 2020

Page: [3783 - 3798] Pages: 16

DOI: 10.2174/1381612826666200218104921

Price: $65

Abstract

Prostate cancer is the most prevalent type of cancer and the second cause of death in men worldwide. Various diagnostic and treatment procedures are available for this type of malignancy, but High-grade or locally advanced prostate cancers showed the potential to develop to lethal phase that can be causing dead. Therefore, new approaches are needed to prolong patients’ survival and to improve their quality of life. Precision medicine is a novel emerging field that plays an essential role in identifying new sub-classifications of diseases and in providing guidance in treatment that is based on individual multi-omics data. Multi-omics approaches include the use of genomics, transcriptomics, proteomics, metabolomics, epigenomics and phenomics data to unravel the complexity of a disease-associated biological network, to predict prognostic biomarkers, and to identify new targeted drugs for individual cancer patients. We review the impact of multi-omics data in the framework of systems biology in the era of precision medicine, emphasising the combination of molecular imaging modalities with highthroughput techniques and the new treatments that target metabolic pathways involved in prostate cancer.

Keywords: Castration-resistant prostate cancer, PSMA Theranostic, prostate biomarker, systems biology, network analysis, metabolic network, precision medicine, omics tool.

[1]
Cooperberg MR, Broering JM, Carroll PR. Time trends and local variation in primary treatment of localized prostate cancer. J Clin Oncol 2010; 28(7): 1117-23.
[http://dx.doi.org/10.1200/JCO.2009.26.0133] [PMID: 20124165]
[2]
Chang AJ, Autio KA, Roach M III, Scher HI. High-risk prostate cancer-classification and therapy. Nat Rev Clin Oncol 2014; 11(6): 308-23.
[http://dx.doi.org/10.1038/nrclinonc.2014.68] [PMID: 24840073]
[3]
Dong D-X, Ji Z-G. Current progress and controversies in prostate cancer management. Chin Med J (Engl) 2017; 130(24): 2991-5.
[http://dx.doi.org/10.4103/0366-6999.220317] [PMID: 29237932]
[4]
Bozeman CB, Carver BS, Caldito G, Venable DD, Eastham JA. Prostate cancer in patients with an abnormal digital rectal examination and serum prostate-specific antigen less than 4.0 ng/mL. Urology 2005; 66(4): 803-7.
[http://dx.doi.org/10.1016/j.urology.2005.04.058] [PMID: 16230142]
[5]
Barajas-Gamboa JS, Tarquino PF, Pedraza JE, Gonzalez-Nuñez D. Reaching a personalized medicine era: the dream of the drug market. Br J Med Pract 2016; 9(3): 5-7.
[6]
McCrea EM, Lee DK, Sissung TM, Figg WD. Precision medicine applications in prostate cancer. Ther Adv Med Oncol 2018.101758835918776920
[http://dx.doi.org/10.1177/1758835918776920] [PMID: 29977347]
[7]
McGarty TP. 7 TYPES OF. Prostate Cancer 2016. ResearchGate. Available at: https://www.researchgate.net/publication/299545761_Seven_Types_of_Prostate_Cancer
[8]
Dalby M, Cree IA, Challoner BR, Ghosh S, Thurston DE. The precision medicine approach to cancer therapy: part 1-solid tumours. Prevention 2019; p. 10.
[9]
Willard SS, Koochekpour S. Regulators of gene expression as biomarkers for prostate cancer. Am J Cancer Res 2012; 2(6): 620-57.
[PMID: 23226612]
[10]
Nowacka-Zawisza M, Wiśnik E. DNA methylation and histone modifications as epigenetic regulation in prostate cancer. (Review) Oncol Rep 2017; 38(5): 2587-96.
[http://dx.doi.org/10.3892/or.2017.5972] [PMID: 29048620]
[11]
Yang M, Park JY. DNA methylation in promoter region as biomarkers in prostate cancerCancer Epigenetics. Springer 2012; pp. 67-109.
[http://dx.doi.org/10.1007/978-1-61779-612-8_5]
[12]
Shevrin DH. Genomic predictors for treatment of late stage prostate cancer. Asian J Androl 2016; 18(4): 586-91.
[http://dx.doi.org/10.4103/1008-682X.177121] [PMID: 27030083]
[13]
Chistiakov DA, Myasoedova VA, Grechko AV, Melnichenko AA, Orekhov AN. New biomarkers for diagnosis and prognosis of localized prostate cancer, Seminars in cancer biology. Elsevier 2018; pp. 9-16.
[14]
Feyerabend T, Richter E, Brandt A. Multiple malignomas-an analysis of 352 patients. Strahlentherapie und Onkologie. Organ der Deutschen Rontgengesellschaft [et al] 1991; 167(4): 214-9.
[15]
Dimakakos A, Armakolas A, Koutsilieris M. Novel tools for prostate cancer prognosis, diagnosis, and follow-up. BioMed research international 2014; 2014
[http://dx.doi.org/10.1155/2014/890697]
[16]
Davalieva K, Polenakovic M. Proteomics in Diagnosis of Prostate Cancer/Протеомика Во Дијагноза На Простатниот Карцином. prilozi 2015; 36(1): 5-36.
[17]
Frantzi M, Latosinska A, Merseburger AS, Mischak H. Recent progress in urinary proteome analysis for prostate cancer diagnosis and management. Expert Rev Mol Diagn 2015; 15(12): 1539-54.
[http://dx.doi.org/10.1586/14737159.2015.1104248] [PMID: 26491818]
[18]
Wu D, Ni J, Beretov J, et al. Urinary biomarkers in prostate cancer detection and monitoring progression. Crit Rev Oncol Hematol 2017; 118: 15-26.
[http://dx.doi.org/10.1016/j.critrevonc.2017.08.002] [PMID: 28917266]
[19]
Iglesias-Gato D, Wikström P, Tyanova S, et al. The proteome of primary prostate cancer. Eur Urol 2016; 69(5): 942-52.
[http://dx.doi.org/10.1016/j.eururo.2015.10.053] [PMID: 26651926]
[20]
Zhang A, Yan G, Han Y, Wang X. Metabolomics approaches and applications in prostate cancer research. Appl Biochem Biotechnol 2014; 174(1): 6-12.
[http://dx.doi.org/10.1007/s12010-014-0955-6] [PMID: 24838846]
[21]
Trock BJ. In Application of metabolomics to prostate cancer, Urologic Oncology: Seminars and Original Investigations. Elsevier 2011; pp. 572-81.
[22]
DeFeo EM, Wu C-L, McDougal WS, Cheng LL. A decade in prostate cancer: from NMR to metabolomics. Nat Rev Urol 2011; 8(6): 301-11.
[http://dx.doi.org/10.1038/nrurol.2011.53] [PMID: 21587223]
[23]
Sciarra A, Panebianco V, Salciccia S, et al. Modern role of magnetic resonance and spectroscopy in the imaging of prostate cancer, Urologic Oncology: Seminars and Original Investigations. Elsevier 2011; pp. 12-20.
[24]
Tian J-Y, Guo F-J, Zheng G-Y, Ahmad A. Prostate cancer: updates on current strategies for screening, diagnosis and clinical implications of treatment modalities. Carcinogenesis 2018; 39(3): 307-17.
[http://dx.doi.org/10.1093/carcin/bgx141] [PMID: 29216344]
[25]
Catalona WJ, Richie JP, Ahmann FR, et al. Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. J Urol 1994; 151(5): 1283-90.
[http://dx.doi.org/10.1016/S0022-5347(17)35233-3] [PMID: 7512659]
[26]
Sindhwani P, Wilson CM. Prostatitis and serum prostate-specific antigen. Curr Urol Rep 2005; 6(4): 307-12.
[http://dx.doi.org/10.1007/s11934-005-0029-y] [PMID: 15978235]
[27]
Moyer VA. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 2012; 157(2): 120-34.
[http://dx.doi.org/10.7326/0003-4819-157-2-201207170-00459] [PMID: 22801674]
[28]
Calabria F, Rubello D, Schillaci O. The optimal timing to perform 18F/11C-choline PET/CT in patients with suspicion of relapse of prostate cancer: trigger PSA versus PSA velocity and PSA doubling time. London, England: SAGE Publications Sage UK 2014.
[29]
Gupta A, Roobol MJ, Savage CJ, et al. A four-kallikrein panel for the prediction of repeat prostate biopsy: data from the European Randomized Study of Prostate Cancer screening in Rotterdam, Netherlands. Br J Cancer 2010; 103(5): 708-14.
[http://dx.doi.org/10.1038/sj.bjc.6605815] [PMID: 20664589]
[30]
Lövgren J, Rajakoski K, Karp M. Lundwall â, Lilja H. Activation of the zymogen form of prostate-specific antigen by human glandular kallikrein 2. Biochem Biophys Res Commun 1997; 238(2): 549-55.
[http://dx.doi.org/10.1006/bbrc.1997.7333] [PMID: 9299549]
[31]
Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC. Natural history of progression after PSA elevation following radical prostatectomy. JAMA 1999; 281(17): 1591-7.
[http://dx.doi.org/10.1001/jama.281.17.1591] [PMID: 10235151]
[32]
Antonarakis ES, Chen Y, Elsamanoudi SI, et al. Long-term overall survival and metastasis-free survival for men with prostate-specific antigen-recurrent prostate cancer after prostatectomy: analysis of the Center for Prostate Disease Research National Database. BJU Int 2011; 108(3): 378-85.
[http://dx.doi.org/10.1111/j.1464-410X.2010.09878.x] [PMID: 21091976]
[33]
Perlmutter MA, Lepor H. Prostate-specific antigen doubling time is a reliable predictor of imageable metastases in men with biochemical recurrence after radical retropubic prostatectomy. Urology 2008; 71(3): 501-5.
[http://dx.doi.org/10.1016/j.urology.2007.10.012] [PMID: 18342197]
[34]
Song C, Kim YS, Hong JH, Kim CS, Ahn H. Treatment failure and clinical progression after salvage therapy in men with biochemical recurrence after radical prostatectomy: radiotherapy vs androgen deprivation. BJU Int 2010; 106(2): 188-93.
[http://dx.doi.org/10.1111/j.1464-410X.2009.09136.x] [PMID: 20002666]
[35]
Loeb S, Kettermann A, Ferrucci L, Landis P, Metter EJ, Carter HB. PSA doubling time versus PSA velocity to predict high-risk prostate cancer: data from the Baltimore Longitudinal Study of Aging. Eur Urol 2008; 54(5): 1073-80.
[http://dx.doi.org/10.1016/j.eururo.2008.06.076] [PMID: 18614274]
[36]
Kryvenko ON, Epstein JI. Improving the evaluation and diagnosis of clinically significant prostate cancer. Curr Opin Urol 2017; 27(3): 191-7.
[http://dx.doi.org/10.1097/MOU.0000000000000388] [PMID: 28376512]
[37]
Shen J, Hruby GW, McKiernan JM, et al. Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer. Prostate 2012; 72(13): 1469-77.
[http://dx.doi.org/10.1002/pros.22499] [PMID: 22298119]
[38]
Zedan AH, Blavnsfeldt SG, Hansen TF, et al. Heterogeneity of miRNA expression in localized prostate cancer with clinicopathological correlations. PLoS One 2017; 12(6)e0179113
[http://dx.doi.org/10.1371/journal.pone.0179113] [PMID: 28628624]
[39]
Luu HN, Lin H-Y, Sørensen KD, et al. miRNAs associated with prostate cancer risk and progression. BMC Urol 2017; 17(1): 18.
[http://dx.doi.org/10.1186/s12894-017-0206-6] [PMID: 28320379]
[40]
Tosoian JJ, Ross AE, Sokoll LJ, Partin AW, Pavlovich CP. Urinary biomarkers for prostate cancer. Urol Clin North Am 2016; 43(1): 17-38.
[http://dx.doi.org/10.1016/j.ucl.2015.08.003] [PMID: 26614026]
[41]
Hessels D, Schalken JA. Urinary biomarkers for prostate cancer: a review. Asian J Androl 2013; 15(3): 333-9.
[http://dx.doi.org/10.1038/aja.2013.6] [PMID: 23524531]
[42]
Millar DS, Ow KK, Paul CL, Russell PJ, Molloy PL, Clark SJ. Detailed methylation analysis of the glutathione S-transferase π (GSTP1) gene in prostate cancer. Oncogene 1999; 18(6): 1313-24.
[http://dx.doi.org/10.1038/sj.onc.1202415] [PMID: 10022813]
[43]
Sreekumar A, Poisson LM, Rajendiran TM, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009; 457(7231): 910-4.
[http://dx.doi.org/10.1038/nature07762] [PMID: 19212411]
[44]
Cao DL, Ye DW, Zhu Y, Zhang HL, Wang YX, Yao XD. Efforts to resolve the contradictions in early diagnosis of prostate cancer: a comparison of different algorithms of sarcosine in urine. Prostate Cancer Prostatic Dis 2011; 14(2): 166-72.
[http://dx.doi.org/10.1038/pcan.2011.2] [PMID: 21321584]
[45]
Lucarelli G, Fanelli M, Larocca AMV, et al. Serum sarcosine increases the accuracy of prostate cancer detection in patients with total serum PSA less than 4.0 ng/ml. Prostate 2012; 72(15): 1611-21.
[http://dx.doi.org/10.1002/pros.22514] [PMID: 22430630]
[46]
Bussemakers MJ, van Bokhoven A, Verhaegh GW, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res 1999; 59(23): 5975-9.
[PMID: 10606244]
[47]
de Kok JB, Verhaegh GW, Roelofs RW, et al. DD3(PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res 2002; 62(9): 2695-8.
[PMID: 11980670]
[48]
Gittelman MC, Hertzman B, Bailen J, et al. PCA3 molecular urine test as a predictor of repeat prostate biopsy outcome in men with previous negative biopsies: a prospective multicenter clinical study. J Urol 2013; 190(1): 64-9.
[http://dx.doi.org/10.1016/j.juro.2013.02.018] [PMID: 23416644]
[49]
Merola R, Tomao L, Antenucci A, et al. PCA3 in prostate cancer and tumor aggressiveness detection on 407 high-risk patients: a National Cancer Institute experience. J Exp Clin Cancer Res 2015; 34(1): 15.
[http://dx.doi.org/10.1186/s13046-015-0127-8] [PMID: 25651917]
[50]
Auprich M, Augustin H, Budäus L, et al. A comparative performance analysis of total prostate-specific antigen, percentage free prostate-specific antigen, prostate-specific antigen velocity and urinary prostate cancer gene 3 in the first, second and third repeat prostate biopsy. BJU Int 2012; 109(11): 1627-35.
[http://dx.doi.org/10.1111/j.1464-410X.2011.10584.x] [PMID: 21939492]
[51]
Hessels D, Smit FP, Verhaegh GW, Witjes JA, Cornel EB, Schalken JA. Detection of TMPRSS2-ERG fusion transcripts and prostate cancer antigen 3 in urinary sediments may improve diagnosis of prostate cancer. Clin Cancer Res 2007; 13(17): 5103-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0700] [PMID: 17785564]
[52]
Liu B, Gu X, Huang T, Luan Y, Ding X. Identification of TMPRSS2-ERG mechanisms in prostate cancer invasiveness: Involvement of MMP-9 and plexin B1. Oncol Rep 2017; 37(1): 201-8.
[http://dx.doi.org/10.3892/or.2016.5277] [PMID: 28004109]
[53]
Pan J, Ding M, Xu K, Yang C, Mao L-J. Exosomes in diagnosis and therapy of prostate cancer. Oncotarget 2017; 8(57): 97693-700.
[http://dx.doi.org/10.18632/oncotarget.18532] [PMID: 29228644]
[54]
McKiernan J, Donovan MJ, O’Neill V, et al. A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol 2016; 2(7): 882-9.
[http://dx.doi.org/10.1001/jamaoncol.2016.0097] [PMID: 27032035]
[55]
Cooperberg M R, Simko J P, Cowan J E, et al. Validation of a cell-cycle progression gene panel to improve risk stratification in a contemporary prostatectomy cohort 2013.
[http://dx.doi.org/10.1200/JCO.2012.46.4396]
[56]
Szulkin R, Whitington T, Eklund M, et al. Prediction of individual genetic risk to prostate cancer using a polygenic score. Prostate 2015; 75(13): 1467-74.
[http://dx.doi.org/10.1002/pros.23037] [PMID: 26177737]
[57]
Ferro M, Buonerba C, Terracciano D, et al. Biomarkers in localized prostate cancer. Future Oncol 2016; 12(3): 399-411.
[http://dx.doi.org/10.2217/fon.15.318] [PMID: 26768791]
[58]
Crawford ED, Scholz MC, Kar AJ, et al. Cell cycle progression score and treatment decisions in prostate cancer: results from an ongoing registry. Curr Med Res Opin 2014; 30(6): 1025-31.
[http://dx.doi.org/10.1185/03007995.2014.899208] [PMID: 24576172]
[59]
Nguyen HG, Welty CJ, Cooperberg MR. Diagnostic associations of gene expression signatures in prostate cancer tissue. Curr Opin Urol 2015; 25(1): 65-70.
[http://dx.doi.org/10.1097/MOU.0000000000000131] [PMID: 25405934]
[60]
Knezevic D, Goddard AD, Natraj N, et al. Analytical validation of the Oncotype DX prostate cancer assay - a clinical RT-PCR assay optimized for prostate needle biopsies. BMC Genomics 2013; 14(1): 690.
[http://dx.doi.org/10.1186/1471-2164-14-690] [PMID: 24103217]
[61]
Cullen J, Rosner IL, Brand TC, et al. A biopsy-based 17-gene genomic prostate score predicts recurrence after radical prostatectomy and adverse surgical pathology in a racially diverse population of men with clinically low-and intermediate-risk prostate cancer. Eur Urol 2015; 68(1): 123-31.
[http://dx.doi.org/10.1016/j.eururo.2014.11.030] [PMID: 25465337]
[62]
Heichman KA, Warren JD. DNA methylation biomarkers and their utility for solid cancer diagnostics. Clin Chem Lab Med 2012; 50(10): 1707-21.
[http://dx.doi.org/10.1515/cclm-2011-0935] [PMID: 23089699]
[63]
Partin AW, Van Neste L, Klein EA, et al. Clinical validation of an epigenetic assay to predict negative histopathological results in repeat prostate biopsies. J Urol 2014; 192(4): 1081-7.
[http://dx.doi.org/10.1016/j.juro.2014.04.013] [PMID: 24747657]
[64]
Strand SH, Orntoft TF, Sorensen KD. Prognostic DNA methylation markers for prostate cancer. Int J Mol Sci 2014; 15(9): 16544-76.
[http://dx.doi.org/10.3390/ijms150916544] [PMID: 25238417]
[65]
Pin E, Fredolini C, Petricoin EF III. The role of proteomics in prostate cancer research: biomarker discovery and validation. Clin Biochem 2013; 46(6): 524-38.
[http://dx.doi.org/10.1016/j.clinbiochem.2012.12.012] [PMID: 23266295]
[66]
Ferrando AA, Neuberg DS, Staunton J, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1(1): 75-87.
[http://dx.doi.org/10.1016/S1535-6108(02)00018-1] [PMID: 12086890]
[67]
Singh D, Febbo PG, Ross K, et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002; 1(2): 203-9.
[http://dx.doi.org/10.1016/S1535-6108(02)00030-2] [PMID: 12086878]
[68]
Cavallo F, De Giovanni C, Nanni P, Forni G, Lollini P-L. 2011: the immune hallmarks of cancer. Cancer Immunol Immunother 2011; 60(3): 319-26.
[http://dx.doi.org/10.1007/s00262-010-0968-0] [PMID: 21267721]
[69]
Kherlopian AR, Song T, Duan Q, et al. A review of imaging techniques for systems biology. BMC Syst Biol 2008; 2(1): 74.
[http://dx.doi.org/10.1186/1752-0509-2-74] [PMID: 18700030]
[70]
Gould J, Getz G, Monti S, Reich M, Mesirov JP. Comparative gene marker selection suite. Bioinformatics 2006; 22(15): 1924-5.
[http://dx.doi.org/10.1093/bioinformatics/btl196] [PMID: 16709585]
[71]
Wang X, Zhang A, Sun H. Power of metabolomics in diagnosis and biomarker discovery of hepatocellular carcinoma. Hepatology 2013; 57(5): 2072-7.
[http://dx.doi.org/10.1002/hep.26130] [PMID: 23150189]
[72]
Gehlenborg N, O’Donoghue SI, Baliga NS, et al. Visualization of omics data for systems biology. Nat Methods 2010; 7(3)(Suppl.): S56-68.
[http://dx.doi.org/10.1038/nmeth.1436] [PMID: 20195258]
[73]
Rouvière O. Imaging techniques for local recurrence of prostate cancer: for whom, why and how? Diagn Interv Imaging 2012; 93(4): 279-90.
[http://dx.doi.org/10.1016/j.diii.2012.01.012] [PMID: 22464995]
[74]
Choueiri TK, Dreicer R, Paciorek A, Carroll PR, Konety B. A model that predicts the probability of positive imaging in prostate cancer cases with biochemical failure after initial definitive local therapy. J Urol 2008; 179(3): 906-10.
[http://dx.doi.org/10.1016/j.juro.2007.10.059] [PMID: 18207194]
[75]
Ceci F, Fiorentino M, Castellucci P, Fanti S. Molecular imaging and precision medicine in prostate cancer. PET Clin 2017; 12(1): 83-92.
[http://dx.doi.org/10.1016/j.cpet.2016.08.004] [PMID: 27863569]
[76]
Gomez P, Manoharan M, Kim SS, Soloway MS. Radionuclide bone scintigraphy in patients with biochemical recurrence after radical prostatectomy: when is it indicated? BJU Int 2004; 94(3): 299-302.
[http://dx.doi.org/10.1111/j.1464-410X.2004.04927.x] [PMID: 15291855]
[77]
Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA 2000; 97(16): 9226-33.
[http://dx.doi.org/10.1073/pnas.97.16.9226] [PMID: 10922074]
[78]
Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 2006; 47(2): 287-97.
[PMID: 16455635]
[79]
Bouchelouche K. Turkbey, B; Choyke, P LPSMA PET and radionuclide therapy in prostate cancer, Seminars in nuclear medicine. Elsevier 2016; pp. 522-35.
[80]
Radiology ES. Medical imaging in personalised medicine: a white paper of the research committee of the European Society of Radiology (ESR). Insights Imaging 2015; 6(2): 141-55.
[http://dx.doi.org/10.1007/s13244-015-0394-0] [PMID: 25763994]
[81]
Mertan F, Turkbey B. Incorporating imaging into personalized medicine for the detection of prostate cancer: Pharmacological research-Urogenital pharmacology. Pharmacol Res 2016; 114: 163-5.
[http://dx.doi.org/10.1016/j.phrs.2016.10.020] [PMID: 27777131]
[82]
Hussain M, Tangen CM, Berry DL, et al. Intermittent versus continuous androgen deprivation in prostate cancer. N Engl J Med 2013; 368(14): 1314-25.
[http://dx.doi.org/10.1056/NEJMoa1212299] [PMID: 23550669]
[83]
Miller ET, Salmasi A, Reiter RE. Anatomic and Molecular Imaging in Prostate Cancer. Cold Spring Harb Perspect Med 2018; 8(3)a030619
[http://dx.doi.org/10.1101/cshperspect.a030619] [PMID: 28710256]
[84]
Rajasekaran AK, Anilkumar G, Christiansen JJ. Is prostate-specific membrane antigen a multifunctional protein? Am J Physiol Cell Physiol 2005; 288(5): C975-81.
[http://dx.doi.org/10.1152/ajpcell.00506.2004] [PMID: 15840561]
[85]
Wright GL Jr. Haley, C; Beckett, M L; Schellhammer, P FExpression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues, Urologic Oncology: Seminars and Original Investigations. Elsevier 1995; pp. 18-28.
[86]
Ghosh A, Heston WD. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem 2004; 91(3): 528-39.
[http://dx.doi.org/10.1002/jcb.10661] [PMID: 14755683]
[87]
Rahbar K, Afshar-Oromieh A, Jadvar H, Ahmadzadehfar H. PSMA theranostics: current status and future directions. Mol Imaging 2018; •••171536012118776068
[http://dx.doi.org/10.1177/1536012118776068] [PMID: 29873291]
[88]
Ruangma A, Kijprayoon S, Ngokpol S. PSMA for PET Imaging of Prostate Cancer THE BANGKOK MEDICAL JOURNAL 2018; 14(2)
[89]
Giesel FL, Hadaschik B, Cardinale J, et al. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur J Nucl Med Mol Imaging 2017; 44(4): 678-88.
[http://dx.doi.org/10.1007/s00259-016-3573-4] [PMID: 27889802]
[90]
Rowe SP, Gage KL, Faraj SF, et al. 18F-DCFBC PET/CT for PSMA-based detection and characterization of primary prostate cancer. J Nucl Med 2015; 56(7): 1003-10.
[http://dx.doi.org/10.2967/jnumed.115.154336] [PMID: 26069305]
[91]
Rowe SP, Macura KJ, Mena E, et al. PSMA-based [18 F] DCFPyL PET/CT is superior to conventional imaging for lesion detection in patients with metastatic prostate cancer. Mol Imaging Biol 2016; 18(3): 411-9.
[http://dx.doi.org/10.1007/s11307-016-0957-6] [PMID: 27080322]
[92]
Eder M, Schäfer M, Bauder-Wüst U, et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem 2012; 23(4): 688-97.
[http://dx.doi.org/10.1021/bc200279b] [PMID: 22369515]
[93]
Weineisen M, Schottelius M, Simecek J, et al. 68Ga-and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. J Nucl Med 2015; 56(8): 1169-76.
[http://dx.doi.org/10.2967/jnumed.115.158550] [PMID: 26089548]
[94]
Ferdinandus J, Violet J, Sandhu S, Hofman MS. Prostate-specific membrane antigen theranostics: therapy with lutetium-177. Curr Opin Urol 2018; 28(2): 197-204.
[http://dx.doi.org/10.1097/MOU.0000000000000486] [PMID: 29278583]
[95]
Hofman MS, Violet J, Hicks RJ, et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol 2018; 19(6): 825-33.
[http://dx.doi.org/10.1016/S1470-2045(18)30198-0] [PMID: 29752180]
[96]
NIH. Study of 177Lu-PSMA-617 in Castrate-Resistant Prostrate. Cancer (VISION). Available at: https://clinicaltrials.gov/ct2/show/NCT03511664
[97]
Le Nobin J, Rosenkrantz AB, Villers A, et al. Image guided focal therapy for magnetic resonance imaging visible prostate cancer: defining a 3-dimensional treatment margin based on magnetic resonance imaging histology co-registration analysis. J Urol 2015; 194(2): 364-70.
[http://dx.doi.org/10.1016/j.juro.2015.02.080] [PMID: 25711199]
[98]
Schwarzenboeck SM, Rauscher I, Bluemel C, et al. PSMA ligands for PET imaging of prostate cancer. J Nucl Med 2017; 58(10): 1545-52.
[http://dx.doi.org/10.2967/jnumed.117.191031] [PMID: 28687599]
[99]
Pfestroff A, Luster M, Jilg C, et al. Current status and future perspectives of PSMA-targeted therapy in Europe: opportunity knocks. Springer 2015.
[100]
Demir M, Abuqbeitah M, Uslu-Beşli L, et al. Evaluation of radiation safety in (177)Lu-PSMA therapy and development of outpatient treatment protocol. J Radiol Prot 2016; 36(2): 269-78.
[http://dx.doi.org/10.1088/0952-4746/36/2/269] [PMID: 27089552]
[101]
Ahmadzadehfar H, Rahbar K, Kürpig S, et al. Early side effects and first results of radioligand therapy with (177)Lu-DKFZ-617 PSMA of castrate-resistant metastatic prostate cancer: a two-centre study. EJNMMI Res 2015; 5(1): 114.
[http://dx.doi.org/10.1186/s13550-015-0114-2] [PMID: 26099227]
[102]
Ahmadzadehfar H, Aryana K, Pirayesh E, et al. The Iranian Society of Nuclear Medicine practical guideline on radioligand therapy in metastatic castration-resistant prostate cancer using 177Lu-PSMA. Iran J Nucl Med 2018; 26(1): 2-8.
[103]
Aghdam RA, Amoui M, Ghodsirad M, et al. Efficacy and safety of 177Lutetium-prostate-specific membrane antigen therapy in metastatic castration-resistant prostate cancer patients: First experience in West Asia - A prospective study. World J Nucl Med 2019; 18(3): 258-65.
[http://dx.doi.org/10.4103/wjnm.WJNM_66_18] [PMID: 31516369]
[104]
Yordanova A, Becker A, Eppard E, et al. The impact of repeated cycles of radioligand therapy using [177Lu]Lu-PSMA-617 on renal function in patients with hormone refractory metastatic prostate cancer. Eur J Nucl Med Mol Imaging 2017; 44(9): 1473-9.
[http://dx.doi.org/10.1007/s00259-017-3681-9] [PMID: 28337529]
[105]
Yordanova A, Linden P, Hauser S, et al. Outcome and safety of rechallenge [177Lu]Lu-PSMA-617 in patients with metastatic prostate cancer. Eur J Nucl Med Mol Imaging 2019; 46(5): 1073-80.
[http://dx.doi.org/10.1007/s00259-018-4222-x] [PMID: 30474706]
[106]
Ahmadzadehfar H, Rahbar K, Essler M, Biersack HJ. PSMA-Based Theranostics: A Step-by-Step Practical Approach to Diagnosis and Therapy for mCRPC Patients. Semin Nucl Med 2019.
[PMID: 31843065]
[107]
Heinzel A, Boghos D, Mottaghy FM, et al. 68Ga-PSMA PET/CT for monitoring response to 177Lu-PSMA-617 radioligand therapy in patients with metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 2019; 46(5): 1054-62.
[http://dx.doi.org/10.1007/s00259-019-4258-6] [PMID: 30697649]
[108]
von Eyben FE, Kairemo K. Acquisition with (11)C-choline and (18)F-fluorocholine PET/CT for patients with biochemical recurrence of prostate cancer: a systematic review and meta-analysis. Ann Nucl Med 2016; 30(6): 385-92.
[http://dx.doi.org/10.1007/s12149-016-1078-7] [PMID: 27173771]
[109]
Abeshouse A, Ahn J, Akbani R, et al. The molecular taxonomy of primary prostate cancer. Cell 2015; 163(4): 1011-25.
[http://dx.doi.org/10.1016/j.cell.2015.10.025] [PMID: 26544944]
[110]
Baca SC, Prandi D, Lawrence MS, et al. Punctuated evolution of prostate cancer genomes. Cell 2013; 153(3): 666-77.
[http://dx.doi.org/10.1016/j.cell.2013.03.021] [PMID: 23622249]
[111]
Barbieri CE, Baca SC, Lawrence MS, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 2012; 44(6): 685-9.
[http://dx.doi.org/10.1038/ng.2279] [PMID: 22610119]
[112]
Rischke HC, Schäfer AO, Nestle U, et al. Detection of local recurrent prostate cancer after radical prostatectomy in terms of salvage radiotherapy using dynamic contrast enhanced-MRI without endorectal coil. Radiat Oncol 2012; 7(1): 185.
[http://dx.doi.org/10.1186/1748-717X-7-185] [PMID: 23114282]
[113]
Robinson D, Van Allen EM, Wu Y-M, et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015; 161(5): 1215-28.
[http://dx.doi.org/10.1016/j.cell.2015.05.001] [PMID: 26000489]
[114]
Balk SP. Androgen receptor as a target in androgen-independent prostate cancer. Urology 2002; 60(3)(Suppl. 1): 132-8.
[http://dx.doi.org/10.1016/S0090-4295(02)01593-5] [PMID: 12231070]
[115]
Caubet J-F, Tosteson TD, Dong EW, et al. Maximum androgen blockade in advanced prostate cancer: a meta-analysis of published randomized controlled trials using nonsteroidal antiandrogens. Urology 1997; 49(1): 71-8.
[http://dx.doi.org/10.1016/S0090-4295(96)00325-1] [PMID: 9000189]
[116]
Scher HI, Liebertz C, Kelly WK, et al. Bicalutamide for advanced prostate cancer: the natural versus treated history of disease. J Clin Oncol 1997; 15(8): 2928-38.
[http://dx.doi.org/10.1200/JCO.1997.15.8.2928] [PMID: 9256137]
[117]
Armstrong A, Antonarakis E, Taplin M-E, et al. Naming disease states for clinical utility in prostate cancer: a rose by any other name might not smell as sweet. Oxford University Press 2017.
[118]
Antonarakis ES, Lu C, Wang H, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 2014; 371(11): 1028-38.
[http://dx.doi.org/10.1056/NEJMoa1315815] [PMID: 25184630]
[119]
Isaacsson Velho P, Carducci MA. Investigational therapies targeting the androgen signaling axis and the androgen receptor and in prostate cancer - recent developments and future directions. Expert Opin Investig Drugs 2018; 27(10): 811-22.
[http://dx.doi.org/10.1080/13543784.2018.1513490] [PMID: 30118330]
[120]
Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 2015; 15(1): 7-24.
[http://dx.doi.org/10.1038/nrc3860] [PMID: 25533673]
[121]
Sarker D, Reid AH, Yap TA, de Bono JS. Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res 2009; 15(15): 4799-805.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0125] [PMID: 19638457]
[122]
Osaki M, Oshimura M, Ito H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 2004; 9(6): 667-76.
[http://dx.doi.org/10.1023/B:APPT.0000045801.15585.dd] [PMID: 15505410]
[123]
Smits M, Mehra N, Sedelaar M, Gerritsen W, Schalken JA. Molecular biomarkers to guide precision medicine in localized prostate cancer. Expert Rev Mol Diagn 2017; 17(8): 791-804.
[http://dx.doi.org/10.1080/14737159.2017.1345627] [PMID: 28635333]
[124]
Caffo O, Veccia A, Kinspergher S, Rizzo M, Maines F. Aberrations of DNA repair pathways in prostate cancer: future implications for clinical practice? Front Cell Dev Biol 2018; 6: 71.
[http://dx.doi.org/10.3389/fcell.2018.00071] [PMID: 30234108]
[125]
Abida W, Armenia J, Gopalan A, et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making JCO precision oncology 2017; 1: 1-16
[126]
Evers B, Helleday T, Jonkers J. Targeting homologous recombination repair defects in cancer. Trends Pharmacol Sci 2010; 31(8): 372-80.
[http://dx.doi.org/10.1016/j.tips.2010.06.001] [PMID: 20598756]
[127]
Leongamornlert D, Mahmud N, Tymrakiewicz M, et al. Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer 2012; 106(10): 1697-701.
[http://dx.doi.org/10.1038/bjc.2012.146] [PMID: 22516946]
[128]
Bancroft EK, Page EC, Castro E, et al. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: results from the initial screening round of the IMPACT study. Eur Urol 2014; 66(3): 489-99.
[http://dx.doi.org/10.1016/j.eururo.2014.01.003] [PMID: 24484606]
[129]
Tryggvadóttir L, Vidarsdóttir L, Thorgeirsson T, et al. Prostate cancer progression and survival in BRCA2 mutation carriers. J Natl Cancer Inst 2007; 99(12): 929-35.
[http://dx.doi.org/10.1093/jnci/djm005] [PMID: 17565157]
[130]
Castro E, Goh C, Olmos D, et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 2013; 31(14): 1748-57.
[http://dx.doi.org/10.1200/JCO.2012.43.1882] [PMID: 23569316]
[131]
Sandhu SK, Omlin A, Hylands L, et al. Poly (ADP-ribose) polymerase (PARP) inhibitors for the treatment of advanced germline BRCA2 mutant prostate cancer. Ann Oncol 2013; 24(5): 1416-8.
[http://dx.doi.org/10.1093/annonc/mdt074] [PMID: 23524863]
[132]
Zhu Z, Zhang H, Lang F, et al. Pin1 promotes prostate cancer cell proliferation and migration through activation of Wnt/β-catenin signaling. Clin Transl Oncol 2016; 18(8): 792-7.
[http://dx.doi.org/10.1007/s12094-015-1431-7] [PMID: 26497355]
[133]
Todenhöfer T, Leidenberger P, Hennenlotter J, et al. 114 Systemic alterations of Wnt Inhibitors in patients with prostate cancer and bone metastases. Eur Urol Suppl 2014; 13(1)e114
[http://dx.doi.org/10.1016/S1569-9056(14)60115-9]
[134]
Fukuchi M, Fukai Y, Kimura H, et al. Prolyl isomerase Pin1 expression predicts prognosis in patients with esophageal squamous cell carcinoma and correlates with cyclinD1 expression. Int J Oncol 2006; 29(2): 329-34.
[http://dx.doi.org/10.3892/ijo.29.2.329] [PMID: 16820873]
[135]
Koller CM, Kim Y, Schmidt-Wolf IG. Targeting renal cancer with a combination of WNT inhibitors and a bi-functional peptide. Anticancer Res 2013; 33(6): 2435-40.
[PMID: 23749892]
[136]
Yavari B, Mahjub R, Saidijam M, Raigani M, Soleimani M. The potential use of peptides in cancer treatment. Curr Protein Pept Sci 2018; 19(8): 759-70.
[http://dx.doi.org/10.2174/1389203719666180111150008] [PMID: 29332577]
[137]
Mullane SA, Van Allen EM. Precision medicine for advanced prostate cancer. Curr Opin Urol 2016; 26(3): 231-9.
[http://dx.doi.org/10.1097/MOU.0000000000000278] [PMID: 26909474]
[138]
Balk S P, Knudsen K E AR. the cell cycle, and prostate cancer. Nuclear receptor signaling 2008; 6(1): nrs. 06001.
[http://dx.doi.org/10.1621/nrs.06001]
[139]
Qian T, Zhu S, Hoshida Y. Use of big data in drug development for precision medicine: an update. Expert Rev Precis Med Drug Dev 2019; 4(3): 189-200.
[http://dx.doi.org/10.1080/23808993.2019.1617632] [PMID: 31286058]
[140]
Williams AM, Liu Y, Regner KR, Jotterand F, Liu P, Liang M. Artificial intelligence, physiological genomics, and precision medicine. Physiol Genomics 2018; 50(4): 237-43.
[http://dx.doi.org/10.1152/physiolgenomics.00119.2017] [PMID: 29373082]
[141]
Xu F, Zou L, Liu Y, Zhang Z, Ong CN. Enhancement of the capabilities of liquid chromatography-mass spectrometry with derivatization: general principles and applications. Mass Spectrom Rev 2011; 30(6): 1143-72.
[http://dx.doi.org/10.1002/mas.20316] [PMID: 21557289]
[142]
Cacciatore S, Loda M. Innovation in metabolomics to improve personalized healthcare. Ann N Y Acad Sci 2015; 1346(1): 57-62.
[http://dx.doi.org/10.1111/nyas.12775] [PMID: 26014591]
[143]
Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 2016; 17(7): 451-9.
[http://dx.doi.org/10.1038/nrm.2016.25] [PMID: 26979502]
[144]
Yang SY, Adelstein J, Kassis AI. Putative molecular signatures for the imaging of prostate cancer. Expert Rev Mol Diagn 2010; 10(1): 65-74.
[http://dx.doi.org/10.1586/erm.09.73] [PMID: 20014923]
[145]
Xing J, Brooks A, Scott P, Piert M, Shao X. [11C] sarcosine for PET imaging of prostate cancer. J Nucl Med 2016; 57(Suppl. 2): 1068-8. Available at: https://systemsbiology.org/resources/soft ware-downloads/

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy