Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Thrombospondin-1 as a Potential Therapeutic Target: Multiple Roles in Cancers

Author(s): Pengfei Wang, Zheng Zeng, Caiji Lin, Jiali Wang, Wenwen Xu, Wenqing Ma, Qian Xiang, Huidi Liu and Shu-Lin Liu*

Volume 26, Issue 18, 2020

Page: [2116 - 2136] Pages: 21

DOI: 10.2174/1381612826666200128091506

Price: $65

Abstract

Thrombospondin-1, an extracellular matrix protein, is the first identified natural angiogenesis inhibitor. Thrombospondin-1 participates in a great number of physiological and pathological processes, including cell-cell and cell-matrix interactions via a number of cell receptors, including CD36 and CD47, which plays a vital role in mediating inflammation and performs a promoting effect in pulmonary arterial vasculopathy and diabetes. Thrombospondin-1 consists of six domains, which combine with different molecules and participate in various functions in cancers, serving as a critical member in diverse pathways in cancers. Thrombospondin-1 works as a cancer promotor in some pathways but as a cancer suppressor in others, which makes it highly possible that its erroneous functioning might lead to opposite effects. Therefore, subdividing the roles of thrombospondin-1 and distinguishing them in cancers are necessary. Complex structure and multiple roles take disadvantage of the research and application of thrombospondin-1. Compared with the whole thrombospondin-1 protein, each thrombospondin- 1 active peptide performs an uncomplicated structure and, nevertheless, a specific role. In other words, various thrombospondin-1 active peptides may function differently. For instance, thrombospondin-1 could both promote and inhibit glioblastoma, which is significantly inhibited by the three type I repeats, a thrombospondin-1 active peptide but promoted by the fragment 167-569, a thrombospondin-1 active peptide consisting of the procollagen homology domain and the three type I repeats. Further studies of the functions of thrombospondin-1 active peptides and applying them reasonably are necessary. In addition to mediating cancerogenesis, thrombospondin-1 is also affected by cancer development, as reflected by its expression in plasma and the cancer tissue. Therefore, thrombospondin-1 may be a potential biomarker for pre-clinical and clinical application. This review summarizes findings on the multiple roles of thrombospondin-1 in cancer processes, with a focus on its use as a potential therapeutic target.

Keywords: Thrombospondin-1, cancer, cancer promotor, cancer suppressor, therapeutic target, active peptide, biomarker.

[1]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Karasawa T, Steyger PS. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol Lett 2015; 237(3): 219-27.
[http://dx.doi.org/10.1016/j.toxlet.2015.06.012] [PMID: 26101797]
[3]
Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers (Basel) 2014; 6(3): 1769-92.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[4]
Sid B, Sartelet H, Bellon G, et al. Thrombospondin 1: a multifunctional protein implicated in the regulation of tumor growth. Crit Rev Oncol Hematol 2004; 49(3): 245-58.
[http://dx.doi.org/10.1016/j.critrevonc.2003.09.009] [PMID: 15036264]
[5]
Jayachandran A, Anaka M, Prithviraj P, et al. Thrombospondin 1 promotes an aggressive phenotype through epithelial-to-mesenchymal transition in human melanoma. Oncotarget 2014; 5(14): 5782-97.
[http://dx.doi.org/10.18632/oncotarget.2164] [PMID: 25051363]
[6]
Prete A, Lo AS, Sadow PM, et al. Pericytes elicit resistance to vemurafenib and sorafenib therapy in thyroid carcinoma via the TSP-1/TGFbeta1 axis. Clinical cancer Research: An official Journal of the American Association for Cancer Research 2018; 24(23): 6078-97.
[7]
Rath GM, Schneider C, Dedieu S, et al. The C-terminal CD47/IAP-binding domain of thrombospondin-1 prevents camptothecin- and doxorubicin-induced apoptosis in human thyroid carcinoma cells. Biochim Biophys Acta 2006; 1763(10): 1125-34.
[http://dx.doi.org/10.1016/j.bbamcr.2006.08.001] [PMID: 16962673]
[8]
Jiménez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 2000; 6(1): 41-8.
[http://dx.doi.org/10.1038/71517] [PMID: 10613822]
[9]
Bauer EM, Qin Y, Miller TW, et al. Thrombospondin-1 supports blood pressure by limiting eNOS activation and endothelial-dependent vasorelaxation. Cardiovasc Res 2010; 88(3): 471-81.
[http://dx.doi.org/10.1093/cvr/cvq218] [PMID: 20610415]
[10]
Vallejo AN, Mügge LO, Klimiuk PA, Weyand CM, Goronzy JJ. Central role of thrombospondin-1 in the activation and clonal expansion of inflammatory T cells. J Immunol 2000; 164(6): 2947-54.
[http://dx.doi.org/10.4049/jimmunol.164.6.2947] [PMID: 10706681]
[11]
Iruela-Arispe ML, Lombardo M, Krutzsch HC, Lawler J, Roberts DD. Inhibition of angiogenesis by thrombospondin-1 is mediated by 2 independent regions within the type 1 repeats. Circulation 1999; 100(13): 1423-31.
[http://dx.doi.org/10.1161/01.CIR.100.13.1423] [PMID: 10500044]
[12]
Isenberg JS, Calzada MJ, Zhou L, et al. Endogenous thrombospondin-1 is not necessary for proliferation but is permissive for vascular smooth muscle cell responses to platelet-derived growth factor. Matrix Biol 2005; 24(2): 110-23.
[http://dx.doi.org/10.1016/j.matbio.2005.01.002] [PMID: 15890262]
[13]
Dias JV, Benslimane-Ahmim Z, Egot M, et al. A motif within the N-terminal domain of TSP-1 specifically promotes the proangiogenic activity of endothelial colony-forming cells. Biochem Pharmacol 2012; 84(8): 1014-23.
[http://dx.doi.org/10.1016/j.bcp.2012.07.006] [PMID: 22796565]
[14]
Gayen Betal S, Setty BNY. Phosphatidylserine-positive erythrocytes bind to immobilized and soluble thrombospondin-1 via its heparin-binding domain. Transl Res 2008; 152(4): 165-77.
[http://dx.doi.org/10.1016/j.trsl.2008.07.007] [PMID: 18940719]
[15]
Dixit VM, Haverstick DM, O’Rourke KM, et al. A monoclonal antibody against human thrombospondin inhibits platelet aggregation. Proc Natl Acad Sci USA 1985; 82(10): 3472-6.
[http://dx.doi.org/10.1073/pnas.82.10.3472] [PMID: 2582413]
[16]
Wang TN, Qian X, Granick MS, et al. Thrombospondin-1 (TSP-1) promotes the invasive properties of human breast cancer. J Surg Res 1996; 63(1): 39-43.
[http://dx.doi.org/10.1006/jsre.1996.0219] [PMID: 8661169]
[17]
Jin RJ, Kwak C, Lee SG, et al. The application of an anti-angiogenic gene (thrombospondin-1) in the treatment of human prostate cancer xenografts. Cancer Gene Ther 2000; 7(12): 1537-42.
[http://dx.doi.org/10.1038/sj.cgt.7700266] [PMID: 11228532]
[18]
Laklai H, Laval S, Dumartin L, et al. Thrombospondin-1 is a critical effector of oncosuppressive activity of sst2 somatostatin receptor on pancreatic cancer. Proc Natl Acad Sci USA 2009; 106(42): 17769-74.
[http://dx.doi.org/10.1073/pnas.0908674106] [PMID: 19805200]
[19]
Qian X, Rothman VL, Nicosia RF, Tuszynski GP. Expression of thrombospondin-1 in human pancreatic adenocarcinomas: role in matrix metalloproteinase-9 production. Pathol Oncol Res 2001; 7(4): 251-9.
[http://dx.doi.org/10.1007/BF03032381] [PMID: 11882904]
[20]
Albo D, Rothman VL, Roberts DD, Tuszynski GP. Tumour cell thrombospondin-1 regulates tumour cell adhesion and invasion through the urokinase plasminogen activator receptor. Br J Cancer 2000; 83(3): 298-306.
[http://dx.doi.org/10.1054/bjoc.2000.1268] [PMID: 10917542]
[21]
Wang TN, Albo D, Tuszynski GP. Fibroblasts promote breast cancer cell invasion by upregulating tumor matrix metalloproteinase-9 production. Surgery 2002; 132(2): 220-5.
[http://dx.doi.org/10.1067/msy.2002.125353] [PMID: 12219015]
[22]
Maxhimer JB, Soto-Pantoja DR, Ridnour LA, et al. Radioprotection in normal tissue and delayed tumor growth by blockade of CD47 signaling. Sci Transl Med 2009; 1(3): 3ra7.
[http://dx.doi.org/10.1126/scitranslmed.3000139] [PMID: 20161613]
[23]
Choi SH, Tamura K, Khajuria RK, et al. Antiangiogenic variant of TSP-1 targets tumor cells in glioblastomas. Mol Ther 2015; 23(2): 235-43.
[http://dx.doi.org/10.1038/mt.2014.214] [PMID: 25358253]
[24]
Yang F, Jiang X, Song L, et al. Quercetin inhibits angiogenesis through thrombospondin-1 upregulation to antagonize human prostate cancer PC-3 cell growth in vitro and in vivo. Oncol Rep 2016; 35(3)(Suppl. 1): 1602-10.
[http://dx.doi.org/10.3892/or.2015.4481] [PMID: 26676551]
[25]
Mirzoeva S, Tong X, Bridgeman BB, Plebanek MP, Volpert OV. Apigenin inhibits UVB-induced skin carcinogenesis: The role of thrombospondin-1 as an anti-inflammatory Factor. Neoplasia 2018; 20(9): 930-42.
[http://dx.doi.org/10.1016/j.neo.2018.07.005] [PMID: 30118999]
[26]
Resovi A, Pinessi D, Chiorino G, Taraboletti G. Current understanding of the thrombospondin-1 interactome. Matrix Biol 2014; 37(14): 83-91.
[http://dx.doi.org/10.1016/j.matbio.2014.01.012] [PMID: 24476925]
[27]
Isenberg JS, Maxhimer JB, Powers P, Tsokos M, Frazier WA, Roberts DD. Treatment of liver ischemia-reperfusion injury by limiting thrombospondin-1/CD47 signaling. Surgery 2008; 144(5): 752-61.
[http://dx.doi.org/10.1016/j.surg.2008.07.009] [PMID: 19081017]
[28]
Byrne GJ, Hayden KE, McDowell G, et al. Angiogenic characteristics of circulating and tumoural thrombospondin-1 in breast cancer. Int J Oncol 2007; 31(5): 1127-32.
[PMID: 17912439]
[29]
Perroud HA, Rico MJ, Alasino CM, Pezzotto SM, Rozados VR, Scharovsky OG. Association between baseline VEGF/sVEGFR-2 and VEGF/TSP-1 ratios and response to metronomic chemotherapy using cyclophosphamide and celecoxib in patients with advanced breast cancer. Indian J Cancer 2013; 50(2): 115-21.
[http://dx.doi.org/10.4103/0019-509X.117031] [PMID: 23979202]
[30]
Wolf FW, Eddy RL, Shows TB, Dixit VMFWW. Structure and chromosomal localization of the human thrombospondin gene. Genomics 1990; 6(4): 685-91.
[http://dx.doi.org/10.1016/0888-7543(90)90505-O] [PMID: 2341158]
[31]
Margossian SS, Lawler JW, Slayter HS. Physical characterization of platelet thrombospondin. J Biol Chem 1981; 256(14): 7495-500.
[PMID: 7251605]
[32]
Baenziger NL, Brodie GN, Majerus PW. Isolation and properties of a thrombin-sensitive protein of human platelets. J Biol Chem 1972; 247(9): 2723-31.
[PMID: 4260214]
[33]
Lawler JW, Slayter HS, Coligan JE. Isolation and characterization of a high molecular weight glycoprotein from human blood platelets. J Biol Chem 1978; 253(23): 8609-16.
[PMID: 101549]
[34]
J L R W, RO H. Cell attachment to thrombospondin: the role of ARG-GLY-ASP, calcium, and integrin receptors. J Cell Biol 1988; 107: 2351-61.
[35]
Nunes SS, Outeiro-Bernstein MA, Juliano L, et al. Syndecan-4 contributes to endothelial tubulogenesis through interactions with two motifs inside the pro-angiogenic N-terminal domain of thrombospondin-1. J Cell Physiol 2008; 214(3): 828-37.
[http://dx.doi.org/10.1002/jcp.21281] [PMID: 17879962]
[36]
Chandrasekaran L, He CZ, Al-Barazi H, Krutzsch HC, Iruela-Arispe ML, Roberts DD. Cell contact-dependent activation of alpha3beta1 integrin modulates endothelial cell responses to thrombospondin-1. Mol Biol Cell 2000; 11(9): 2885-900.
[http://dx.doi.org/10.1091/mbc.11.9.2885] [PMID: 10982388]
[37]
Fuhrman-Luck RA, Stansfield SH, Stephens CR, Loessner D, Clements JA. The prostate cancer-associated kallikrein-related peptidase 4 (KLK4) activates matrix metalloproteinase-1 (MMP1) and thrombospondin-1 (TSP1). J Proteome Res 2016; 15(8): 2466-78.
[38]
Wakiyama T, Shinohara T, Shirakusa T, John AS, Tuszynski GP. The localization of thrombospondin-1 (TSP-1), cysteine-serine-valine-threonine-cysteine-glycine (CSVTCG) TSP receptor, and matrix metalloproteinase-9 (MMP-9) in colorectal cancer. Histol Histopathol 2001; 16(2): 345-51.
[PMID: 11332689]
[39]
Albo D, Shinohara T, Tuszynski GP. Up-regulation of matrix metalloproteinase 9 by thrombospondin 1 in gastric cancer. J Surg Res 2002; 108(1): 51-60.
[http://dx.doi.org/10.1006/jsre.2002.6452] [PMID: 12443715]
[40]
Schultz-Cherry S, Chen H, Mosher DF, et al. Regulation of transforming growth factor-beta activation by discrete sequences of thrombospondin 1. J Biol Chem 1995; 270(13): 7304-10.
[http://dx.doi.org/10.1074/jbc.270.13.7304] [PMID: 7706271]
[41]
Sipes JM, Guo N, Nègre E, Vogel T, Krutzsch HC, Roberts DD. Inhibition of fibronectin binding and fibronectin-mediated cell adhesion to collagen by a peptide from the second type I repeat of thrombospondin. J Cell Biol 1993; 121(2): 469-77.
[http://dx.doi.org/10.1083/jcb.121.2.469] [PMID: 8468356]
[42]
Guo NH, Krutzsch HC, Nègre E, Zabrenetzky VS, Roberts DD. Heparin-binding peptides from the type I repeats of thrombospondin. Structural requirements for heparin binding and promotion of melanoma cell adhesion and chemotaxis. J Biol Chem 1992; 267(27): 19349-55.
[PMID: 1527055]
[43]
Eroglu C, Allen NJ, Susman MW, et al. Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 2009; 139(2): 380-92.
[http://dx.doi.org/10.1016/j.cell.2009.09.025] [PMID: 19818485]
[44]
Adams JC. Functions of the conserved thrombospondin carboxy-terminal cassette in cell-extracellular matrix interactions and signaling. Int J Biochem Cell Biol 2004; 36(6): 1102-14.
[http://dx.doi.org/10.1016/j.biocel.2004.01.022] [PMID: 15094125]
[45]
Dixit VM, Galvin NJ, O’Rourke KM, Frazier WA. Monoclonal antibodies that recognize calcium-dependent structures of human thrombospondin. Characterization and mapping of their epitopes. J Biol Chem 1986; 261(4): 1962-8.
[PMID: 2418018]
[46]
Margosio B, Rusnati M, Bonezzi K, et al. Fibroblast growth factor-2 binding to the thrombospondin-1 type III repeats, a novel antiangiogenic domain. Int J Biochem Cell Biol 2008; 40(4): 700-9.
[http://dx.doi.org/10.1016/j.biocel.2007.10.002] [PMID: 17996481]
[47]
Rogers NM, Sharifi-Sanjani M, Yao M, et al. TSP1-CD47 signaling is upregulated in clinical pulmonary hypertension and contributes to pulmonary arterial vasculopathy and dysfunction. Cardiovasc Res 2017; 113(1): 15-29.
[http://dx.doi.org/10.1093/cvr/cvw218] [PMID: 27742621]
[48]
Miller TW, Kaur S, Ivins-O’Keefe K, Roberts DD. Thrombospondin-1 is a CD47-dependent endogenous inhibitor of hydrogen sulfide signaling in T cell activation. Matrix biology: J Int Society Matrix Biol 2013; 32(6): 316-24.
[http://dx.doi.org/10.1016/j.matbio.2013.02.009]
[49]
Maxhimer JB, Shih HB, Isenberg JS, Miller TW, Roberts DD. Thrombospondin-1/CD47 blockade following ischemia-reperfusion injury is tissue protective. Plast Reconstr Surg 2009; 124(6): 1880-9.
[http://dx.doi.org/10.1097/PRS.0b013e3181bceec3] [PMID: 19952644]
[50]
Horiguchi H, Yamagata S, Rong Qian Z, Kagawa S, Sakashita N. Thrombospondin-1 is highly expressed in desmoplastic components of invasive ductal carcinoma of the breast and associated with lymph node metastasis. J Med Invest 2013; 60(1-2): 91-6.
[http://dx.doi.org/10.2152/jmi.60.91] [PMID: 23614916]
[51]
Yee KO, Connolly CM, Duquette M, Kazerounian S, Washington R, Lawler J. The effect of thrombospondin-1 on breast cancer metastasis. Breast Cancer Res Treat 2009; 114(1): 85-96.
[http://dx.doi.org/10.1007/s10549-008-9992-6] [PMID: 18409060]
[52]
Albo D, Berger DH, Wang TN, Hu X, Rothman V, Tuszynski GP. Thrombospondin-1 and transforming growth factor-beta l promote breast tumor cell invasion through up-regulation of the plasminogen/plasmin system. Surgery 1997; 122(2): 493-9.
[http://dx.doi.org/10.1016/S0039-6060(97)90043-X] [PMID: 9288157]
[53]
Blasi F. Urokinase and urokinase receptor: a paracrine/autocrine system regulating cell migration and invasiveness. BioEssays 1993; 15(2): 105-11.
[http://dx.doi.org/10.1002/bies.950150206] [PMID: 8385942]
[54]
Bianchi E, Cohen RL, Dai A, Thor AT, Shuman MA, Smith HS. Immunohistochemical localization of the plasminogen activator inhibitor-1 in breast cancer. Int J Cancer 1995; 60(5): 597-603.
[http://dx.doi.org/10.1002/ijc.2910600505] [PMID: 7532156]
[55]
Hyder SM, Liang Y, Wu J. Estrogen regulation of thrombospondin-1 in human breast cancer cells. Int J Cancer 2009; 125(5): 1045-53.
[http://dx.doi.org/10.1002/ijc.24373] [PMID: 19391135]
[56]
Martin-Manso G, Calzada MJ, Chuman Y, et al. sFRP-1 binds via its netrin-related motif to the N-module of thrombospondin-1 and blocks thrombospondin-1 stimulation of MDA-MB-231 breast carcinoma cell adhesion and migration. Arch Biochem Biophys 2011; 509(2): 147-56.
[http://dx.doi.org/10.1016/j.abb.2011.03.004] [PMID: 21402050]
[57]
Cunningham D, Okines AF, Ashley S, et al. Capecitabine and oxaliplatin for advanced esophagogastric cancer. N Engl J Med 2010; 362(9): 858-9.
[http://dx.doi.org/10.1056/NEJMc0911925] [PMID: 20200397]
[58]
Kim J, Kim C, Kim TS, et al. IL-18 enhances thrombospondin-1 production in human gastric cancer via JNK pathway. Biochem Biophys Res Commun 2006; 344(4): 1284-9.
[http://dx.doi.org/10.1016/j.bbrc.2006.04.016] [PMID: 16650813]
[59]
Majima T, Ichikura T, Chochi K, et al. Exploitation of interleukin-18 by gastric cancers for their growth and evasion of host immunity. Int J Cancer 2006; 118(2): 388-95.
[http://dx.doi.org/10.1002/ijc.21334] [PMID: 16049975]
[60]
Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114(2): 97-109.
[http://dx.doi.org/10.1007/s00401-007-0243-4] [PMID: 17618441]
[61]
Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nat Rev Neurosci 2007; 8(8): 610-22.
[http://dx.doi.org/10.1038/nrn2175] [PMID: 17643088]
[62]
Tenan M, Fulci G, Albertoni M, et al. Thrombospondin-1 is downregulated by anoxia and suppresses tumorigenicity of human glioblastoma cells. J Exp Med 2000; 191(10): 1789-98.
[http://dx.doi.org/10.1084/jem.191.10.1789] [PMID: 10811871]
[63]
Daubon T, Léon C, Clarke K, et al. Deciphering the complex role of thrombospondin-1 in glioblastoma development. Nat Commun 2019; 10(1): 1146.
[http://dx.doi.org/10.1038/s41467-019-08480-y] [PMID: 30850588]
[64]
Harada H, Nakagawa K, Saito M, et al. Introduction of wild-type p53 enhances thrombospondin-1 expression in human glioma cells. Cancer Lett 2003; 191(1): 109-19.
[http://dx.doi.org/10.1016/S0304-3835(02)00592-X] [PMID: 12609716]
[65]
de Fraipont F, Keramidas M, El Atifi M, Chambaz EM, Berger F, Feige JJ. Expression of the thrombospondin 1 fragment 167-569 in C6 glioma cells stimulates tumorigenicity despite reduced neovascularization. Oncogene 2004; 23(20): 3642-9.
[http://dx.doi.org/10.1038/sj.onc.1207438] [PMID: 15077189]
[66]
Borsotti P, Ghilardi C, Ostano P, et al. Thrombospondin-1 is part of a Slug-independent motility and metastatic program in cutaneous melanoma, in association with VEGFR-1 and FGF-2. Pigment Cell Melanoma Res 2015; 28(1): 73-81.
[http://dx.doi.org/10.1111/pcmr.12319] [PMID: 25256553]
[67]
Caramel J, Papadogeorgakis E, Hill L, et al. A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell 2013; 24(4): 466-80.
[http://dx.doi.org/10.1016/j.ccr.2013.08.018] [PMID: 24075834]
[68]
Lee CH, Wu CL, Shiau AL. Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model. Cancer Gene Ther 2005; 12(2): 175-84.
[http://dx.doi.org/10.1038/sj.cgt.7700777] [PMID: 15375381]
[69]
Sid B, Langlois B, Sartelet H, Bellon G, Dedieu S, Martiny L. Thrombospondin-1 enhances human thyroid carcinoma cell invasion through urokinase activity. Int J Biochem Cell Biol 2008; 40(9): 1890-900.
[http://dx.doi.org/10.1016/j.biocel.2008.01.023] [PMID: 18321763]
[70]
Nucera C, Porrello A, Antonello ZA, et al. B-Raf(V600E) and thrombospondin-1 promote thyroid cancer progression. Proc Natl Acad Sci USA 2010; 107(23): 10649-54.
[http://dx.doi.org/10.1073/pnas.1004934107] [PMID: 20498063]
[71]
Soula-Rothhut M, Coissard C, Sartelet H, et al. The tumor suppressor PTEN inhibits EGF-induced TSP-1 and TIMP-1 expression in FTC-133 thyroid carcinoma cells. Exp Cell Res 2005; 304(1): 187-201.
[http://dx.doi.org/10.1016/j.yexcr.2004.10.026] [PMID: 15707585]
[72]
Jia L, Waxman DJ. Thrombospondin-1 and pigment epithelium-derived factor enhance responsiveness of KM12 colon tumor to metronomic cyclophosphamide but have disparate effects on tumor metastasis. Cancer Lett 2013; 330(2): 241-9.
[http://dx.doi.org/10.1016/j.canlet.2012.11.055] [PMID: 23228633]
[73]
Sundaram P, Hultine S, Smith LM, et al. p53-responsive miR-194 inhibits thrombospondin-1 and promotes angiogenesis in colon cancers. Cancer Res 2011; 71(24): 7490-501.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1124] [PMID: 22028325]
[74]
López-Vicario C, Rius B, Alcaraz-Quiles J, et al. Pro-resolving mediators produced from EPA and DHA: Overview of the pathways involved and their mechanisms in metabolic syndrome and related liver diseases. Eur J Pharmacol 2016; 785(undefined): 133-43.
[75]
Shureiqi I, Wu Y, Chen D, et al. The critical role of 15-lipoxygenase-1 in colorectal epithelial cell terminal differentiation and tumorigenesis. Cancer Res 2005; 65(24): 11486-92.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2180] [PMID: 16357157]
[76]
Tunçer S, Keşküş AG, Çolakoğlu M, et al. 15-Lipoxygenase-1 re-expression in colorectal cancer alters endothelial cell features through enhanced expression of TSP-1 and ICAM-1. Cell Signal 2017; 39: 44-54.
[http://dx.doi.org/10.1016/j.cellsig.2017.07.022] [PMID: 28757355]
[77]
Yang Y, Jobin C. Novel insights into microbiome in colitis and colorectal cancer. Curr Opin Gastroenterol 2017; 33(6): 422-7.
[http://dx.doi.org/10.1097/MOG.0000000000000399] [PMID: 28877044]
[78]
Radziwon-Balicka A, Santos-Martinez MJ, Corbalan JJ, et al. Mechanisms of platelet-stimulated colon cancer invasion: role of clusterin and thrombospondin 1 in regulation of the P38MAPK-MMP-9 pathway. Carcinogenesis 2014; 35(2): 324-32.
[http://dx.doi.org/10.1093/carcin/bgt332] [PMID: 24085798]
[79]
Escamilla J, Lane MA, Maitin V. Cell-free supernatants from probiotic Lactobacillus casei and Lactobacillus rhamnosus GG decrease colon cancer cell invasion in vitro. Nutr Cancer 2012; 64(6): 871-8.
[http://dx.doi.org/10.1080/01635581.2012.700758] [PMID: 22830611]
[80]
Tsuji T, Nakamori M, Iwahashi M, et al. An armed oncolytic herpes simplex virus expressing thrombospondin-1 has an enhanced in vivo antitumor effect against human gastric cancer. Int J Cancer 2013; 132(2): 485-94.
[http://dx.doi.org/10.1002/ijc.27681] [PMID: 22729516]
[81]
Yoshida J, Abe H, Watanabe T, Kawada M. Intervenolin suppresses gastric cancer cell growth through the induction of TSP-1 secretion from fibroblast-like stromal cells. Oncology Letters 2018; 16(5): 6777-85.
[82]
Huang T, Wang L, Liu D, et al. FGF7/FGFR2 signal promotes invasion and migration in human gastric cancer through upregulation of thrombospondin-1. Int J Oncol 2017; 50(5): 1501-12.
[http://dx.doi.org/10.3892/ijo.2017.3927] [PMID: 28339036]
[83]
Saumet A, Slimane MB, Lanotte M, Lawler J, Dubernard V. Type 3 repeat/C-terminal domain of thrombospondin-1 triggers caspase-independent cell death through CD47/alphavbeta3 in promyelocytic leukemia NB4 cells. Blood 2005; 106(2): 658-67.
[http://dx.doi.org/10.1182/blood-2004-09-3585] [PMID: 15784731]
[84]
Kukreja A, Radfar S, Sun BH, Insogna K, Dhodapkar MV. Dominant role of CD47-thrombospondin-1 interactions in myeloma-induced fusion of human dendritic cells: implications for bone disease. Blood 2009; 114(16): 3413-21.
[http://dx.doi.org/10.1182/blood-2009-03-211920] [PMID: 19661269]
[85]
Bruel A, Touhami-Carrier M, Thomaidis A, Legrand C. Thrombospondin-1 (TSP-1) and TSP-1-derived heparin-binding peptides induce promyelocytic leukemia cell differentiation and apoptosis. Anticancer Res 2005; 25(2A): 757-64.
[PMID: 15868907]
[86]
Liu P, Wang Y, Li Y-H, et al. Adenovirus-mediated gene therapy with an antiangiogenic fragment of thrombospondin-1 inhibits human leukemia xenograft growth in nude mice. Leuk Res 2003; 27(8): 701-8.
[http://dx.doi.org/10.1016/S0145-2126(02)00346-6] [PMID: 12801528]
[87]
Baek KH, Bhang D, Zaslavsky A, et al. Thrombospondin-1 mediates oncogenic Ras-induced senescence in premalignant lung tumors. J Clin Invest 2013; 123(10): 4375-89.
[http://dx.doi.org/10.1172/JCI67465] [PMID: 24018559]
[88]
Wei L, Wang H, Yang F, Ding Q, Zhao J. Interleukin-17 potently increases non-small cell lung cancer growth. Mol Med Rep 2016; 13(2): 1673-80.
[http://dx.doi.org/10.3892/mmr.2015.4694] [PMID: 26708832]
[89]
El Rayes T, Catena R, Lee S, et al. Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1. Proc Natl Acad Sci USA 2015; 112(52): 16000-5.
[http://dx.doi.org/10.1073/pnas.1507294112] [PMID: 26668367]
[90]
Zhao Y, Olonisakin TF, Xiong Z, et al. Thrombospondin-1 restrains neutrophil granule serine protease function and regulates the innate immune response during Klebsiella pneumoniae infection. Mucosal Immunol 2015; 8(4): 896-905.
[http://dx.doi.org/10.1038/mi.2014.120] [PMID: 25492474]
[91]
Qu Y, Olonisakin T, Bain W, et al. Thrombospondin-1 protects against pathogen-induced lung injury by limiting extracellular matrix proteolysis. JCI Insight 2018; 3(3): 96914.
[http://dx.doi.org/10.1172/jci.insight.96914] [PMID: 29415890]
[92]
Dosunmu EF, Emeh RO, Dixit S, et al. The anti-microbial peptide TP359 attenuates inflammation in human lung cells infected with Pseudomonas aeruginosa via TLR5 and MAPK pathways. PLoS One 2017; 12(5)e0176640
[http://dx.doi.org/10.1371/journal.pone.0176640] [PMID: 28467446]
[93]
Candido J, Hagemann T. Cancer-related inflammation. J Clin Immunol 2013; 33(S1): S79-84.
[http://dx.doi.org/10.1007/s10875-012-9847-0] [PMID: 23225204]
[94]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66(1): 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[95]
Huang WT, Chong IW, Chen HL, et al. Pigment epithelium-derived factor inhibits lung cancer migration and invasion by upregulating exosomal thrombospondin 1. Cancer Lett 2019; 442: 287-98.
[http://dx.doi.org/10.1016/j.canlet.2018.10.031] [PMID: 30439539]
[96]
Zhang Y, Zheng D, Zhou T. Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers 2018; 9(1): : 4080.
[http://dx.doi.org/10.1038/s41467-018-06177-2]
[97]
Hulsurkar M, Li Z, Zhang Y, Li X, Zheng D, Li W. Beta-adrenergic signaling promotes tumor angiogenesis and prostate cancer progression through HDAC2-mediated suppression of thrombospondin-1. Oncogene 2017; 36(11): 1525-36.
[http://dx.doi.org/10.1038/onc.2016.319] [PMID: 27641328]
[98]
Li W, Ai N, Wang S, et al. GRK3 is essential for metastatic cells and promotes prostate tumor progression. Proc Natl Acad Sci USA 2014; 111(4): 1521-6.
[http://dx.doi.org/10.1073/pnas.1320638111] [PMID: 24434559]
[99]
Vaughan S, Coward JI, Bast RC Jr, et al. Rethinking ovarian cancer: recommendations for improving outcomes. Nat Rev Cancer 2011; 11(10): 719-25.
[http://dx.doi.org/10.1038/nrc3144] [PMID: 21941283]
[100]
Wei W, Kong B, Yang Q, Qu X. Hepatocyte growth factor enhances ovarian cancer cell invasion through downregulation of thrombospondin-1. Cancer Biol Ther 2010; 9(2): 79-87.
[http://dx.doi.org/10.4161/cbt.9.2.10280] [PMID: 19959938]
[101]
Alvarez AA, Axelrod JR, Whitaker RS, et al. Thrombospondin-1 expression in epithelial ovarian carcinoma: association with p53 status, tumor angiogenesis, and survival in platinum-treated patients. Gynecol Oncol 2001; 82(2): 273-8.
[http://dx.doi.org/10.1006/gyno.2001.6287] [PMID: 11531279]
[102]
Vikhanskaya F, Bani MR, Borsotti P, et al. p73 Overexpression increases VEGF and reduces thrombospondin-1 production: implications for tumor angiogenesis. Oncogene 2001; 20(50): 7293-300.
[http://dx.doi.org/10.1038/sj.onc.1204896] [PMID: 11704858]
[103]
Ramadan S, Terrinoni A, Catani MV, et al. p73 induces apoptosis by different mechanisms. Biochem Biophys Res Commun 2005; 331(3): 713-7.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.156] [PMID: 15865927]
[104]
Russell S, Duquette M, Liu J, Drapkin R, Lawler J, Petrik J. Combined therapy with thrombospondin-1 type I repeats (3TSR) and chemotherapy induces regression and significantly improves survival in a preclinical model of advanced stage epithelial ovarian cancer. FASEB J 2015; 29(2): 576-88.
[http://dx.doi.org/10.1096/fj.14-261636] [PMID: 25395453]
[105]
Rouanne M, Adam J, Goubar A, et al. Osteopontin and thrombospondin-1 play opposite roles in promoting tumor aggressiveness of primary resected non-small cell lung cancer. BMC Cancer 2016; 16(1): 483.
[http://dx.doi.org/10.1186/s12885-016-2541-5] [PMID: 27422280]
[106]
Yamaguchi M, Sugio K, Ondo K, Yano T, Sugimachi K. Reduced expression of thrombospondin-1 correlates with a poor prognosis in patients with non-small cell lung cancer. Lung Cancer 2002; 36(2): 143-50.
[http://dx.doi.org/10.1016/S0169-5002(01)00470-6] [PMID: 11955648]
[107]
Cymbaluk-Płoska A, Chudecka-Głaz A, Pius-Sadowska E, Machaliński B, Menkiszak J. Thrombospondin-I concentrations behavior in plasma of patients with ovarian cancer. Cancer Biomark 2017; 20(1): 31-9.
[http://dx.doi.org/10.3233/CBM-161546] [PMID: 28655131]
[108]
Kim NH, Kim SN, Seo DW, Han JW, Kim YK. PRMT6 overexpression upregulates TSP-1 and downregulates MMPs: its implication in motility and invasion. Biochem Biophys Res Commun 2013; 432(1): 60-5.
[http://dx.doi.org/10.1016/j.bbrc.2013.01.085] [PMID: 23380452]
[109]
Poon RT, Chung KK, Cheung ST, et al. Clinical significance of thrombospondin 1 expression in hepatocellular carcinoma. Clin Cancer Res 2004; 10(12 Pt 1): 4150-7.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0435] [PMID: 15217952]
[110]
Zhang X, Connolly C, Duquette M, Lawler J, Parangi S. Continuous administration of the three thrombospondin-1 type 1 repeats recombinant protein improves the potency of therapy in an orthotopic human pancreatic cancer model. Cancer Lett 2007; 247(1): 143-9.
[http://dx.doi.org/10.1016/j.canlet.2006.04.003] [PMID: 16757110]
[111]
Guo NH, Krutzsch HC, Inman JK, Shannon CS, Roberts DD. Antiproliferative and antitumor activities of D-reverse peptides derived from the second type-1 repeat of thrombospondin-1. J Pept Res 1997; 50(3): 210-21.
[http://dx.doi.org/10.1111/j.1399-3011.1997.tb01187.x] [PMID: 9309585]
[112]
Campbell NE, Greenaway J, Henkin J, Moorehead RA, Petrik J. The thrombospondin-1 mimetic ABT-510 increases the uptake and effectiveness of cisplatin and paclitaxel in a mouse model of epithelial ovarian cancer. Neoplasia 2010; 12(3): 275-83.
[http://dx.doi.org/10.1593/neo.91880] [PMID: 20234821]
[113]
Campbell N, Greenaway J, Henkin J, Petrik J. ABT-898 induces tumor regression and prolongs survival in a mouse model of epithelial ovarian cancer. Mol Cancer Ther 2011; 10(10): 1876-85.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0402] [PMID: 21844212]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy