Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Lignans from Medicinal Plants and their Anticancer Effect

Author(s): Eugenia Dumitra Teodor*, Veronica Moroeanu and Gabriel Lucian Radu

Volume 20, Issue 12, 2020

Page: [1083 - 1090] Pages: 8

DOI: 10.2174/1389557520666200212110513

Price: $65

Abstract

Since early times, various plants have been used as remedies for treating different kinds of diseases and lesions with satisfying results. The phenolic compounds are secondary metabolites from medicinal plants which include a wide category of compounds such as phenolic acids, flavonoids, tannins, stilbenes, curcuminoids, xanthones, coumarins, lignans, etc. Between these, lignans are considered important in cancer prevention and treatment, besides other beneficial health effects, e.g. antioxidant, anticarcinogenic, antimutagenic, and anti-estrogenic effects. This review summarizes the most recent literature and the most important results concerning plant lignans and their derivatives in cancer prevention and treatment, both in vitro and in vivo assessments. The mechanistic aspects will be also highlighted.

Keywords: Medicinal plants, lignans, cytotoxicity, anticancer effect, bioavailability, mechanism of action.

Graphical Abstract

[1]
Komlaga, G.; Agyare, C.; Dickson, R.A.; Mensah, M.L.K.; Annan, K.; Loiseau, P.M.; Champy, P. Medicinal plants and finished marketed herbal products used in the treatment of malaria in the Ashanti region, Ghana. J. Ethnopharmacol., 2015, 172, 333-346.
[http://dx.doi.org/10.1016/j.jep.2015.06.041] [PMID: 26151245]
[2]
Costea, T.; Hudiță, A.; Ciolac, O.-A.; Gălățeanu, B.; Ginghină, O.; Costache, M.; Ganea, C.; Mocanu, M.-M. Chemoprevention of Colorectal Cancer by Dietary Compounds IJMS, 2018, 19, 3787:1-3787:54.
[3]
Mohamed, S.I.A.; Jantan, I.; Haque, M.A. Naturally occurring immunomodulators with antitumor activity: An insight on their mechanisms of action. Int. Immunopharmacol., 2017, 50, 291-304.
[http://dx.doi.org/10.1016/j.intimp.2017.07.010] [PMID: 28734166]
[4]
Ayres, D.C.; Loike, J.D. Lignans: chemical, biological and clinical properties; Chemistry and pharmacology of natural products. Cambridge Univ. Press: Cambridge, 2008. 978-0-521-06543-6.
[5]
Huang, W-Y.; Cai, Y-Z.; Zhang, Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr. Cancer, 2010, 62(1), 1-20.
[http://dx.doi.org/10.1080/01635580903191585] [PMID: 20043255]
[6]
Iwashina, T. The Structure and Distribution of the Flavonoids in Plants. J. Plant Res., 2000, 113, 287-299.
[http://dx.doi.org/10.1007/PL00013940]
[7]
Landete, J.M. Plant and mammalian lignans: A review of source, intake, metabolism, intestinal bacteria and health. Food Res. Int., 2012, 46, 410-424.
[http://dx.doi.org/10.1016/j.foodres.2011.12.023]
[8]
Pettit, G.R.; Meng, Y.; Gearing, R.P.; Herald, D.L.; Pettit, R.K.; Doubek, D.L.; Chapuis, J-C.; Tackett, L.P. Antineoplastic agents. 522. Hernandia peltata (Malaysia) and Hernandia nymphaeifolia (Republic of Maldives). J. Nat. Prod., 2004, 67(2), 214-220.
[http://dx.doi.org/10.1021/np030125s] [PMID: 14987061]
[9]
Muhit, M.A.; Umehara, K.; Noguchi, H. Five furofuranone lignan glucosides from Terminalia citrina inhibit in vitro E2-enhanced breast cancer cell proliferation. Fitoterapia, 2016, 113, 74-79.
[http://dx.doi.org/10.1016/j.fitote.2016.07.004] [PMID: 27425446]
[10]
Zálešák, F.; Bon, D.J.-Y.D.; Pospíšil, J. Lignans and Neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacol. Res., 2019, 146, 104284:1-104284:27.
[11]
Li, X.; Xia, H.; Wang, L.; Xia, G.; Qu, Y.; Shang, X.; Lin, S. Lignans from the Twigs of Litsea cubeba and Their Bioactivities. Molecules, 2019, 24, 306:1-306:13.
[http://dx.doi.org/10.3390/molecules24020306]
[12]
Ma, Y.; Wang, H.; Wang, R.; Meng, F.; Dong, Z.; Wang, G.; Lan, X.; Quan, H.; Liao, Z.; Chen, M. Cytotoxic lignans from the stems of Herpetospermum pedunculosum. Phytochemistry, 2019, 164, 102-110.
[http://dx.doi.org/10.1016/j.phytochem.2019.05.004] [PMID: 31112925]
[13]
Chang, H.; Wang, Y.; Gao, X.; Song, Z.; Awale, S.; Han, N.; Liu, Z.; Yin, J. Lignans from the root of Wikstroemia indica and their cytotoxic activity against PANC-1 human pancreatic cancer cells. Fitoterapia, 2017, 121, 31-37.
[http://dx.doi.org/10.1016/j.fitote.2017.06.012] [PMID: 28629933]
[14]
Flegkas, A.; Milosević Ifantis, T.; Barda, C.; Samara, P.; Tsitsilonis, O.; Skaltsa, H. Antiproliferative Activity of (-)-Rabdosiin Isolated from Ocimum sanctum L. Medicines, 2019, 6, 37:1-37:10.
[15]
Mondal, S.; Mirdha, B.R.; Mahapatra, S.C. The science behind sacredness of Tulsi (Ocimum sanctum Linn.). Indian J. Physiol. Pharmacol., 2009, 53(4), 291-306.
[PMID: 20509321]
[16]
Pablo Nunez, M.A. Cytotoxic and Anti-inflammatory Activities of Bursera species from Mexico. J Clin Toxicol, 2014, 05, 232:1-232:8.
[http://dx.doi.org/10.4172/2161-0495.1000232]
[17]
Mojica, M.A.; León, A.; Rojas-Sepúlveda, A.M.; Marquina, S.; Mendieta-Serrano, M.A.; Salas-Vidal, E.; Villarreal, M.L.; Alvarez, L. Aryldihydronaphthalene-type lignans from Bursera fagaroides var. fagaroides and their antimitotic mechanism of action. RSC Advances, 2016, 6, 4950-4959.
[http://dx.doi.org/10.1039/C5RA23516B]
[18]
Peña-Morán, O.; Villarreal, M.; Álvarez-Berber, L.; Meneses-Acosta, A.; Rodríguez-López, V. Cytotoxicity, Post-Treatment Recovery, and Selectivity Analysis of Naturally Occurring Podophyllotoxins from Bursera fagaroides var. fagaroides on Breast Cancer Cell Lines. Molecules, 2016, 21, 1013:1-1013:15.
[19]
Rojas-Sepúlveda, A.M.; Mendieta-Serrano, M.; Mojica, M.Y.A.; Salas-Vidal, E.; Marquina, S.; Villarreal, M.L.; Puebla, A.M.; Delgado, J.I.; Alvarez, L. Cytotoxic podophyllotoxin type-lignans from the steam bark of Bursera fagaroides var. fagaroides. Molecules, 2012, 17(8), 9506-9519.
[http://dx.doi.org/10.3390/molecules17089506] [PMID: 22878225]
[20]
Suthiwong, J.; Wandee, J.; Pitchuanchom, S.; Sojikul, P.; Kukongviriyapan, V.; Yenjai, C. Cytotoxicity against cholangiocarcinoma and HepG2 cell lines of lignan derivatives from Hernandia nymphaeifolia. Med. Chem. Res., 2018, 27, 2042-2049.
[http://dx.doi.org/10.1007/s00044-018-2214-9]
[21]
Liu, J.; Qi, Y.; Lai, H.; Zhang, J.; Jia, X.; Liu, H.; Zhang, B.; Xiao, P. Genus Kadsura, a good source with considerable characteristic chemical constituents and potential bioactivities. Phytomedicine, 2014, 21(8-9), 1092-1097.
[http://dx.doi.org/10.1016/j.phymed.2014.01.015] [PMID: 24784528]
[22]
Liu, Y.; Yang, Y.; Tasneem, S.; Hussain, N.; Daniyal, M.; Yuan, H.; Xie, Q.; Liu, B.; Sun, J.; Jian, Y. Lignans from Tujia Ethnomedicine Heilaohu: Chemical Characterization and Evaluation of Their Cytotoxicity and Antioxidant Activities. Molecules, 2018, 23, 2147:1-2147:11.
[23]
Santhanam, R.; Ahmad, S.; Abas, F.; Safinar Ismail, I.; Rukayadi, Y.; Tayyab Akhtar, M.; Shaari, K. Bioactive Constituents of Zanthoxylum rhetsa Bark and Its Cytotoxic Potential against B16-F10 Melanoma Cancer and Normal Human Dermal Fibroblast (HDF) Cell Lines. Molecules, 2016, 21, 652:1-652:13.
[24]
Mukhija, M.; Lal Dhar, K.; Nath Kalia, A. Bioactive Lignans from Zanthoxylum alatum Roxb. stem bark with cytotoxic potential. J. Ethnopharmacol., 2014, 152(1), 106-112.
[http://dx.doi.org/10.1016/j.jep.2013.12.039] [PMID: 24412550]
[25]
Hou, X.; Deng, J.; Zhang, Q.; Wang, D.; Kennedy, D.; Quinn, R.J.; Feng, Y. Cytotoxic ethnic Yao medicine Baizuan, leaves of Schisandra viridis A. C. Smith. J. Ethnopharmacol., 2016, 194, 146-152.
[http://dx.doi.org/10.1016/j.jep.2016.09.016] [PMID: 27620660]
[26]
Parikh, M.; Maddaford, T.G.; Austria, J.A.; Aliani, M.; Netticadan, T.; Pierce, G.N. Dietary Flaxseed as a Strategy for Improving Human Health. Nutrients, 2019, 11, 1171:1-1171:15.
[http://dx.doi.org/10.3390/nu11051171]
[27]
Mason, J.K.; Thompson, L.U. Flaxseed and its lignan and oil components: can they play a role in reducing the risk of and improving the treatment of breast cancer? Appl. Physiol. Nutr. Metab., 2014, 39(6), 663-678.
[http://dx.doi.org/10.1139/apnm-2013-0420] [PMID: 24869971]
[28]
Calado, A.; Neves, P.M.; Santos, T.; Ravasco, P. The Effect of Flaxseed in Breast Cancer: A Literature Review. Front. Nutr., 2018, 5, 4:1-4:7.
[http://dx.doi.org/10.3389/fnut.2018.00004]
[29]
Flower, G.; Fritz, H.; Balneaves, L.G.; Verma, S.; Skidmore, B.; Fernandes, R.; Kennedy, D.; Cooley, K.; Wong, R.; Sagar, S.; Fergusson, D.; Seely, D. Flax and Breast Cancer: A Systematic Review. Integr. Cancer Ther., 2014, 13(3), 181-192.
[http://dx.doi.org/10.1177/1534735413502076] [PMID: 24013641]
[30]
Mali, A.V.; Padhye, S.B.; Anant, S.; Hegde, M.V.; Kadam, S.S. Anticancer and antimetastatic potential of enterolactone: Clinical, preclinical and mechanistic perspectives. Eur. J. Pharmacol., 2019, 852, 107-124.
[http://dx.doi.org/10.1016/j.ejphar.2019.02.022] [PMID: 30771348]
[31]
Zamora-Ros, R.; Guinó, E.; Henar Alonso, M.; Vidal, C.; Barenys, M.; Soriano, A.; Moreno, V. Dietary flavonoids, lignans and colorectal cancer prognosis. Sci. Rep., 2015, 5, 14148:1-14148:5.
[http://dx.doi.org/10.1038/srep14148]
[32]
Zater, H.; Huet, J.; Fontaine, V.; Benayache, S.; Stévigny, C.; Duez, P.; Benayache, F. Chemical constituents, cytotoxic, antifungal and antimicrobial properties of Centaurea diluta Ait. subsp. algeriensis (Coss. & Dur.) Maire. Asian Pac. J. Trop. Med., 2016, 9(6), 554-561.
[http://dx.doi.org/10.1016/j.apjtm.2016.04.016] [PMID: 27262066]
[33]
Feng, T.; Cao, W.; Shen, W.; Zhang, L.; Gu, X.; Guo, Y.; Tsai, H.I.; Liu, X.; Li, J.; Zhang, J.; Li, S.; Wu, F.; Liu, Y. Arctigenin inhibits STAT3 and exhibits anticancer potential in human triple-negative breast cancer therapy. Oncotarget, 2017, 8(1), 329-344.
[http://dx.doi.org/10.18632/oncotarget.13393] [PMID: 27861147]
[34]
Lee, J.; Imm, J-Y.; Lee, S-H. β-Catenin Mediates Anti-adipogenic and Anticancer Effects of Arctigenin in Preadipocytes and Breast Cancer Cells. J. Agric. Food Chem., 2017, 65(12), 2513-2520.
[http://dx.doi.org/10.1021/acs.jafc.7b00112] [PMID: 28279068]
[35]
Maxwell, T.; Chun, S-Y.; Lee, K-S.; Kim, S.; Nam, K-S. The anti-metastatic effects of the phytoestrogen arctigenin on human breast cancer cell lines regardless of the status of ER expression. Int. J. Oncol., 2017, 50(2), 727-735.
[http://dx.doi.org/10.3892/ijo.2016.3825] [PMID: 28035371]
[36]
Gigliarelli, G.; Zadra, C.; Cossignani, L.; Robles Zepeda, R.E.; Rascón-Valenzuela, L.A.; Velázquez-Contreras, C.A.; Marcotullio, M.C. Two new lignans from the resin of Bursera microphylla A. gray and their cytotoxic activity. Nat. Prod. Res., 2018, 32(22), 2646-2651.
[http://dx.doi.org/10.1080/14786419.2017.1375922] [PMID: 28920481]
[37]
Khaled, M.; Belaaloui, G.; Jiang, Z-Z.; Zhu, X.; Zhang, L-Y. Antitumor effect of Deoxypodophyllotoxin on human breast cancer xenograft transplanted in BALB/c nude mice model. J. Infect. Chemother., 2016, 22(10), 692-696.
[http://dx.doi.org/10.1016/j.jiac.2016.07.017] [PMID: 27578026]
[38]
Tran, T.D.; Pham, N.B.; Booth, R.; Forster, P.I.; Quinn, R.J. Lignans from the Australian Endemic Plant Austrobaileya scandens. J. Nat. Prod., 2016, 79(6), 1514-1523.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00988] [PMID: 27214307]
[39]
Vittorio, O.; Curcio, M.; Cojoc, M.; Goya, G.F.; Hampel, S.; Iemma, F.; Dubrovska, A.; Cirillo, G. Polyphenols delivery by polymeric materials: challenges in cancer treatment. Drug Deliv., 2017, 24(1), 162-180.
[http://dx.doi.org/10.1080/10717544.2016.1236846] [PMID: 28156178]
[40]
Fuentealba, C.; Figuerola, F.; Estévez, A.M.; Bastías, J.M.; Muñoz, O. Bioaccessibility of lignans from flaxseed (Linum usitatissimum L.) determined by single-batch in vitro simulation of the digestive process. J. Sci. Food Agric., 2014, 94(9), 1729-1738.
[http://dx.doi.org/10.1002/jsfa.6482] [PMID: 24243589]
[41]
Halldin, E.; Eriksen, A.K.; Brunius, C. A Bento da Silva, M Bronze, K Hanhineva, A-M Aura, and R Landberg factors explaining interpersonal variation in plasma enterolactone concentrations in humans. Mol. Nutr. Food Res., 2019, 63, 1801159
[http://dx.doi.org/10.1002/mnfr.201801159]
[42]
Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. BioMed Res. Int., 2015, 2015, 905215
[http://dx.doi.org/10.1155/2015/905215] [PMID: 25802870]
[43]
Martins, N.; Barros, L.; Ferreira, I.C.F.R. In vivo antioxidant activity of phenolic compounds: Facts and gaps. Trends Food Sci. Technol., 2016, 48, 1-12.
[http://dx.doi.org/10.1016/j.tifs.2015.11.008]
[44]
Squillaro, T.; Cimini, A.; Peluso, G.; Giordano, A.; Melone, M.A.B. Nano-delivery systems for encapsulation of dietary polyphenols: An experimental approach for neurodegenerative diseases and brain tumors. Biochem. Pharmacol., 2018, 154, 303-317.
[http://dx.doi.org/10.1016/j.bcp.2018.05.016] [PMID: 29803506]
[45]
Gatea, F.; Teodor, E.D.; Seciu, A-M.; Covaci, O.I.; Mănoiu, S.; Lazăr, V.; Radu, G.L. Antitumour, antimicrobial and catalytic activity of gold nanoparticles synthesized by different pH propolis extracts. J. Nanopart. Res., 2015, 17, 320.
[http://dx.doi.org/10.1007/s11051-015-3127-x]
[46]
Bakar, F.; Caglayan, M.G.; Onur, F.; Nebioglu, S.; Palabiyik, I.M. Gold nanoparticle-lignan complexes inhibited MCF-7 cell proliferation in vitro: a novel conjugation for cancer therapy. Anticancer. Agents Med. Chem., 2015, 15(3), 336-344.
[http://dx.doi.org/10.2174/1871520614666141202144152] [PMID: 25469627]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy