Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Issues with Cancer Spheroid Models in Therapeutic Drug Screening

Author(s): Eleonore Fröhlich*

Volume 26, Issue 18, 2020

Page: [2137 - 2148] Pages: 12

DOI: 10.2174/1381612826666200218094200

Price: $65

Abstract

In vitro screening for anti-cancer agents currently uses mainly cell lines in 2D culture. It is generally assumed that 3D culture, namely spheroids, represents physiologically more relevant models for tumors. Unfortunately, drug testing in spheroids is not as easy and reproducible as in 2D culture because there are factors that limit the universal use of spheroids as screening platforms. Technical problems in the generation of uniform spheroids, cell/tumor-specific differences in the ability to form spheroids, and more complex readout parameters are the main reasons for differences between spheroid data. The review discusses requirements for cancer spheroids to be representative models, suitable methodologies to generate spheroids for the screening and readout parameters for the evaluation of anti-cancer agents.

Keywords: Drug screening, cell culture, 3D culture, cancer spheroids, anti-cancer drugs, 2D culture.

[1]
Ekwall B. Overview of the Final MEIC Results: II. The in vitro--in vivo evaluation, including the selection of a practical battery of cell tests for prediction of acute lethal blood concentrations in humans. Toxicol In Vitro 1999; 13(4-5): 665-73.
[http://dx.doi.org/10.1016/S0887-2333(99)00061-2] [PMID: 20654532]
[2]
Langhans SA. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol 2018; 9: 6.
[http://dx.doi.org/10.3389/fphar.2018.00006] [PMID: 29410625]
[3]
Carreau A, El Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 2011; 15(6): 1239-53.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01258.x] [PMID: 21251211]
[4]
Sachot N, Engel E, Castano O. Hybrid organic-inorganic scaffolding biomaterials for regenerative therapies. Curr Org Chem 2014; 18: 2299-314.
[http://dx.doi.org/10.2174/1385272819666140806200355]
[5]
Ghosh S, Spagnoli GC, Martin I, et al. Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study. J Cell Physiol 2005; 204(2): 522-31.
[http://dx.doi.org/10.1002/jcp.20320] [PMID: 15744745]
[6]
Ovsianikov A, Khademhosseini A, Mironov V. The synergy of scaffold-based and scaffold-free tissue engineering strategies. Trends Biotechnol 2018; 36(4): 348-57.
[http://dx.doi.org/10.1016/j.tibtech.2018.01.005] [PMID: 29475621]
[7]
Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 2014; 345(6194): 1247125
[http://dx.doi.org/10.1126/science.1247125] [PMID: 25035496]
[8]
Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia 2015; 17(1): 1-15.
[http://dx.doi.org/10.1016/j.neo.2014.12.004] [PMID: 25622895]
[9]
Vadivelu RK, Kamble H, Munaz A, Nguyen NT. Liquid marble as bioreactor for engineering three-dimensional toroid tissues. Sci Rep 2017; 7(1): 12388.
[http://dx.doi.org/10.1038/s41598-017-12636-5] [PMID: 28959016]
[10]
Riedl A, Schlederer M, Pudelko K, et al. Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT-mTOR-S6K signaling and drug responses. J Cell Sci 2017; 130(1): 203-18.
[http://dx.doi.org/10.1242/jcs.188102] [PMID: 27663511]
[11]
Nunes AS, Barros AS, Costa EC, Moreira AF, Correia IJ. 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol Bioeng 2019; 116(1): 206-26.
[http://dx.doi.org/10.1002/bit.26845] [PMID: 30367820]
[12]
Laurent J, Frongia C, Cazales M, Mondesert O, Ducommun B, Lobjois V. Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D. BMC Cancer 2013; 13: 73.
[http://dx.doi.org/10.1186/1471-2407-13-73] [PMID: 23394599]
[13]
Langan LM, Dodd NJ, Owen SF, Purcell WM, Jackson SK, Jha AN. Direct measurements of oxygen gradients in spheroid culture system using electron parametric resonance oximetry. PLoS One 2016; 11(2): e0149492
[http://dx.doi.org/10.1371/journal.pone.0149492] [PMID: 26900704]
[14]
Mueller-Klieser WF, Sutherland RM. Oxygen tensions in multicell spheroids of two cell lines. Br J Cancer 1982; 45(2): 256-64.
[http://dx.doi.org/10.1038/bjc.1982.41] [PMID: 7059474]
[15]
Gomes A, Guillaume L, Grimes DR, Fehrenbach J, Lobjois V, Ducommun B. Oxygen partial pressure is a rate-limiting parameter for cell proliferation in 3D spheroids grown in physioxic culture condition. PLoS One 2016; 11(8): e0161239
[http://dx.doi.org/10.1371/journal.pone.0161239] [PMID: 27575790]
[16]
Schmidt M, Scholz CJ, Polednik C, Roller J. Spheroid-based 3-dimensional culture models: Gene expression and functionality in head and neck cancer. Oncol Rep 2016; 35(4): 2431-40.
[http://dx.doi.org/10.3892/or.2016.4581] [PMID: 26797047]
[17]
Riffle S, Pandey RN, Albert M, Hegde RS. Linking hypoxia, DNA damage and proliferation in multicellular tumor spheroids. BMC Cancer 2017; 17(1): 338.
[http://dx.doi.org/10.1186/s12885-017-3319-0] [PMID: 28521819]
[18]
Hofschröer V, Koch KA, Ludwig FT, et al. Extracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells. Sci Rep 2017; 7: 42369.
[http://dx.doi.org/10.1038/srep42369] [PMID: 28205573]
[19]
Gottfried E, Kunz-Schughart LA, Andreesen R, Kreutz M. Brave little world: spheroids as an in vitro model to study tumor-immune-cell interactions. Cell Cycle 2006; 5(7): 691-5.
[http://dx.doi.org/10.4161/cc.5.7.2624] [PMID: 16582627]
[20]
Huang Y, Wang S, Guo Q, et al. Optical coherence tomography detects necrotic regions and volumetrically quantifies multicellular tumor spheroids. Cancer Res 2017; 77(21): 6011-20.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0821] [PMID: 28904062]
[21]
Gebhard C, Gabriel C, Walter I. Morphological and immunohistochemical characterization of canine osteosarcoma spheroid cell cultures. Anat Histol Embryol 2016; 45(3): 219-30.
[http://dx.doi.org/10.1111/ahe.12190] [PMID: 26287450]
[22]
Gomes A, Defaux M, Lemee RM, Lobjois V, Ducommun B. Reversible growth arrest of 3D tumor spheroids stored in oxygen absorber-induced anoxia. Oncol Lett 2018; 15(2): 2006-9.https://www.spandidos-publications.com/10.3892/ol.2017.7465
[PMID: 29434901]
[23]
Sutherland RM, Carlsson J, Durand R, Yuhas J. Spheroids in Cancer Research. Am Assoc Cancer Res 1981; p. 41.
[24]
Frankel A, Man S, Elliott P, Adams J, Kerbel RS. Lack of multicellular drug resistance observed in human ovarian and prostate carcinoma treated with the proteasome inhibitor PS-341. Clin Cancer Res 2000; 6(9): 3719-28.https://clincancerres.aacrjournals.org/ content/6/9/3719.long
[PMID: 10999766]
[25]
Vinci M, Gowan S, Boxall F, et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol 2012; 10: 29.
[http://dx.doi.org/10.1186/1741-7007-10-29] [PMID: 22439642]
[26]
Ivascu A, Kubbies M. Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J Biomol Screen 2006; 11(8): 922-32.
[http://dx.doi.org/10.1177/1087057106292763] [PMID: 16973921]
[27]
Smyrek I, Mathew B, Fischer SC, Lissek SM, Becker S, Stelzer EHK. E-cadherin, actin, microtubules and FAK dominate different spheroid formation phases and important elements of tissue integrity. Biol Open 2019; 8(1): 8.
[http://dx.doi.org/10.1242/bio.037051] [PMID: 30578251]
[28]
Cui X, Hartanto Y, Zhang H. Advances in multicellular spheroids formation. J R Soc Interface 2017; 14(127): 14.
[http://dx.doi.org/10.1098/rsif.2016.0877] [PMID: 28202590]
[29]
Beyer EC, Berthoud VM. Gap junction gene and protein families: Connexins, innexins, and pannexins. Biochim Biophys Acta Biomembr 2018; 1860(1): 5-8.
[http://dx.doi.org/10.1016/j.bbamem.2017.05.016] [PMID: 28559187]
[30]
Mittler F, Obeïd P, Rulina AV, Haguet V, Gidrol X, Balakirev MY. High-content monitoring of drug effects in a 3D spheroid model. Front Oncol 2017; 7: 293.
[http://dx.doi.org/10.3389/fonc.2017.00293] [PMID: 29322028]
[31]
Lemmo S, Atefi E, Luker GD, Tavana H. Optimization of aqueous biphasic tumor spheroid microtechnology for anti-cancer drug testing in 3D culture. Cell Mol Bioeng 2014; 7(3): 344-54.
[http://dx.doi.org/10.1007/s12195-014-0349-4] [PMID: 25221631]
[32]
Haisler WL, Timm DM, Gage JA, Tseng H, Killian TC, Souza GR. Three-dimensional cell culturing by magnetic levitation. Nat Protoc 2013; 8(10): 1940-9.
[http://dx.doi.org/10.1038/nprot.2013.125] [PMID: 24030442]
[33]
Sriphutkiat Y, Kasetsirikul S, Zhou Y. Formation of cell spheroids using Standing Surface Acoustic Wave (SSAW). Int J Bioprint 2018; 4: 130.
[http://dx.doi.org/10.18063/ijb.v4i1.130]
[34]
Chen K, Wu M, Guo F, et al. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers. Lab Chip 2016; 16(14): 2636-43.
[http://dx.doi.org/10.1039/C6LC00444J] [PMID: 27327102]
[35]
Raghavan S, Mehta P, Horst EN, Ward MR, Rowley KR, Mehta G. Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity. Oncotarget 2016; 7(13): 16948-61.
[http://dx.doi.org/10.18632/oncotarget.7659] [PMID: 26918944]
[36]
Li L, LaBarbera D. 3D high-content screening of organoids for drug discovery Comprehensive medicinal chemistry. Elsevier 2016.
[37]
Lee JM, Park DY, Yang L, et al. Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening. Sci Rep 2018; 8(1): 17145.
[http://dx.doi.org/10.1038/s41598-018-35216-7] [PMID: 30464248]
[38]
Lee GH, Lee JS, Lee GH, et al. Networked concave microwell arrays for constructing 3D cell spheroids. Biofabrication 2017; 10(1): 015001
[http://dx.doi.org/10.1088/1758-5090/aa9876] [PMID: 29190216]
[39]
Sugiura S, Hattori K, Sakai Y, Nakazawa K, Kanamori T. Reversely- Assebmled perfusion culture chip with microwell array for controllable spheroid culture and post-culture analysis Proceedings of the 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences MicroTAS. 2012 Jan; 470-2.
[40]
Mullen P, Ritchie A, Langdon SP, Miller WR. Effect of Matrigel on the tumorigenicity of human breast and ovarian carcinoma cell lines. Int J Cancer 1996; 67(6): 816-20.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19960917)67:6<816:AID-IJC10>3.0.CO;2-#] [PMID: 8824553]
[41]
Nagelkerke A, Bussink J, Sweep FC, Span PN. Generation of multicellular tumor spheroids of breast cancer cells: how to go three-dimensional. Anal Biochem 2013; 437(1): 17-9.
[http://dx.doi.org/10.1016/j.ab.2013.02.004] [PMID: 23435308]
[42]
Moshksayan K, Kashaninejad N, Saidi M. Inventions and innovations in preclinical platforms for cancer research. Inventions 2018; 3: 43.
[http://dx.doi.org/10.3390/inventions3030043]
[43]
Leung BM, Lesher-Perez SC, Matsuoka T, Moraes C, Takayama S. Media additives to promote spheroid circularity and compactness in hanging drop platform. Biomater Sci 2015; 3(2): 336-44.
[http://dx.doi.org/10.1039/C4BM00319E] [PMID: 26218124]
[44]
New Dimensions of cell culture: the rise of spheroid culture systems 2019. Available at: https://cellculturedish.com/cell-culture-spheroid-culture-systems/
[45]
Khot M, Levenstein M, Kapur N, Jayne D. A Review on the recent advancement in “Tumour Spheroids-on-a-Chip”. J Cancer Res Pract 2019; 6: 55-63.http://www.ejcrp.org/article.asp?issn=2311-3006;year=2019;volume=6;issue=2;spage=55;epage=63;aulast=Khot;type=0
[46]
Breslin S, O’Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today 2013; 18(5-6): 240-9.
[http://dx.doi.org/10.1016/j.drudis.2012.10.003] [PMID: 23073387]
[47]
Hongisto V, Jernström S, Fey V, et al. High-throughput 3D screening reveals differences in drug sensitivities between culture models of JIMT1 breast cancer cells. PLoS One 2013; 8(10): e77232
[http://dx.doi.org/10.1371/journal.pone.0077232] [PMID: 24194875]
[48]
Gencoglu MF, Barney LE, Hall CL, et al. Comparative study of multicellular tumor spheroid formation methods and implications for drug screening. ACS Biomater Sci Eng 2018; 4(2): 410-20.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00069] [PMID: 29527571]
[49]
Shoval H, Karsch-Bluman A, Brill-Karniely Y, et al. Tumor cells and their crosstalk with endothelial cells in 3D spheroids. Sci Rep 2017; 7(1): 10428.
[http://dx.doi.org/10.1038/s41598-017-10699-y] [PMID: 28874803]
[50]
Froehlich K, Haeger JD, Heger J, et al. Generation of multicellular breast cancer tumor spheroids: comparison of different protocols. J Mammary Gland Biol Neoplasia 2016; 21(3-4): 89-98.
[http://dx.doi.org/10.1007/s10911-016-9359-2] [PMID: 27518775]
[51]
Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA. Spheroid-based drug screen: considerations and practical approach. Nat Protoc 2009; 4(3): 309-24.
[http://dx.doi.org/10.1038/nprot.2008.226] [PMID: 19214182]
[52]
Hoffmann OI, Ilmberger C, Magosch S, Joka M, Jauch KW, Mayer B. Impact of the spheroid model complexity on drug response. J Biotechnol 2015; 205: 14-23.
[http://dx.doi.org/10.1016/j.jbiotec.2015.02.029] [PMID: 25746901]
[53]
Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng 2003; 83(2): 173-80.
[http://dx.doi.org/10.1002/bit.10655] [PMID: 12768623]
[54]
Manuel Iglesias J, Beloqui I, Garcia-Garcia F, et al. Mammosphere formation in breast carcinoma cell lines depends upon expression of E-cadherin. PLoS One 2013; 8(10): e77281
[http://dx.doi.org/10.1371/journal.pone.0077281] [PMID: 24124614]
[55]
Fessart D, Begueret H, Delom F. Three-dimensional culture model to distinguish normal from malignant human bronchial epithelial cells. Eur Respir J 2013; 42(5): 1345-56.
[http://dx.doi.org/10.1183/09031936.00118812] [PMID: 23349442]
[56]
Chandrasekaran S, Giang UB, Xu L, DeLouise LA. In vitro assays for determining the metastatic potential of melanoma cell lines with characterized in vivo invasiveness. Biomed Microdevices 2016; 18(5): 89.
[http://dx.doi.org/10.1007/s10544-016-0104-9] [PMID: 27620628]
[57]
Ziperstein MJ, Guzman A, Kaufman LJ. Breast cancer cell line aggregate morphology does not predict invasive capacity. PLoS One 2015; 10(9): e0139523
[http://dx.doi.org/10.1371/journal.pone.0139523] [PMID: 26418047]
[58]
Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 2014; 12(4): 207-18.
[http://dx.doi.org/10.1089/adt.2014.573] [PMID: 24831787]
[59]
Alkasalias T, Moyano-Galceran L, Arsenian-Henriksson M, Lehti K. Fibroblasts in the tumor microenvironment: Shield or spear? Int J Mol Sci 2018; 19(5): 19.
[http://dx.doi.org/10.3390/ijms19051532] [PMID: 29883428]
[60]
Kuen J, Darowski D, Kluge T, Majety M. Pancreatic cancer cell/fibroblast co-culture induces M2 like macrophages that influence therapeutic response in a 3D model. PLoS One 2017; 12(7): e0182039
[http://dx.doi.org/10.1371/journal.pone.0182039] [PMID: 28750018]
[61]
Park JI, Lee J, Kwon JL, et al. Scaffold-free coculture spheroids of human colonic adenocarcinoma cells and normal colonic fibroblasts promote tumorigenicity in nude mice. Transl Oncol 2016; 9(1): 79-88.
[http://dx.doi.org/10.1016/j.tranon.2015.12.001] [PMID: 26947885]
[62]
Salmenperä P, Kankuri E, Bizik J, et al. Formation and activation of fibroblast spheroids depend on fibronectin-integrin interaction. Exp Cell Res 2008; 314(19): 3444-52.
[http://dx.doi.org/10.1016/j.yexcr.2008.09.004] [PMID: 18824166]
[63]
Khawar IA, Park JK, Jung ES, Lee MA, Chang S, Kuh HJ. Three dimensional mixed-cell spheroids mimic stroma-mediated chemoresistance and invasive migration in hepatocellular carcinoma. Neoplasia 2018; 20(8): 800-12.
[http://dx.doi.org/10.1016/j.neo.2018.05.008] [PMID: 29981501]
[64]
Jeong SY, Lee JH, Shin Y, Chung S, Kuh HJ. Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment. PLoS One 2016; 11(7): e0159013
[http://dx.doi.org/10.1371/journal.pone.0159013] [PMID: 27391808]
[65]
Amann A, Zwierzina M, Gamerith G, et al. Development of an innovative 3D cell culture system to study tumour--stroma interactions in non-small cell lung cancer cells. PLoS One 2014; 9(3): e92511
[http://dx.doi.org/10.1371/journal.pone.0092511] [PMID: 24663399]
[66]
Sherman H, Eglen R, Bergeron A. High-throughput spheroid culture Drug Discovery World 2018.https://www.ddw-online.com/drug-discovery/p321758-high-throughput-spheroid-culture-applications-of-3d-cell-culture.html
[67]
Ham SL, Thakuri PS, Plaster M, et al. Three-dimensional tumor model mimics stromal - breast cancer cells signaling. Oncotarget 2017; 9(1): 249-67.http://www.oncotarget.com/index.php?journal= oncotarget&page=article&op=view&path%5b%5d=22922& pubmed- linkout=1
[PMID: 29416611]
[68]
Österholm C, Lu N, Lidén Å, et al. Fibroblast EXT1-levels influence tumor cell proliferation and migration in composite spheroids. PLoS One 2012; 7(7): e41334
[http://dx.doi.org/10.1371/journal.pone.0041334] [PMID: 22848466]
[69]
Stock K, Estrada MF, Vidic S, et al. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery. Sci Rep 2016; 6: 28951.
[http://dx.doi.org/10.1038/srep28951] [PMID: 27364600]
[70]
Song Y, Kim SH, Kim KM, Choi EK, Kim J, Seo HR. Activated hepatic stellate cells play pivotal roles in hepatocellular carcinoma cell chemoresistance and migration in multicellular tumor spheroids. Sci Rep 2016; 6: 36750.
[http://dx.doi.org/10.1038/srep36750] [PMID: 27853186]
[71]
Yip D, Cho CH. A multicellular 3D heterospheroid model of liver tumor and stromal cells in collagen gel for anti-cancer drug testing. Biochem Biophys Res Commun 2013; 433(3): 327-32.
[http://dx.doi.org/10.1016/j.bbrc.2013.03.008] [PMID: 23501105]
[72]
Klicks J, Maßlo C, Kluth A, Rudolf R, Hafner M. A novel spheroid-based co-culture model mimics loss of keratinocyte differentiation, melanoma cell invasion, and drug-induced selection of ABCB5-expressing cells. BMC Cancer 2019; 19(1): 402.
[http://dx.doi.org/10.1186/s12885-019-5606-4] [PMID: 31035967]
[73]
Kassim Y, Tawil E, Buquet C, et al. Three dimensional tumor engineering by co-culture of breast tumor and endothelial cells using a hyaluronic acid hydrogel model. J Clin Exp Oncol 2017; 6: 5.
[http://dx.doi.org/10.4172/2324-9110.1000194]
[74]
Zoetemelk M, Rausch M, Colin DJ, Dormond O, Nowak-Sliwinska P. Short-term 3D culture systems of various complexity for treatment optimization of colorectal carcinoma. Sci Rep 2019; 9(1): 7103.
[http://dx.doi.org/10.1038/s41598-019-42836-0] [PMID: 31068603]
[75]
Lazzari G, Nicolas V, Matsusaki M, Akashi M, Couvreur P, Mura S. Multicellular spheroid based on a triple co-culture: A novel 3D model to mimic pancreatic tumor complexity. Acta Biomater 2018; 78: 296-307.
[http://dx.doi.org/10.1016/j.actbio.2018.08.008] [PMID: 30099198]
[76]
Kessel S, Cribbes S, Déry O, et al. High-throughput 3D tumor spheroid screening method for cancer drug discovery using celigo image cytometry. SLAS Technol 2017; 22(4): 454-65.
[http://dx.doi.org/10.1177/2211068216652846] [PMID: 27272155]
[77]
Wen Z, Liao Q, Hu Y, You L, Zhou L, Zhao Y. A spheroid-based 3-D culture model for pancreatic cancer drug testing, using the acid phosphatase assay. Braz J Med Biol Res 2013; 46(7): 634-42.
[http://dx.doi.org/10.1590/1414-431X20132647] [PMID: 23903680]
[78]
Melissaridou S, Wiechec E, Magan M, et al. The effect of 2D and 3D cell cultures on treatment response, EMT profile and stem cell features in head and neck cancer. Cancer Cell Int 2019; 19: 16.
[http://dx.doi.org/10.1186/s12935-019-0733-1] [PMID: 30651721]
[79]
Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA, Rizzi SC. Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 2010; 31(32): 8494-506.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.064] [PMID: 20709389]
[80]
Chitcholtan K, Sykes PH, Evans JJ. The resistance of intracellular mediators to doxorubicin and cisplatin are distinct in 3D and 2D endometrial cancer. J Transl Med 2012; 10: 38.
[http://dx.doi.org/10.1186/1479-5876-10-38] [PMID: 22394685]
[81]
Kim SH, Choi SJ, Kim YC, Kuh HJ. Anti-tumor activity of noble indirubin derivatives in human solid tumor models in vitro. Arch Pharm Res 2009; 32(6): 915-22.
[http://dx.doi.org/10.1007/s12272-009-1614-2] [PMID: 19557370]
[82]
Lee SH, Nam JK, Park JK, Lee JH, Min S, Kuh HJ. Differential protein expression and novel biomarkers related to 5-FU resistance in a 3D colorectal adenocarcinoma model. Oncol Rep 2014; 32(4): 1427-34.
[http://dx.doi.org/10.3892/or.2014.3337] [PMID: 25050539]
[83]
Imamura Y, Mukohara T, Shimono Y, et al. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol Rep 2015; 33(4): 1837-43.
[http://dx.doi.org/10.3892/or.2015.3767] [PMID: 25634491]
[84]
Breslin S, O’Driscoll L. The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance. Oncotarget 2016; 7(29): 45745-56.
[http://dx.doi.org/10.18632/oncotarget.9935] [PMID: 27304190]
[85]
Virgone-Carlotta A, Lemasson M, Mertani HC, et al. In-depth phenotypic characterization of multicellular tumor spheroids: Effects of 5-Fluorouracil. PLoS One 2017; 12(11): e0188100
[http://dx.doi.org/10.1371/journal.pone.0188100] [PMID: 29141026]
[86]
Adcock A, Trivedi G, Edmondson R, Spearman C, Yang L. ThreeDimensional (3D) cell cultures in cell-based assays for in-vitro evaluation of anticancer drugs. J Anal Bioanal Tech 2015; 6: 247.
[http://dx.doi.org/10.4172/2155-9872.1000249]
[87]
Lee JM, Mhawech-Fauceglia P, Lee N, et al. A three-dimensional microenvironment alters protein expression and chemosensitivity of epithelial ovarian cancer cells in vitro. Lab Invest 2013; 93(5): 528-42.
[http://dx.doi.org/10.1038/labinvest.2013.41] [PMID: 23459371]
[88]
Dubois C, Dufour R, Daumar P, et al. Development and cytotoxic response of two proliferative MDA-MB-231 and non-proliferative SUM1315 three-dimensional cell culture models of triple-negative basal-like breast cancer cell lines. Oncotarget 2017; 8(56): 95316-31.
[http://dx.doi.org/10.18632/oncotarget.20517] [PMID: 29221130]
[89]
Baek N, Seo OW, Kim M, Hulme J, An SS. Monitoring the effects of doxorubicin on 3D-spheroid tumor cells in real-time. OncoTargets Ther 2016; 9: 7207-18.
[http://dx.doi.org/10.2147/OTT.S112566] [PMID: 27920558]
[90]
Hoarau-Véchot J, Rafii A, Touboul C, Pasquier J. Halfway between 2D and animal models: Are 3D cultures the ideal tool to study cancer-microenvironment interactions? Int J Mol Sci 2018; 19(1): 19.
[http://dx.doi.org/10.3390/ijms19010181] [PMID: 29346265]
[91]
Zanoni M, Piccinini F, Arienti C, et al. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep 2016; 6: 19103.
[http://dx.doi.org/10.1038/srep19103] [PMID: 26752500]
[92]
Eilenberger C, Rothbauer M, Ehmoser EK, Ertl P, Küpcü S. Effect of spheroidal age on sorafenib diffusivity and toxicity in a 3D hepg2 spheroid model. Sci Rep 2019; 9(1): 4863.
[http://dx.doi.org/10.1038/s41598-019-41273-3] [PMID: 30890741]
[93]
Martinez NJ, Titus SA, Wagner AK, Simeonov A. High-throughput fluorescence imaging approaches for drug discovery using in vitro and in vivo three-dimensional models. Expert Opin Drug Discov 2015; 10(12): 1347-61.
[http://dx.doi.org/10.1517/17460441.2015.1091814] [PMID: 26394277]
[94]
Boutin ME, Voss TC, Titus SA, Cruz-Gutierrez K, Michael S, Ferrer M. A high-throughput imaging and nuclear segmentation analysis protocol for cleared 3D culture models. Sci Rep 2018; 8(1): 11135.
[http://dx.doi.org/10.1038/s41598-018-29169-0] [PMID: 30042482]
[95]
Grist SM, Nasseri SS, Poon T, Roskelley C, Cheung KC. On-chip clearing of arrays of 3-D cell cultures and micro-tissues. Biomicrofluidics 2016; 10(4): 044107
[http://dx.doi.org/10.1063/1.4959031] [PMID: 27493703]
[96]
Costa EC, Silva DN, Moreira AF, Correia IJ. Optical clearing methods: An overview of the techniques used for the imaging of 3D spheroids. Biotechnol Bioeng 2019; 116(10): 2742-63.
[http://dx.doi.org/10.1002/bit.27105] [PMID: 31282993]
[97]
Li L, Zhou Q, Voss TC, Quick KL, LaBarbera DV. High-throughput imaging: Focusing in on drug discovery in 3D. Methods 2016; 96: 97-102.
[http://dx.doi.org/10.1016/j.ymeth.2015.11.013] [PMID: 26608110]
[98]
Hou Y, Konen J, Brat DJ, Marcus AI, Cooper LAD. TASI: A software tool for spatial-temporal quantification of tumor spheroid dynamics. Sci Rep 2018; 8(1): 7248.
[http://dx.doi.org/10.1038/s41598-018-25337-4] [PMID: 29739990]
[99]
Vyas V, Solomon M, D’Souza GGM, Huey BD. Nanomechanical analysis of extracellular matrix and cells in multicellular spheroids. Cell Mol Bioeng 2019; 12(3): 203-14.
[http://dx.doi.org/10.1007/s12195-019-00577-0] [PMID: 31719910]
[100]
Guillaume L, Rigal L, Fehrenbach J, Severac C, Ducommun B, Lobjois V. Characterization of the physical properties of tumor-derived spheroids reveals critical insights for pre-clinical studies. Sci Rep 2019; 9(1): 6597.
[http://dx.doi.org/10.1038/s41598-019-43090-0] [PMID: 31036886]
[101]
Jaiswal D, Cowley N, Bian Z, Zheng G, Claffey KP, Hoshino K. Stiffness analysis of 3D spheroids using microtweezers. PLoS One 2017; 12(11): e0188346
[http://dx.doi.org/10.1371/journal.pone.0188346] [PMID: 29166651]
[102]
Torisawa YS, Takagi A, Shiku H, Yasukawa T, Matsue T. A multicellular spheroid-based drug sensitivity test by scanning electrochemical microscopy. Oncol Rep 2005; 13(6): 1107-12.https://www.spandidos-publications.com/or/13/6/1107
[PMID: 15870929]
[103]
Rane TD, Armani AM. two-photon microscopy analysis of gold nanoparticle uptake in 3D cell spheroids. PLoS One 2016; 11(12): e0167548
[http://dx.doi.org/10.1371/journal.pone.0167548] [PMID: 27936027]
[104]
Pampaloni F, Ansari N, Stelzer EH. High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell Tissue Res 2013; 352(1): 161-77.
[http://dx.doi.org/10.1007/s00441-013-1589-7] [PMID: 23443300]
[105]
Gualda EJ, Simão D, Pinto C, Alves PM, Brito C. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy. Front Cell Neurosci 2014; 8: 221.
[http://dx.doi.org/10.3389/fncel.2014.00221] [PMID: 25161607]
[106]
Korff T. Three-Dimensional Spheroid Culture of Endothelial CellsMethods in Endothelal Cell Biology Heidelberg: Augustin HSpringer 2004.
[http://dx.doi.org/10.1007/978-3-642-18725-4_6]
[107]
De Witt Hamer PC, Jonker A, Leenstra S, Ruijter JM, Van Noorden CJ. Quantification of viability in organotypic multicellular spheroids of human malignant glioma using lactate dehydrogenase activity: a rapid and reliable automated assay. J Histochem Cytochem 2005; 53(1): 23-34.
[http://dx.doi.org/10.1369/jhc.4A6301.2005] [PMID: 15637335]
[108]
Hong CR, Bogle G, Wang J, et al. Bystander effects of hypoxia-activated prodrugs: agent-based modeling using three dimensional cell cultures. Front Pharmacol 2018; 9: 1013.
[http://dx.doi.org/10.3389/fphar.2018.01013] [PMID: 30279659]
[109]
Grässer U, Bubel M, Sossong D, Oberringer M, Pohlemann T, Metzger W. Dissociation of mono- and co-culture spheroids into single cells for subsequent flow cytometric analysis. Ann Anat 2018; 216: 1-8.
[http://dx.doi.org/10.1016/j.aanat.2017.10.002] [PMID: 29162481]
[110]
Yoon SJ, Elahi LS, Pașca AM, et al. Reliability of human cortical organoid generation. Nat Methods 2019; 16(1): 75-8.
[http://dx.doi.org/10.1038/s41592-018-0255-0] [PMID: 30573846]
[111]
Benien P, Swami A. 3D tumor models: history, advances and future perspectives. Future Oncol 2014; 10(7): 1311-27.
[http://dx.doi.org/10.2217/fon.13.274] [PMID: 24947267]
[112]
Kochanek SJ, Close DA, Johnston PA. High content screening characterization of head and neck squamous cell carcinoma multicellular tumor spheroid cultures generated in 384-well ultra-low attachment plates to screen for better cancer drug leads. Assay Drug Dev Technol 2019; 17(1): 17-36.
[http://dx.doi.org/10.1089/adt.2018.896] [PMID: 30592624]
[113]
Sirenko O, Mitlo T, Hesley J, Luke S, Owens W, Cromwell EF. High-content assays for characterizing the viability and morphology of 3D cancer spheroid cultures. Assay Drug Dev Technol 2015; 13(7): 402-14.
[http://dx.doi.org/10.1089/adt.2015.655] [PMID: 26317884]
[114]
Proctor WR, Foster AJ, Vogt J, et al. Utility of spherical human liver microtissues for prediction of clinical drug-induced liver injury. Arch Toxicol 2017; 91(8): 2849-63.
[http://dx.doi.org/10.1007/s00204-017-2002-1] [PMID: 28612260]
[115]
Kenny HA, Lal-Nag M, White EA, et al. Quantitative high throughput screening using a primary human three-dimensional organotypic culture predicts in vivo efficacy. Nat Commun 2015; 6: 6220.
[http://dx.doi.org/10.1038/ncomms7220] [PMID: 25653139]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy