Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Research Advances in the Molecular Functions and Relevant Diseases of TAOKs, Novel STE20 Kinase Family Members

Author(s): Junjie Ye, Mingjun Shi, Wei Chen, Feng Zhu* and Qiuhong Duan*

Volume 26, Issue 26, 2020

Page: [3122 - 3133] Pages: 12

DOI: 10.2174/1381612826666200203115458

Price: $65

Abstract

As serine/threonine-protein kinases, Thousand and One Kinases(TAOKs) are members of the GCKlike superfamily, one of two well-known branches of the Ste20 kinase family. Within the last two decades, three functionally similar kinases, namely TAOK1-3, were identified. TAOKs are involved in many molecular and cellular events. Scholars widely believe that TAOKs act as kinases upstream of the MAPK cascade and as factors that interact with MST family kinases, the cytoskeleton, and apoptosis-associated proteins. Therefore, TAOKs are thought to function in tumorigenesis. Additionally, TAOKs participate in signal transduction induced by Notch, TCR, and IL-17. Recent studies found that TAOKs play roles in a series of diseases and conditions, such as the central nervous system dysfunction, herpes viral infection, immune system imbalance, urogenital system malformation during development, cardiovascular events, and childhood obesity. Therefore, inhibitory chemicals targeting TAOKs may be of great significance as potential drugs for these diseases.

Keywords: TAOK, signal pathways, disease, inhibitor, GCK-like superfamily, MAPK cascade.

[1]
Dan I, Watanabe NM, Kusumi A. The Ste20 group kinases as regulators of MAP kinase cascades. Trends Cell Biol 2001; 11(5): 220-30.
[http://dx.doi.org/10.1016/S0962-8924(01)01980-8] [PMID: 11316611]
[2]
Rane CK, Minden A. P21 activated kinases: structure, regulation, and functions. Small GTPases 2014; 5: 5.
[http://dx.doi.org/10.4161/sgtp.28003] [PMID: 24658305]
[3]
Radu M, Semenova G, Kosoff R, Chernoff J. PAK signalling during the development and progression of cancer. Nat Rev Cancer 2014; 14(1): 13-25.
[http://dx.doi.org/10.1038/nrc3645] [PMID: 24505617]
[4]
Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 2015; 43(Database issue): D512-20.
[http://dx.doi.org/10.1093/nar/gku1267] [PMID: 25514926]
[5]
Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 2012; 92(2): 689-737.
[http://dx.doi.org/10.1152/physrev.00028.2011] [PMID: 22535895]
[6]
Zheng Y, Wang W, Liu B, Deng H, Uster E, Pan D. Identification of Happyhour/MAP4K as alternative Hpo/Mst-like kinases in the hippo kinase cascade. Dev Cell 2015; 34(6): 642-55.
[http://dx.doi.org/10.1016/j.devcel.2015.08.014] [PMID: 26364751]
[7]
Zihni C, Mitsopoulos C, Tavares IA, Ridley AJ, Morris JD. Prostate-derived sterile 20-like kinase 2 (PSK2) regulates apoptotic morphology via C-Jun N-terminal kinase and Rho kinase-1. J Biol Chem 2006; 281(11): 7317-23.
[http://dx.doi.org/10.1074/jbc.M513769200] [PMID: 16407310]
[8]
Moore TM, Garg R, Johnson C, Coptcoat MJ, Ridley AJ, Morris JD. PSK, a novel STE20-like kinase derived from prostatic carcinoma that activates the c-Jun N-terminal kinase mitogen-activated protein kinase pathway and regulates actin cytoskeletal organization. J Biol Chem 2000; 275(6): 4311-22.
[http://dx.doi.org/10.1074/jbc.275.6.4311] [PMID: 10660600]
[9]
Zihni C, Mitsopoulos C, Tavares IA, Baum B, Ridley AJ, Morris JD. Prostate-derived sterile 20-like kinase 1-alpha induces apoptosis. JNK- and caspase-dependent nuclear localization is a requirement for membrane blebbing. J Biol Chem 2007; 282(9): 6484-93.
[http://dx.doi.org/10.1074/jbc.M608336200] [PMID: 17158878]
[10]
Tassi E, Biesova Z, Di Fiore PP, Gutkind JS, Wong WT. Human JIK, a novel member of the STE20 kinase family that inhibits JNK and is negatively regulated by epidermal growth factor. J Biol Chem 1999; 274(47): 33287-95.
[http://dx.doi.org/10.1074/jbc.274.47.33287] [PMID: 10559204]
[11]
Timm T, Li XY, Biernat J, et al. MARKK, a Ste20-like kinase, activates the polarity-inducing kinase MARK/PAR-1. EMBO J 2003; 22(19): 5090-101.
[http://dx.doi.org/10.1093/emboj/cdg447] [PMID: 14517247]
[12]
Mitsopoulos C, Zihni C, Garg R, Ridley AJ, Morris JD. The prostate-derived sterile 20-like kinase (PSK) regulates microtubule organization and stability. J Biol Chem 2003; 278(20): 18085-91.
[http://dx.doi.org/10.1074/jbc.M213064200] [PMID: 12639963]
[13]
Richter M, Murtaza N, Scharrenberg R, et al. Altered TAOK2 activity causes autism-related neurodevelopmental and cognitive abnormalities through RhoA signaling. Mol Psychiatry 2019; 24(9): 1329-50.
[http://dx.doi.org/10.1038/s41380-018-0025-5] [PMID: 29467497]
[14]
Wojtala RL, Tavares IA, Morton PE, Valderrama F, Thomas NS, Morris JD. Prostate-derived sterile 20-like kinases (PSKs/TAOKs) are activated in mitosis and contribute to mitotic cell rounding and spindle positioning. J Biol Chem 2011; 286(34): 30161-70.
[http://dx.doi.org/10.1074/jbc.M111.228320] [PMID: 21705329]
[15]
Zhang W, Chen T, Wan T, et al. Cloning of DPK, a novel dendritic cell-derived protein kinase activating the ERK1/ERK2 and JNK/SAPK pathways. Biochem Biophys Res Commun 2000; 274(3): 872-9.
[http://dx.doi.org/10.1006/bbrc.2000.3244] [PMID: 10924369]
[16]
Yustein JT, Xia L, Kahlenburg JM, Robinson D, Templeton D, Kung HJ. Comparative studies of a new subfamily of human Ste20-like kinases: homodimerization, subcellular localization, and selective activation of MKK3 and p38. Oncogene 2003; 22(40): 6129-41.
[http://dx.doi.org/10.1038/sj.onc.1206605] [PMID: 13679851]
[17]
Raman M, Earnest S, Zhang K, Zhao Y, Cobb MH. TAO kinases mediate activation of p38 in response to DNA damage. EMBO J 2007; 26(8): 2005-14.
[http://dx.doi.org/10.1038/sj.emboj.7601668] [PMID: 17396146]
[18]
Yin R, Guo D, Zhang S, Zhang X. miR-706 inhibits the oxidative stress-induced activation of PKCα/TAOK1 in liver fibrogenesis. Sci Rep 2016; 6: 37509.
[http://dx.doi.org/10.1038/srep37509] [PMID: 27876854]
[19]
Sahoo A, Lee B, Boniface K, et al. MicroRNA-211 regulates oxidative phosphorylation and energy metabolism in human vitiligo. J Invest Dermatol 2017; 137(9): 1965-74.
[http://dx.doi.org/10.1016/j.jid.2017.04.025] [PMID: 28502800]
[20]
Ergun S, Oztuzcu S. Sequence-based analysis of 5'UTR and coding regions of CASP3 in terms of miRSNPs and SNPs in targetting miRNAs. Comput Biol Chem 2016; 62: 70-4.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.04.003] [PMID: 27107179]
[21]
Pearson G, Robinson F, Beers Gibson T, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22(2): 153-83.
[PMID: 11294822]
[22]
Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001; 410(6824): 37-40.
[http://dx.doi.org/10.1038/35065000] [PMID: 11242034]
[23]
Kortenjann M, Nehls M, Smith AJ, et al. Abnormal bone marrow stroma in mice deficient for nemo-like kinase, Nlk. Eur J Immunol 2001; 31(12): 3580-7.
[http://dx.doi.org/10.1002/1521-4141(200112)31:12<3580:AID-IMMU3580>3.0.CO;2-N] [PMID: 11745377]
[24]
Kuida K, Boucher DM. Functions of MAP kinases: insights from gene-targeting studies. J Biochem 2004; 135(6): 653-6.
[http://dx.doi.org/10.1093/jb/mvh078] [PMID: 15213239]
[25]
Coulombe P, Meloche S. Atypical mitogen-activated protein kinases: structure, regulation and functions. Biochim Biophys Acta 2007; 1773(8): 1376-87.
[http://dx.doi.org/10.1016/j.bbamcr.2006.11.001] [PMID: 17161475]
[26]
Hutchison M, Berman KS, Cobb MH. Isolation of TAO1, a protein kinase that activates MEKs in stress-activated protein kinase cascades. J Biol Chem 1998; 273(44): 28625-32.
[http://dx.doi.org/10.1074/jbc.273.44.28625] [PMID: 9786855]
[27]
Chen Z, Hutchison M, Cobb MH. Isolation of the protein kinase TAO2 and identification of its mitogen-activated protein kinase/extracellular signal-regulated kinase kinase binding domain. J Biol Chem 1999; 274(40): 28803-7.
[http://dx.doi.org/10.1074/jbc.274.40.28803] [PMID: 10497253]
[28]
Chen Z, Cobb MH. Regulation of stress-responsive mitogen-activated protein (MAP) kinase pathways by TAO2. J Biol Chem 2001; 276(19): 16070-5.
[http://dx.doi.org/10.1074/jbc.M100681200] [PMID: 11279118]
[29]
HuangFu WC. Omori E, Akira S, Matsumoto K, Ninomiya-Tsuji J. Osmotic stress activates the TAK1-JNK pathway while blocking TAK1-mediated NF-kappa B activation - TAO2 regulates TAK1 pathways. J Biol Chem 2006; 281: 28802-10.
[http://dx.doi.org/10.1074/jbc.M603627200] [PMID: 16893890]
[30]
Ben-Zvi A, Yagil Z, Hagalili Y, Klein H, Lerman O, Behar O. Semaphorin 3A and neurotrophins: a balance between apoptosis and survival signaling in embryonic DRG neurons. J Neurochem 2006; 96(2): 585-97.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03580.x] [PMID: 16336628]
[31]
de Anda FC, Rosario AL, Durak O, et al. Autism spectrum disorder susceptibility gene TAOK2 affects basal dendrite formation in the neocortex. Nat Neurosci 2012; 15(7): 1022-31.
[http://dx.doi.org/10.1038/nn.3141] [PMID: 22683681]
[32]
Chen J, Yu S, Fu Y, Li X. Synaptic proteins and receptors defects in autism spectrum disorders. Front Cell Neurosci 2014; 8: 276.
[http://dx.doi.org/10.3389/fncel.2014.00276] [PMID: 25309321]
[33]
Yadav S, Oses-Prieto JA, Peters CJ, et al. TAOK2 kinase mediates PSD95 stability and dendritic spine maturation through Septin7 phosphorylation. Neuron 2017; 93(2): 379-93.
[http://dx.doi.org/10.1016/j.neuron.2016.12.006] [PMID: 28065648]
[34]
Aroor AR, Shukla SD. MAP kinase signaling in diverse effects of ethanol. Life Sci 2004; 74(19): 2339-64.
[http://dx.doi.org/10.1016/j.lfs.2003.11.001] [PMID: 15027449]
[35]
Aroor AR, James TT, Jackson DE, Shukla SD. Differential changes in MAP kinases, histone modifications, and liver injury in rats acutely treated with ethanol. Alcohol Clin Exp Res 2010; 34(9): 1543-51.
[http://dx.doi.org/10.1111/j.1530-0277.2010.01239.x] [PMID: 20586759]
[36]
Chen J, Ishac EJ, Dent P, Kunos G, Gao B. Effects of ethanol on mitogen-activated protein kinase and stress-activated protein kinase cascades in normal and regenerating liver. Biochem J 1998; 334(Pt 3): 669-76.
[http://dx.doi.org/10.1042/bj3340669] [PMID: 9729476]
[37]
Vallés SL, Blanco AM, Pascual M, Guerri C. Chronic ethanol treatment enhances inflammatory mediators and cell death in the brain and in astrocytes. Brain Pathol 2004; 14(4): 365-71.
[http://dx.doi.org/10.1111/j.1750-3639.2004.tb00079.x] [PMID: 15605983]
[38]
Yasuda S, Tanaka H, Sugiura H, et al. Activity-induced protocadherin arcadlin regulates dendritic spine number by triggering N-cadherin endocytosis via TAO2beta and p38 MAP kinases. Neuron 2007; 56(3): 456-71.
[http://dx.doi.org/10.1016/j.neuron.2007.08.020] [PMID: 17988630]
[39]
Kapfhamer D, Taylor S, Zou ME, Lim JP, Kharazia V, Heberlein U. Taok2 controls behavioral response to ethanol in mice. Genes Brain Behav 2013; 12(1): 87-97.
[http://dx.doi.org/10.1111/j.1601-183X.2012.00834.x] [PMID: 22883308]
[40]
Yoneda T, Imaizumi K, Oono K, et al. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 2001; 276(17): 13935-40.
[http://dx.doi.org/10.1074/jbc.M010677200] [PMID: 11278723]
[41]
Tirasophon W, Welihinda AA, Kaufman RJ. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev 1998; 12(12): 1812-24.
[http://dx.doi.org/10.1101/gad.12.12.1812] [PMID: 9637683]
[42]
Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000; 287(5453): 664-6.
[http://dx.doi.org/10.1126/science.287.5453.664] [PMID: 10650002]
[43]
Kapfhamer D, King I, Zou ME, Lim JP, Heberlein U, Wolf FW. JNK pathway activation is controlled by Tao/TAOK3 to modulate ethanol sensitivity. PLoS One 2012; 7(12)e50594
[http://dx.doi.org/10.1371/journal.pone.0050594] [PMID: 23227189]
[44]
Chen Z, Raman M, Chen L, Lee SF, Gilman AG, Cobb MH. TAO (thousand-and-one amino acid) protein kinases mediate signaling from carbachol to p38 mitogen-activated protein kinase and ternary complex factors. J Biol Chem 2003; 278(25): 22278-83.
[http://dx.doi.org/10.1074/jbc.M301173200] [PMID: 12665513]
[45]
Ormonde JVS, Li Z, Stegen C, Madrenas J. TAOK3 regulates canonical TCR signaling by preventing early SHP-1-mediated inactivation of LCK. J Immunol 2018; 201(11): 3431-42.
[http://dx.doi.org/10.4049/jimmunol.1800284] [PMID: 30373850]
[46]
Thompson BJ, Sahai E. MST kinases in development and disease. J Cell Biol 2015; 210(6): 871-82.
[http://dx.doi.org/10.1083/jcb.201507005] [PMID: 26370497]
[47]
Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 2015; 163(4): 811-28.
[http://dx.doi.org/10.1016/j.cell.2015.10.044] [PMID: 26544935]
[48]
Plouffe SW, Meng Z, Lin KC, et al. Characterization of hippo pathway components by gene inactivation. Mol Cell 2016; 64(5): 993-1008.
[http://dx.doi.org/10.1016/j.molcel.2016.10.034] [PMID: 27912098]
[49]
Callus BA, Verhagen AM, Vaux DL. Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation. FEBS J 2006; 273(18): 4264-76.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05427.x] [PMID: 16930133]
[50]
Tapon N, Harvey KF, Bell DW, et al. salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 2002; 110(4): 467-78.
[http://dx.doi.org/10.1016/S0092-8674(02)00824-3] [PMID: 12202036]
[51]
Chan EH, Nousiainen M, Chalamalasetty RB, Schäfer A, Nigg EA, Silljé HH. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 2005; 24(12): 2076-86.
[http://dx.doi.org/10.1038/sj.onc.1208445] [PMID: 15688006]
[52]
Praskova M, Xia F, Avruch J. MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr Biol 2008; 18(5): 311-21.
[http://dx.doi.org/10.1016/j.cub.2008.02.006] [PMID: 18328708]
[53]
Zhao B, Ye X, Yu J, et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 2008; 22(14): 1962-71.
[http://dx.doi.org/10.1101/gad.1664408] [PMID: 18579750]
[54]
Meng Z, Moroishi T, Mottier-Pavie V, et al. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat Commun 2015; 6: 8357.
[http://dx.doi.org/10.1038/ncomms9357] [PMID: 26437443]
[55]
Li Q, Li S, Mana-Capelli S, et al. The conserved misshapen-warts-Yorkie pathway acts in enteroblasts to regulate intestinal stem cells in Drosophila. Dev Cell 2014; 31(3): 291-304.
[http://dx.doi.org/10.1016/j.devcel.2014.09.012] [PMID: 25453828]
[56]
Poon CLC, Lin JI, Zhang X, Harvey KF. The sterile 20-like kinase Tao-1 controls tissue growth by regulating the Salvador-Warts-Hippo pathway. Dev Cell 2011; 21(5): 896-906.
[http://dx.doi.org/10.1016/j.devcel.2011.09.012] [PMID: 22075148]
[57]
Boggiano JC, Vanderzalm PJ, Fehon RG. Tao-1 phosphorylates Hippo/MST kinases to regulate the Hippo-Salvador-Warts tumor suppressor pathway. Dev Cell 2011; 21(5): 888-95.
[http://dx.doi.org/10.1016/j.devcel.2011.08.028] [PMID: 22075147]
[58]
Ultanir SK, Yadav S, Hertz NT, et al. MST3 kinase phosphorylates TAO1/2 to enable Myosin Va function in promoting spine synapse development. Neuron 2014; 84(5): 968-82.
[http://dx.doi.org/10.1016/j.neuron.2014.10.025] [PMID: 25456499]
[59]
Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 2000; 103(2): 239-52.
[PMID: 11057897]
[60]
Sunayama J, Tsuruta F, Masuyama N, Gotoh Y. JNK antagonizes Akt-mediated survival signals by phosphorylating 14-3-3. J Cell Biol 2005; 170(2): 295-304.
[http://dx.doi.org/10.1083/jcb.200409117] [PMID: 16009721]
[61]
Tournier C, Hess P, Yang DD, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000; 288(5467): 870-4.
[http://dx.doi.org/10.1126/science.288.5467.870] [PMID: 10797012]
[62]
Wakabayashi T, Kosaka J, Hommura S. Up-regulation of Hrk, a regulator of cell death, in retinal ganglion cells of axotomized rat retina. Neurosci Lett 2002; 318(2): 77-80.
[http://dx.doi.org/10.1016/S0304-3940(01)02487-9] [PMID: 11796190]
[63]
Näpänkangas U, Lindqvist N, Lindholm D, Hallböök F. Rat retinal ganglion cells upregulate the pro-apoptotic BH3-only protein Bim after optic nerve transection. Brain Res Mol Brain Res 2003; 120(1): 30-7.
[PMID: 14667574]
[64]
Wakabayashi T, Kosaka J, Oshika T. JNK inhibitory kinase is up-regulated in retinal ganglion cells after axotomy and enhances BimEL expression level in neuronal cells. J Neurochem 2005; 95(2): 526-36.
[PMID: 16092929]
[65]
Harris CA, Johnson EM Jr. BH3-only Bcl-2 family members are coordinately regulated by the JNK pathway and require Bax to induce apoptosis in neurons. J Biol Chem 2001; 276(41): 37754-60.
[PMID: 11495903]
[66]
Lei K, Davis RJ. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 2003; 100(5): 2432-7.
[PMID: 12591950]
[67]
Tanigaki K, Han H, Yamamoto N, et al. Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nat Immunol 2002; 3(5): 443-50.
[http://dx.doi.org/10.1038/ni793] [PMID: 11967543]
[68]
Kuroda K, Han H, Tani S, et al. Regulation of marginal zone B cell development by MINT, a suppressor of Notch/RBP-J signaling pathway. Immunity 2003; 18(2): 301-12.
[http://dx.doi.org/10.1016/S1074-7613(03)00029-3] [PMID: 12594956]
[69]
Tan JB, Xu K, Cretegny K, et al. Lunatic and manic fringe cooperatively enhance marginal zone B cell precursor competition for delta-like 1 in splenic endothelial niches. Immunity 2009; 30(2): 254-63.
[http://dx.doi.org/10.1016/j.immuni.2008.12.016] [PMID: 19217325]
[70]
Fasnacht N, Huang HY, Koch U, et al. Specific fibroblastic niches in secondary lymphoid organs orchestrate distinct Notch-regulated immune responses. J Exp Med 2014; 211(11): 2265-79.
[http://dx.doi.org/10.1084/jem.20132528] [PMID: 25311507]
[71]
Saito T, Chiba S, Ichikawa M, et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 2003; 18(5): 675-85.
[http://dx.doi.org/10.1016/S1074-7613(03)00111-0] [PMID: 12753744]
[72]
Witt CM, Won WJ, Hurez V, Klug CA. Notch2 haploinsufficiency results in diminished B1 B cells and a severe reduction in marginal zone B cells. J Immunol 2003; 171(6): 2783-8.
[http://dx.doi.org/10.4049/jimmunol.171.6.2783] [PMID: 12960298]
[73]
Moran ST, Cariappa A, Liu H, et al. Synergism between NF-kappa B1/p50 and Notch2 during the development of marginal zone B lymphocytes. J Immunol 2007; 179(1): 195-200.
[http://dx.doi.org/10.4049/jimmunol.179.1.195] [PMID: 17579038]
[74]
Wu L, Maillard I, Nakamura M, Pear WS, Griffin JD. The transcriptional coactivator Maml1 is required for Notch2-mediated marginal zone B-cell development. Blood 2007; 110(10): 3618-23.
[http://dx.doi.org/10.1182/blood-2007-06-097030] [PMID: 17699740]
[75]
Gibb DR, El Shikh M, Kang DJ, et al. ADAM10 is essential for Notch2-dependent marginal zone B cell development and CD23 cleavage in vivo. J Exp Med 2010; 207(3): 623-35.
[http://dx.doi.org/10.1084/jem.20091990] [PMID: 20156974]
[76]
Hampel F, Ehrenberg S, Hojer C, et al. CD19-independent instruction of murine marginal zone B-cell development by constitutive Notch2 signaling. Blood 2011; 118(24): 6321-31.
[http://dx.doi.org/10.1182/blood-2010-12-325944] [PMID: 21795747]
[77]
Simonetti G, Carette A, Silva K, et al. IRF4 controls the positioning of mature B cells in the lymphoid microenvironments by regulating NOTCH2 expression and activity. J Exp Med 2013; 210(13): 2887-902.
[http://dx.doi.org/10.1084/jem.20131026] [PMID: 24323359]
[78]
Hozumi K, Negishi N, Suzuki D, et al. Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nat Immunol 2004; 5(6): 638-44.
[http://dx.doi.org/10.1038/ni1075] [PMID: 15146182]
[79]
Hammad H, Vanderkerken M, Pouliot P, et al. Transitional B cells commit to marginal zone B cell fate by Taok3-mediated surface expression of ADAM10. Nat Immunol 2017; 18(3): 313-20.
[http://dx.doi.org/10.1038/ni.3657] [PMID: 28068307]
[80]
Bueno C, Lemke CD, Criado G, et al. Bacterial superantigens bypass Lck-dependent T cell receptor signaling by activating a Galpha11-dependent, PLC-beta-mediated pathway. Immunity 2006; 25(1): 67-78.
[http://dx.doi.org/10.1016/j.immuni.2006.04.012] [PMID: 16860758]
[81]
Stirnweiss A, Hartig R, Gieseler S, et al. T cell activation results in conformational changes in the Src family kinase Lck to induce its activation. Sci Signal 2013; 6(263): ra13.
[http://dx.doi.org/10.1126/scisignal.2003607] [PMID: 23423439]
[82]
Criado G, Madrenas J. Superantigen stimulation reveals the contribution of Lck to negative regulation of T cell activation. J Immunol 2004; 172(1): 222-30.
[http://dx.doi.org/10.4049/jimmunol.172.1.222] [PMID: 14688329]
[83]
Mustelin T, Altman A. Dephosphorylation and activation of the T cell tyrosine kinase pp56lck by the leukocyte common antigen (CD45). Oncogene 1990; 5(6): 809-13.
[PMID: 2141684]
[84]
Gervais FG, Chow LM, Lee JM, Branton PE, Veillette A. The SH2 domain is required for stable phosphorylation of p56lck at tyrosine 505, the negative regulatory site. Mol Cell Biol 1993; 13(11): 7112-21.
[http://dx.doi.org/10.1128/MCB.13.11.7112] [PMID: 8413300]
[85]
Chiang GG, Sefton BM. Specific dephosphorylation of the Lck tyrosine protein kinase at Tyr-394 by the SHP-1 protein-tyrosine phosphatase. J Biol Chem 2001; 276(25): 23173-8.
[http://dx.doi.org/10.1074/jbc.M101219200] [PMID: 11294838]
[86]
Paster W, Bruger AM, Katsch K, et al. A THEMIS:SHP1 complex promotes T-cell survival. EMBO J 2015; 34(3): 393-409.
[PMID: 25535246]
[87]
Gascoigne NR, Acuto O. THEMIS: a critical TCR signal regulator for ligand discrimination. Curr Opin Immunol 2015; 33: 86-92.
[http://dx.doi.org/10.1016/j.coi.2015.01.020] [PMID: 25700024]
[88]
Martinez RJ, Morris AB, Neeld DK, Evavold BD. Targeted loss of SHP1 in murine thymocytes dampens TCR signaling late in selection. Eur J Immunol 2016; 46(9): 2103-10.
[http://dx.doi.org/10.1002/eji.201646475] [PMID: 27354309]
[89]
Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity 2011; 34(2): 149-62.
[http://dx.doi.org/10.1016/j.immuni.2011.02.012] [PMID: 21349428]
[90]
Zhu S, Pan W, Shi P, et al. Modulation of experimental autoimmune encephalomyelitis through TRAF3-mediated suppression of interleukin 17 receptor signaling. J Exp Med 2010; 207(12): 2647-62.
[PMID: 21078888]
[91]
Ma C, Lin W, Liu Z, et al. NDR1 protein kinase promotes IL-17- and TNF-α-mediated inflammation by competitively binding TRAF3. EMBO Rep 2017; 18(4): 586-602.
[http://dx.doi.org/10.15252/embr.201642140] [PMID: 28219902]
[92]
Zhang Z, Tang Z, Ma X, et al. TAOK1 negatively regulates IL-17-mediated signaling and inflammation. Cell Mol Immunol 2018; 15(8): 794-802.
[http://dx.doi.org/10.1038/cmi.2017.158] [PMID: 29400705]
[93]
Agosto-Arroyo E, Isayeva T, Wei S, Almeida JS, Harada S. Differential gene expression in ductal carcinoma in situ of the breast based on ERBB2 status. Cancer Contr 2017; 24(1): 102-10.
[http://dx.doi.org/10.1177/107327481702400117] [PMID: 28178722]
[94]
Sharma R, Fedorenko I, Spence PT, Sondak VK, Smalley KSM, Koomen JM. Activity-based protein profiling shows heterogeneous signaling adaptations to BRAF inhibition. J Proteome Res 2016; 15(12): 4476-89.
[http://dx.doi.org/10.1021/acs.jproteome.6b00613] [PMID: 27934295]
[95]
Zeraati M, Moye AL, Wong JWH, et al. Cancer-associated noncoding mutations affect RNA G-quadruplex-mediated regulation of gene expression. Sci Rep 2017; 7(1): 708.
[http://dx.doi.org/10.1038/s41598-017-00739-y] [PMID: 28386116]
[96]
Romanuik TL, Wang G, Holt RA, Jones SJM, Marra MA, Sadar MD. Identification of novel androgen-responsive genes by sequencing of LongSAGE libraries. BMC Genomics 2009; 10: 476.
[http://dx.doi.org/10.1186/1471-2164-10-476] [PMID: 19832994]
[97]
Bii VM, Collins CP, Hocum JD, Trobridge GD. Replication-incompetent gammaretroviral and lentiviral vector-based insertional mutagenesis screens identify prostate cancer progression genes. Oncotarget 2018; 9(21): 15451-63.
[http://dx.doi.org/10.18632/oncotarget.24503] [PMID: 29643985]
[98]
Keng VW, Villanueva A, Chiang DY, et al. A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nat Biotechnol 2009; 27(3): 264-74.
[http://dx.doi.org/10.1038/nbt.1526] [PMID: 19234449]
[99]
Hennig EE, Mikula M, Rubel T, Dadlez M, Ostrowski J. Comparative kinome analysis to identify putative colon tumor biomarkers. J Mol Med (Berl) 2012; 90(4): 447-56.
[http://dx.doi.org/10.1007/s00109-011-0831-6] [PMID: 22095101]
[100]
Hanger DP, Noble W. Functional implications of glycogen synthase kinase-3-mediated tau phosphorylation. Int J Alzheimers Dis 2011; 2011352805
[http://dx.doi.org/10.4061/2011/352805] [PMID: 21776376]
[101]
Mandelkow EM, Thies E, Trinczek B, Biernat J, Mandelkow E. MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. J Cell Biol 2004; 167(1): 99-110.
[http://dx.doi.org/10.1083/jcb.200401085] [PMID: 15466480]
[102]
Timm T, Marx A, Panneerselvam S, Mandelkow E, Mandelkow EM. Structure and regulation of MARK, a kinase involved in abnormal phosphorylation of Tau protein. BMC Neurosci 2008; 9(Suppl. 2): S9.
[http://dx.doi.org/10.1186/1471-2202-9-S2-S9] [PMID: 19090997]
[103]
Timm T, Matenia D, Li XY, Griesshaber B, Mandelkow EM. Signaling from MARK to tau: regulation, cytoskeletal crosstalk, and pathological phosphorylation. Neurodegener Dis 2006; 3(4-5): 207-17.
[PMID: 17047359]
[104]
Tavares IA, Touma D, Lynham S, et al. Prostate-derived sterile 20-like kinases (PSKs/TAOKs) phosphorylate tau protein and are activated in tangle-bearing neurons in Alzheimer disease. J Biol Chem 2013; 288(21): 15418-29.
[http://dx.doi.org/10.1074/jbc.M112.448183] [PMID: 23585562]
[105]
Xie B, Fan X, Lei Y, et al. A novel de novo microdeletion at 17q11.2 adjacent to NF1 gene associated with developmental delay, short stature, microcephaly and dysmorphic features. Mol Cytogenet 2016; 9: 41.
[http://dx.doi.org/10.1186/s13039-016-0251-y] [PMID: 27247625]
[106]
Kumar RA, KaraMohamed S, Sudi J, et al. Recurrent 16p11.2 microdeletions in autism. Hum Mol Genet 2008; 17(4): 628-38.
[http://dx.doi.org/10.1093/hmg/ddm376] [PMID: 18156158]
[107]
Weiss LA, Shen Y, Korn JM, et al. Autism Consortium. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 2008; 358(7): 667-75.
[PMID: 18184952]
[108]
McCarthy SE, Makarov V, Kirov G, et al. Wellcome Trust Case Control Consortium. Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet 2009; 41(11): 1223-7.
[PMID: 19855392]
[109]
Saydam O, Steiner F, Vogt B, Schwyzer M. Host cell targets of immediate-early protein BICP22 of bovine herpesvirus 1. Vet Microbiol 2006; 113(3-4): 185-92.
[http://dx.doi.org/10.1016/j.vetmic.2005.11.046] [PMID: 16352405]
[110]
Kelly BJ, Diefenbach E, Fraefel C, Diefenbach RJ. Identification of host cell proteins which interact with herpes simplex virus type 1 tegument protein pUL37. Biochem Biophys Res Commun 2012; 417(3): 961-5.
[http://dx.doi.org/10.1016/j.bbrc.2011.12.044] [PMID: 22202175]
[111]
Komazin-Meredith G, Cardinale SC, Comeau K, et al. TAOK3 phosphorylates the methylenecyclopropane nucleoside MBX 2168 to its monophosphate. Antiviral Res 2015; 119: 23-7.
[PMID: 25857706]
[112]
Molho-Pessach V, Ramot Y, Mogilevsky M, et al. Generalized verrucosis and abnormal T cell activation due to homozygous TAOK2 mutation. J Dermatol Sci 2017; 87(2): 123-9.
[http://dx.doi.org/10.1016/j.jdermsci.2017.03.018] [PMID: 28385331]
[113]
Mansouri MR, Carlsson B, Davey E, et al. Molecular genetic analysis of a de novo balanced translocation t(6;17)(p21.31;q11.2) associated with hypospadias and anorectal malformation. Hum Genet 2006; 119(1-2): 162-8.
[http://dx.doi.org/10.1007/s00439-005-0122-9] [PMID: 16395596]
[114]
Chen FC, Brozovich FV. Gene expression profiles of vascular smooth muscle show differential expression of mitogen-activated protein kinase pathways during captopril therapy of heart failure. J Vasc Res 2008; 45(5): 445-54.
[http://dx.doi.org/10.1159/000126735] [PMID: 18418003]
[115]
Meisinger C, Prokisch H, Gieger C, et al. A genome-wide association study identifies three loci associated with mean platelet volume. Am J Hum Genet 2009; 84(1): 66-71.
[PMID: 19110211]
[116]
Eicher JD, Wakabayashi Y, Vitseva O, et al. Characterization of the platelet transcriptome by RNA sequencing in patients with acute myocardial infarction. Platelets 2016; 27(3): 230-9.
[http://dx.doi.org/10.3109/09537104.2015.1083543] [PMID: 26367242]
[117]
Huang RC, Garratt ES, Pan H, et al. Genome-wide methylation analysis identifies differentially methylated CpG loci associated with severe obesity in childhood. Epigenetics 2015; 10(11): 995-1005.
[http://dx.doi.org/10.1080/15592294.2015.1080411] [PMID: 26646899]
[118]
Koo CY, Giacomini C, Reyes-Corral M, et al. Targeting TAO kinases using a new inhibitor compound delays mitosis and induces mitotic cell death in centrosome amplified breast cancer cells. Mol Cancer Ther 2017; 16(11): 2410-21.
[PMID: 28830982]
[119]
Piala AT, Akella R, Potts MB, et al. Discovery of novel TAOK2 inhibitor scaffolds from high-throughput screening. Bioorg Med Chem Lett 2016; 26(16): 3923-7.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.016] [PMID: 27426302]
[120]
Potts MB, Kim HS, Fisher KW, et al. Using functional signature ontology (FUSION) to identify mechanisms of action for natural products. Sci Signal 2013; 6(297): ra90.
[http://dx.doi.org/10.1126/scisignal.2004657] [PMID: 24129700]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy