Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Recent Advances in 1,3,5-Triazine Derivatives as Antibacterial Agents

Author(s): Divya Utreja*, Jagdish Kaur, Komalpreet Kaur and Palak Jain

Volume 17, Issue 8, 2020

Page: [991 - 1041] Pages: 51

DOI: 10.2174/1570193X17666200129094032

Price: $65

Abstract

Triazine, one of the nitrogen containing heterocyclic compounds has attracted the considerable interest of researchers due to the vast array of biological properties such as anti-viral, antitumor, anti-convulsant, analgesic, antioxidant, anti-depressant, herbicidal, insecticidal, fungicidal, antibacterial and anti-inflammatory activities offered by it. Various antibacterial agents have been synthesized by researchers to curb bacterial diseases but due to rapid development in drug resistance, tolerance and side effects, there had always been a need for the synthesis of a new class of antibacterial agents that would exhibit improved pharmacological action. Therefore, this review mainly focuses on the various methods for the synthesis of triazine derivatives and their antibacterial activity.

Keywords: Antibacterial activity, cyanuric chloride, heterocyclic, triazine, heterocyclic compounds, antibacterial agents.

Graphical Abstract

[1]
Al-Mulla, A. A review: Biological importance of heterocyclic compounds. Pharma. Chem., 2017, 9, 141-147.
[2]
Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd., 2012, 48, 7-10.
[http://dx.doi.org/10.1007/s10593-012-0960-z]
[3]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[4]
Broughton, H.B.; Watson, I.A. Selection of heterocycles for drug design. J. Mol. Graph. Model., 2004, 23(1), 51-58.
[http://dx.doi.org/10.1016/j.jmgm.2004.03.016] [PMID: 15331053]
[5]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.R.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[6]
Lamberth, C.; Dinges, J. The significance of heterocycles for pharmaceuticals and agrochemicals. Bioactive Heterocyclic Compound Classes: Pharmaceuticals. First Edition. Edited by: Jurgen Dinges and Clemens Lamberth;; Wiley-VCH GmbH Co. KGaA, 2012.
[7]
Suvarna, A.S. A review on synthetic heterocyclic compounds in agricultural and other applications. Int. J. Pharm. Tech. Res., 2015, 8(8), 170-179.
[8]
Anamika, U.D.; Ekta, J.N.; Sharma, S. Advances in synthesis and potentially bioactive coumarin derivatives. Curr. Org. Chem., 2018, 22, 2507-2534.
[9]
Kaur, J.; Utreja, D. Ekta; Jain, N.; Sharma, S. Recent development in the synthesis and antimicrobial activity of indole and its derivatives. Curr. Org. Synth., 2019, 16, 17-37.
[http://dx.doi.org/10.2174/1570179415666181113144939] [PMID: 31965921]
[10]
Sharma, A.; Singh, S.; Utreja, D. Recent advances in synthesis and antifungal activity of 1,3,5-triazines. Curr. Org. Synth., 2016, 13, 484-503.
[http://dx.doi.org/10.2174/1570179412666150905002356]
[11]
Kaur, J.; Utreja, D.; Dhillon, N.K.; Sharma, S. Synthesis of series of triazine derivatives and evaluation against root knot nematode Meloidogyne incognita. Lett. Org. Chem., 2018, 15(10), 870-877.
[http://dx.doi.org/10.2174/1570178615666180330155049]
[12]
Singh, K.; Arora, D.; Poremsky, E.; Lowery, J.; Moreland, R.S. N1-Alkylated 3,4-dihydropyrimidine-2(1H)-ones: Convenient one-pot selective synthesis and evaluation of their calcium channel blocking activity. Eur. J. Med. Chem., 2009, 44(5), 1997-2001.
[http://dx.doi.org/10.1016/j.ejmech.2008.10.002] [PMID: 19008020]
[13]
Jain, N.; Utreja, D.; Dhillon, N.K. A convenient one pot synthesis and antinemic studies of nicotinic acid derivatives. Russ. J. Org. Chem., 2019, 55(6), 845-851.
[http://dx.doi.org/10.1134/S1070428019060150]
[14]
Jain, P.; Utreja, D.; Sharma, P. An efficacious synthesis of N-1-, C3- substituted indole derivatives and their antimicrobial studies 2019, 1-8.
[15]
Kaur, J.; Utreja, D.; Dhillon, N.K.; Sharma, S. Synthesis of indole derivatives and their evaluation against root knot nematode Meloidogyne incognita. Lett. Org. Chem., 2019, 16(9), 759-767.
[http://dx.doi.org/10.2174/1570178616666190219131042]
[16]
Shah, D.R.; Modh, R.P.; Chikhalia, K.H. Privileged s-triazines: Structure and pharmacological applications. Future Med. Chem., 2014, 6(4), 463-477.
[http://dx.doi.org/10.4155/fmc.13.212] [PMID: 24635525]
[17]
Kumar, R.; Kumar, N.; Roy, R.K.; Singh, A. Triazines- A comprehensive review of their synthesis and diverse biological importance. Curr. Med. Drug Res., 2017, 1, 1-12.
[18]
Arshad, M.; Khan, T.A.; Khan, M.A. 1,2,4-triazine derivatives: Synthesis and biological applications. Int. J. Pharma. Res., 2014, 5(4), 149-162.
[19]
Gavade, S.N.; Markad, V.L.; Kodam, K.M.; Shingare, M.S.; Mane, D.V. Synthesis and biological evaluation of novel 2,4,6-triazine derivatives as antimicrobial agents. Bioorg. Med. Chem. Lett., 2012, 22(15), 5075-5077.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.111] [PMID: 22742908]
[20]
Fishel, F.M. Pesticide toxicity profile: Triazine pesticides , PI-121
[21]
Giacomelli, G.; Porcheddu, A.; Luca, L.D. [1,3,5]-Triazine: A versatile heterocycle in current applications of organic chemistry. Curr. Org. Chem., 2004, 8, 1497-1519.
[http://dx.doi.org/10.2174/1385272043369845]
[22]
Anupama, K.I.; Singh, B. Synthesis of biologically important s-triazine based chalcones. Int. J. Pharm. Sci. Res., 2015, 6, 3209-3214.
[23]
Moon, H.S.; Jacobson, E.M.; Khersonsky, S.M.; Luzung, M.R.; Walsh, D.P.; Xiong, W.; Lee, J.W.; Parikh, P.B.; Lam, J.C.; Kang, T.W.; Rosania, G.R.; Schier, A.F.; Chang, Y.T. A novel microtubule destabilizing entity from orthogonal synthesis of triazine library and zebrafish embryo screening. J. Am. Chem. Soc., 2002, 124(39), 11608-11609.
[http://dx.doi.org/10.1021/ja026720i] [PMID: 12296721]
[24]
Bacchi, C.J.; Vargas, M.; Rattendi, D.; Goldberg, B.; Zhou, W. Antitrypanosomal activity of a new triazine derivative, SIPI 1029, In vitro and in model infections. Antimicrob. Agents Chemother., 1998, 42(10), 2718-2721.
[http://dx.doi.org/10.1128/AAC.42.10.2718] [PMID: 9756783]
[25]
Sunduru, N. Nishi; Palne, S.; Chauhan, P.M.; Gupta, S. Synthesis and antileishmanial activity of novel 2,4,6-trisubstituted pyrimidines and 1,3,5-triazines. Eur. J. Med. Chem., 2009, 44(6), 2473-2481.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.016] [PMID: 19217698]
[26]
Pandey, V.K.; Kumar, J. Synthesis of 1,3,5-tri-p-[(2-aryl-3H-quinazolin-4-one-3-yl)-phenyl]-2,4,6-hexahydro-1,3,5-s-triazines as potential anti TMV and antibacterial agents. Indian J. Heterocycl. Chem., 2006, 16, 65-66.
[27]
Chen, H.F.; Yang, S.J.; Tsai, Z.H.; Hung, W.Y.; Wang, T.C.; Wong, K.T. 1,3,5-triazine derivatives as new electron transport-type host materials for high efficient green phosphorescent OLEDs. J. Mater. Chem., 2009, 19, 8112-8118.
[http://dx.doi.org/10.1039/b913423a]
[28]
Melander, R.J.; Zurawski, D.V.; Melander, C. Narrow-spectrum antibacterial agents. MedChemComm, 2018, 9, 12-21.
[http://dx.doi.org/10.1039/C7MD00528H] [PMID: 29527285]
[29]
Rai, J.; Randhawa, G.K.; Kaur, M. Recent advances in antibacterial drugs. Int. J. Appl. Basic Med. Res., 2013, 3(1), 3-10.
[http://dx.doi.org/10.4103/2229-516X.112229] [PMID: 23776832]
[30]
Malik, I.A. Altretamine is an effective palliative therapy of patients with recurrent epithelial ovarian cancer. Jpn. J. Clin. Oncol., 2001, 31(2), 69-73.
[http://dx.doi.org/10.1093/jjco/hye012] [PMID: 11302345]
[31]
Liu, B.; Sun, T.; Zhou, Z.; Du, L. A systematic review on antitumor agents with 1,3,5-triazines. Med. Chem., 2015, 5, 131-148.
[32]
Biamonte, M.A.; Wanner, J.; Le Roch, K.G. Recent advances in malaria drug discovery. Bioorg. Med. Chem. Lett., 2013, 23(10), 2829-2843.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.067] [PMID: 23587422]
[33]
Gershanovich, M.L.; Filov, V.A.; Kotova, D.G.; Stukov, A.N.; Sokolov, I.N.; Ivin, B.A. Multicenter clinical trial of the antitumor drug Dioxadet (phase II). Vopr. Onkol., 1998, 44(2), 216-220.
[PMID: 9615831]
[34]
Oh, K.S.; Oh, B.K.; Park, C.H.; Seo, H.W.; Kang, N.S.; Lee, J.H.; Lee, J.S.; Ho Lee, B. Cardiovascular effects of a novel selective Rho kinase inhibitor, 2-(1H-indazole-5-yl)amino-4-methoxy-6-piperazino triazine (DW1865). Eur. J. Pharmacol., 2013, 702(1-3), 218-226.
[http://dx.doi.org/10.1016/j.ejphar.2013.01.027] [PMID: 23376156]
[35]
McLeod, J.F.; Leempoels, J.M.; Peng, S.X.; Dax, S.L.; Myers, L.J.; Golder, F.J. GAL-021, a new intravenous BKCa-channel blocker, is well tolerated and stimulates ventilation in healthy volunteers. Br. J. Anaesth., 2014, 113(5), 875-883.
[http://dx.doi.org/10.1093/bja/aeu182] [PMID: 24989775]
[36]
Akagi, M.; Amagase, K.; Murakami, T.; Takeuchi, K. Irsogladine: overview of the mechanisms of mucosal protective and healing- promoting actions in the gastrointestinal tract. Curr. Pharm. Des., 2013, 19(1), 106-114.
[PMID: 22950502]
[37]
Hebjorn, S. Treatment of detrusor hyperreflexia in multiple sclerosis: A double-blind, crossover clinical trial comparing methantheline bromide (Banthine), flavoxate chloride (Urispas) and meladrazine tartrate (Lisidonil). Urol. Int., 1977, 32(2-3), 209-217.
[38]
Igbo, U.E.; Igoli, J.O.; Onyiriuka, S.O.; Ejele, A.E.; Ogukwe, C.E.; Ayuk, A.A.; Elemo, G.N.; Gray, A.I. Antitrypanosomal and antioxidant activities of Moringa oleifera leaf extracts. J. Pharma. Chem. Biol., 2015, 3, 17-23.
[39]
Baker, N.; de Koning, H.P.; Mäser, P.; Horn, D. Drug resistance in African trypanosomiasis: The melarsoprol and pentamidine story. Trends Parasitol., 2013, 29(3), 110-118.
[http://dx.doi.org/10.1016/j.pt.2012.12.005] [PMID: 23375541]
[40]
Sindhu, T.J.; Arikkatt, S.D.; Vincent, G.Y.; Chandran, M.; Bhat, A.R.; Krishna, K.K. Biological activities of oxazine and its derivatives: A review. Int. J. Pharm. Sci. Res., 2013, 4, 134-143.
[41]
Morris, K.N.; Davies, A.L. Tretamine in the treatment of inoperable lung cancer. LTE, 1960, 276, 370.
[http://dx.doi.org/10.1016/S0140-6736(60)91514-2]
[42]
Patel, R.B.; Chikhalia, K.H.; Pannecouque, C.; Clercq, E.D. Synthesis of novel PETT analogues: 3,4-Dimethoxy phenyl ethyl 1,3,5-triazinyl thiourea derivatives and their antibacterial and anti-HIV studies. J. Braz. Chem. Soc., 2007, 18, 312-321.
[http://dx.doi.org/10.1590/S0103-50532007000200011]
[43]
Desai, A.D.; Mahajan, D.H.; Chikhalia, K.H. Synthesis of novel aliphatic thiourea derivatives containing s-triazine moiety as potential antimicrobial agents. Indian J. Chem., 2007, 46, 1169-1173.
[http://dx.doi.org/10.1002/chin.200746138]
[44]
Chikhalia, K.H.; Vashi, D.B.; Patel, M.J. Synthesis of a novel class of some 1,3,4-oxadiazole derivatives as antimicrobial agents. J. Enzyme Inhib. Med. Chem., 2009, 24(3), 617-622.
[http://dx.doi.org/10.1080/14756360802318936] [PMID: 18642158]
[45]
Patel, D.H.; Chikhalia, K.H.; Shah, N.K.; Patel, D.P.; Kaswala, P.B.; Buha, V.M. Synthesis and antimicrobial studies of s-triazine based heterocycles. J. Enzyme Inhib. Med. Chem., 2010, 25(1), 121-125.
[http://dx.doi.org/10.3109/14756360903027956] [PMID: 19814592]
[46]
Kaswala, P.B.; Chikhalia, K.H.; Shah, N.K.; Patel, D.P.; Patel, D.H.; Mudaliar, G.V. Design, synthesis and antimicrobial evaluation of s-triazinyl urea and thiourea derivatives. ARKIVOC, 2009, 9, 326-335.
[47]
Chikhalia, K.H.; Patel, M.J. Design, synthesis and evaluation of some 1,3,5-triazinyl urea and thiourea derivatives as antimicrobial agents. J. Enzyme Inhib. Med. Chem., 2009, 24(4), 960-966.
[http://dx.doi.org/10.1080/14756360802560966] [PMID: 19555172]
[48]
Rana, P.B.; Patel, J.A.; Mistry, B.D.; Desai, K.R. Microwave and conventional techniques for synthesis of a series of pyrazolo[5,4-d]-pyrimidine derivatives and their antimicrobial screening. Indian J. Chem., 2009, 48, 1601-1608.
[49]
Patel, A.C.; Mahajan, D.H.; Chikhalia, K.H. Synthesis and antibacterial studies of some novel 2-(coumarin-3-yl)-5-mercapto-1,3,4-oxadiazoles containing 2,4,6-trisubstituted s-triazine derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2010, 185, 368-375.
[http://dx.doi.org/10.1080/10426500902797285]
[50]
Sarmah, K.N.; Patel, T.V. Synthesis, characterization, antimicrobial studies of certain s-triazine derived compounds and analogues. Arch. Appl. Sci. Res., 2011, 3, 428-436.
[51]
Mistry, M.H.; Parmar, S.J.; Desai, G.C. Synthesis of some heterocyclic compounds and studies of their antimicrobial efficacy. J. Chem. Pharm. Res., 2011, 3, 831-837.
[52]
Sarmah, K.N.; Sarmah, N.K.; Kurmi, K.B.; Patel, T.V. Synthesis & studies of biological evaluation of certain s- triazine derived com-pounds. Int. J. Chemtech Res., 2012, 4, 677-681.
[53]
Parikh, K.S.; Vyas, S.P. Synthesis of some new s-triazine based derivatives as potent antimicrobial agents. Der. Chemica. Sinica., 2012, 3, 426-429.
[54]
Sarmah, N.K.; Sarmah, K.N.; Patel, T.V. Synthesis and antimicrobial evaluation of a novel series of some s-triazine moiety. J. Appl. Chem., 2014, 3, 1936-1944.
[55]
Sarmah, K.N.; Sarmah, N.K.; Patel, T.V. Synthesis, characterization, antimicrobial studies of certain piperazine containing s-triazine derived compounds. J. Chem. Pharm. Res., 2014, 6, 127-132.
[56]
Solankee, A.; Prajapati, Y. Synthesis and biological evaluation of some new fluorine containing s-triazine based chalcones and its derivatives. Rasayan J. Chem., 2009, 2, 9-14.
[57]
Sharma, C.; Sharma, S.; Hussain, N.; Talesara, G.L. Synthesis and antimicrobial activity of some new phthalimidoxy derivatives of triazine containing pyrimidine and isoxazole. J. Ind. Council. Chem, 2009, 26, 31-36.
[58]
Solankee, A.N.; Patel, G.A. Synthesis, characterization and antibacterial activity of some novel isoxazoles, pyrimidinthiones and pyrimidinones. Int. J. Pharma Bio Sci., 2010, 2, 163-169.
[59]
Solankee, A.N.; Solankee, S.H.; Patel, G.A.; Patel, K.P.; Patel, R.B. Potential antibacterial agents: Phenylpyrazolines, cyanopyridines and isoxazoles. Pharma. Chem., 2011, 3, 300-305.
[60]
Solankee, A.N.; Patel, K.P.; Patel, R.B. A convenient synthesis of chalcones, aminopyrimidines and phenylpyrazolines. Der. Chemica. Sinica, 2011, 2, 1-7.
[61]
Solankee, N.; Patel, K.P.; Patel, R.B. Synthesis of some novel Isoxazole, cyanopyridine and pyrimidinthione derivatives. J. Chem. Pharm. Res., 2011, 4, 3778-3782.
[62]
Naik, C.K.; Desai, V.A. Synthesis of some new s-triazine derivatives and evaluated for their antibacterial activity. Rasayan J. Chem., 2014, 7, 133-139.
[63]
Khan, F.G.; Yadav, M.V.; Sagar, A.D. Synthesis, characterization and antimicrobial evaluation of novel trichalcones containing core s-triazine moiety. Med. Chem. Res., 2014, 23, 2633-2638.
[http://dx.doi.org/10.1007/s00044-013-0837-4]
[64]
Anupama, S.B. Synthesis of 1,3,5-triazine based pyrimidines as potent anti-bacterial and anti-fungal agents. World J. Pharma. Res., 2015, 4, 1395-1402.
[65]
Khan, F.G.; Yadav, M.V.; Khapate, S.R.; Sagar, A.D. Synthesis, characterization and antimicrobial activity of novel dichalcones containing core s-triazine ring. Indo. American J. Pharma. Res., 2015, 5, 1447-1453.
[66]
Patel, D.; Patel, R.; Kumari, P.; Patel, N. Microwave assisted synthesis and in vitro antimicrobial assessment of quinolone based s- tria-zines. Heterocycl. Commun., 2011, 17, 33-41.
[http://dx.doi.org/10.1515/hc.2011.006]
[67]
Patel, P.K.; Patel, R.V.; Mahajan, D.H.; Parikh, P.A.; Mehta, G.N.; Chikhalia, K.H. Design, synthesis, characterization, and in vitro antimicrobial action of novel trisubstituted s-triazines. Med. Chem. Res., 2011, 21, 3182-3194.
[http://dx.doi.org/10.1007/s00044-011-9849-0]
[68]
Patel, P.K.; Patel, R.V.; Mahajan, D.H.; Parikh, P.A.; Mehta, G.N.; Pannecouque, C.; Clercq, E.D.; Chikhalia, K.H. Different heterocycles functionalized s-triazine analogues: Design, synthesis and in vitro antimicrobial, antituberculosis and anti-HIV assessment. J. Heterocycl. Chem., 2014, 51, 1641-1658.
[http://dx.doi.org/10.1002/jhet.1769]
[69]
Patel, R.V.; Kumari, P.; Chikhalia, K.H. Fluorinated s-triazinyl piperazines as antimicrobial agents. Z. Natforsch. C J. Biosci., 2011, 66(7-8), 345-352.
[http://dx.doi.org/10.1515/znc-2011-7-805] [PMID: 21950158]
[70]
Parikh, K.S.; Vyas, S.P. Design, characterization and biological evaluation of a new series of s-triazines derived with quinolones. Arch. Appl. Sci. Res., 2012, 4, 1359-1362.
[71]
Bhat, H.R.; Gupta, S.K.; Singh, U.P. Discovery of potent, novel antibacterial hybrid conjugates from 4-aminoquinoline and 1,3,5-triazine: Design, synthesis and antibacterial evaluation. R. Soc. Chem. Adv., 2012, 2, 12690-12695.
[http://dx.doi.org/10.1039/c2ra22353h]
[72]
Patel, R.V.; Kumari, P.; Rajani, D.P.; Chikhalia, K.H. Discovery of 2-(4-cyano-3-trifluoromethylphenyl amino)-4-(4-quinazolinyloxy)-6-piperazinyl(piperidinyl)-s-triazines as potential antibacterial agents. Med. Chem. Res., 2012, 21, 4177-4192.
[http://dx.doi.org/10.1007/s00044-011-9950-4]
[73]
Bhat, H.R.; Pandey, P.K.; Ghosh, S.K.; Singh, U.P. Development of 4-aminoquinoline-1,3,5-triazine conjugates as potent antibacterial agents through facile synthetic route. Med. Chem. Res., 2013, 22, 5056-5065.
[http://dx.doi.org/10.1007/s00044-013-0521-8]
[74]
Pathak, P.; Thakur, A.; Bhat, H.R.; Singh, U.P. Hybrid 4-aminoquinoline-1,3,5-triazine derivatives: Design, synthesis, characterization, and antibacterial evaluation. J. Heterocycl. Chem., 2014, 52, 1108-1113.
[http://dx.doi.org/10.1002/jhet.2210]
[75]
Rathavi, A.; Thakor, M.K. Design, synthesis and in vitro antimicrobial activity of trisubstituted s-triazine. Acta. Chim. Pharm. Indica., 2015, 5, 60-67.
[76]
Mahyavanshi, J.B.; Shukla, M.B.; Parmar, K.A.; Jadhav, J.P. Synthesis, structural elucidation and anti-microbial screening of quinolone based s-triazinyl substituted aryl amine derivatives. Pharma. Chem., 2015, 7, 156-161.
[77]
Kavitha, N.; Arun, A.; Shafi, S.S. Synthesis, characterization and antimicrobial activity of some novel s-triazine derivatives incorporating quinoline moiety. Pharma. Chem., 2015, 7, 453-458.
[78]
Parmar, J.M.; Parikh, A.R. Heterocyclic compounds - Part-1: Preparation of some s-triazine derivatives as potential antimicrobial agents. Org. Chem., 2008, 4, 415-419.
[79]
Maeda, S.; Kita, T.; Meguro, K. Synthesis of novel 4,6-di(substituted)amino-1,2-dihydro-1,3,5-triazine derivatives as topical antiseptic agents. J. Med. Chem., 2009, 52(3), 597-600.
[http://dx.doi.org/10.1021/jm8014712] [PMID: 19117423]
[80]
Baldaniya, B.B.; Patel, P.K. Synthesis, antibacterial and antifungal activities of s-triazine derivatives. E-J. Chem., 2009, 6, 673-680.
[http://dx.doi.org/10.1155/2009/196309]
[81]
Baldaniya, B.B. Synthesis and characterizations of N2-(aryl)-N4,N6-bis(6,7-dichloro-1,3-benzothiazol-2-yl)-1,3,5-triazine-2,4,6-triamines as biological potent agents. E-J. Chem., 2010, 7, 210-214.
[http://dx.doi.org/10.1155/2010/612853]
[82]
Singh, U.P.; Pathak, M.; Dubey, V.; Bhat, H.R.; Gahtori, P.; Singh, R.K. Design, synthesis, antibacterial activity, and molecular docking studies of novel hybrid 1,3-thiazine-1,3,5-triazine derivatives as potential bacterial translation inhibitor. Chem. Biol. Drug Des., 2012, 80(4), 572-583.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01430.x] [PMID: 22702334]
[83]
Sarmah, K.N.; Sarmah, N.K.; Kurmi, K.B.; Patel, T.V. Synthesis of novel derivatives containing s-triazine moiety as potential antibacterial agents. Arch. Appl. Sci. Res., 2012, 4, 805-808.
[84]
Chikhalia, K.H.; Dabhi, H.N. Synthesis and biological activity of s-bridge heterocyclic compounds. Der. Chemica. Sinica., 2012, 3, 1486-1489.
[85]
Dubey, V.; Pathak, M.; Bhat, H.R.; Singh, U.P. Design, facile synthesis, and antibacterial activity of hybrid 1,3,4-thiadiazole-1,3,5-triazine derivatives tethered via -S- bridge. Chem. Biol. Drug Des., 2012, 80(4), 598-604.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01433.x] [PMID: 22716235]
[86]
Gahtori, P.; Ghosh, S.K. Design, synthesis and SAR exploration of hybrid 4-chlorophenylthiazolyl-s-triazine as potential antimicrobial agents. J. Enzyme Inhib. Med. Chem., 2012, 27(2), 281-293.
[http://dx.doi.org/10.3109/14756366.2011.587418] [PMID: 21657948]
[87]
Gautam, N.; Chourasia, O.P. Synthesis, antimicrobial, insecticidal and anthelmintic activity studies of some new alkyl/aryl 6-(4-(4-methyl, 1-H-1,2,3-triazole-1-yl)phenylamino)phenyl)-N2, N4-bis(4-methoxyphenyl)-1,3,5-triazine-2,4-diamine carbamic acid ester derivatives. Indian J. Chem., 2012, 51, 1020-1026.
[88]
Parikh, K.S.; Vyas, S.P. Design, characterization and biological activity of a new series of s-triazines derived with morpholine. J. Appl. Pharm. Sci., 2012, 2, 111-114.
[http://dx.doi.org/10.7324/JAPS.2012.2519]
[89]
Desai, N.C.; Makwana, A.H.; Rajpara, K.M. Synthesis and study of 1,3,5-triazine based thiazole derivatives as antimicrobial agents. J. Saudi Chem. Soc., 2016, 20(Suppl. 1), S334-S341.
[90]
Parmar, K.A.; Prajapati, S.N.; Vasava, C.J. Synthesis, characterization and microbial screening of 2-(4-chlorophenyl-1,3,4-oxadiazolyl)-5-thio-4-(cyclohexylamino)-6-(arylamino)-s-triazine. J. Chem. Biol. Phys. Sci., 2013, 3, 1751-1756.
[91]
Modh, R.P.; Patel, A.C.; Chikhalia, K.H. Design, synthesis, antibacterial and antifungal studies of novel 3-substituted coumarinyl-triazine derivatives. Heterocycl. Commun., 2013, 19, 343-349.
[http://dx.doi.org/10.1515/hc-2013-0104]
[92]
Lakum, H.P.; Desai, D.V.; Chikhalia, K.V. Synthesis, characterization, and antimicrobial screening of s-triazines linked with piperazine or aniline scaffolds. Heterocycl. Commun., 2013, 19, 351-355.
[http://dx.doi.org/10.1515/hc-2013-0077]
[93]
Kumar, S.; Bhat, H.R.; Kumawat, M.K.; Singh, U.P. Design and one-pot synthesis of hybrid thiazolidin-4-one-1,3,5-triazines as potent antibacterial agent against human disease causing pathogens. New J. Chem., 2013, 37, 581-584.
[http://dx.doi.org/10.1039/c2nj41028a]
[94]
Kathiriya, P.J.; Patel, V.M.; Purohit, D.M. Synthesis and antimicrobial activity of 2-4′-[(3”-aryl)-2”-propene-1”-N-(1,2,4-triazole) ami-no]-6-[bis(2”'-chloro ethyl) amino]-4-methoxy-1,3,5-triazine. J. Chem. Pharm. Res., 2013, 5, 103-107.
[95]
Indorkar, D.; Parteti, A.; Chourasia, O.P.; Limaye, S.N. PC-model computational studies of 4′, 6 -bis-(2, 4-dinitro-aniline)-(2′-arylamine)-s-triazine and biological activity studies. Int. J. Curr. Microbiol. Appl. Sci., 2013, 2, 283-292.
[96]
Prajapati, S.N.; Sutariya, S.D.; Patel, R.I.; Parmar, K.A. Efficient synthesis and evaluation of some new s-triazine derivatives and their microbial screening. J. Chem. Biol. Phys. Sci., 2013, 3, 134-139.
[97]
Singh, B.; Bhat, H.R.; Kumawat, M.K.; Singh, U.P. Structure-guided discovery of 1,3,5-triazine-pyrazole conjugates as antibacterial and antibiofilm agent against pathogens causing human diseases with favorable metabolic fate. Bioorg. Med. Chem. Lett., 2014, 24(15), 3321-3325.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.103] [PMID: 24961639]
[98]
Rathavi, A.; Shukla, M.; Thakor, M.K. Synthesis and in vitro antibacterial and anti-fungal activity of trisubstituted s-triazines. J. Chem. Biol. Phys. Sci., 2014, 49, 85-92.
[99]
Rathavi, A.; Shukla, M.; Thakor, M.K. Design, synthesis and antimicrobial screening of s-triazinyl derivatives containing 1,3,4-oxadiazole ring. Arch. Appl. Sci. Res., 2014, 6, 82-89.
[100]
Rana, A.M.; Trivedi, P.; Desai, K.R.; Jauhari, S. Novel s-triazine accommodated 5-benzylidino-4-thiazolidinones: Synthesis and in vitro biological evaluations. Med. Chem. Res., 2014, 23, 4320-4336.
[http://dx.doi.org/10.1007/s00044-014-0995-z]
[101]
Desai, S.D.; Mehta, A.G. Design, synthesis, characterization and biological evaluation of various N-substituted piperazine annulated s-triazine derivatives. Res. J. Chem. Sci., 2014, 4, 14-19.
[102]
Shah, D.R.; Lakum, H.P.; Chikhalia, K.H. Copper-mediated ligand-free Ullmann reaction approach to substituted s-triazines: Rationale, synthesis, and biological evaluation. Heterocycl. Commun., 2014, 20, 305-312.
[http://dx.doi.org/10.1515/hc-2014-0096]
[103]
Shinde, R.S.; Salunke, S.D. Synthesis of novel substituted 4,6-dimethoxy-N-phenyl-1,3,5-triazin-2-amine derivatives and their antibacterial and antifungal activities. Asian J. Chem., 2015, 27, 4130-4134.
[http://dx.doi.org/10.14233/ajchem.2015.19114]
[104]
Sirajudeen, J.; Paventhan, T. Synthesis and pharmacological evaluation of novel heterocyclic compound. World J. Pharma. Res., 2015, 5, 589-596.
[105]
Koc, Z.E.; Uysal, A. Investigation of novel monopodal and dipodal oxy-Schiff base triazine from cyanuric chloride: Structural and antimi-crobial studies. J. Macromol. Sci., 2016, 53, 111-115.
[http://dx.doi.org/10.1080/10601325.2016.1121060]
[106]
Patel, H.D.; Patel, K.C.; Mehta, K.M.; Patel, P.D. Synthesis of some novel s-triazine derivatives and their potential antimicrobial activity. Elixir. Org. Chem., 2011, 38, 4122-4126.
[107]
Ahirwar, M.K.; Shrivastava, S.P. Synthesis and antibacterial activity studies of some 2-(substitutedphenyl)-3-bis2,4-(4′-methylphe-nylamino)-s-triazine-6-ylaminobenzoylamino-5-H-4-thiazolidinone. Eur. J. Chem., 2011, 9, 988-992.
[108]
Gahtori, P.; Ghosh, S.K.; Singh, B.; Singh, U.P.; Bhat, H.R.; Uppal, A. Synthesis, SAR and antibacterial activity of hybrid chloro, dichloro-phenylthiazolyl-s-triazines. Saudi Pharm. J., 2012, 20(1), 35-43.
[http://dx.doi.org/10.1016/j.jsps.2011.05.003] [PMID: 23960775]
[109]
Patel, D.; Kumari, P.; Patel, N. Synthesis and biological evaluation of some thiazolidinones as antimicrobial agents. Eur. J. Med. Chem., 2012, 48, 354-362.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.041] [PMID: 22182927]
[110]
Shrivastava, J.K.; Dubey, P.; Singh, S.; Bhat, H.R.; Kumawat, M.K.; Singh, U.P. Discovery of novel 1,3,5-triazine-thiazolidine-2,4-diones as dipeptidyl peptidase-4 (DPP-4) inhibitor targeting S1 pocket for the treatment of type 2 diabetes along with antibacterial activity. R. Soc. Chem. Adv., 2015, 5, 14095-14102.
[111]
Sun, X.; Cao, Z.; Sun, Y. N-chloro-alkoxy-s-triazine-based antimicrobial additives: Preparation, characterization, and antimicrobial and biofilm-controlling functions. Ind. Eng. Chem., 2009, 48, 607-612.
[http://dx.doi.org/10.1021/ie801110s]
[112]
Jiang, Z.; Liu, Y.; Li, R.; Ren, X.; Huang, T.S. Preparation of antibacterial cellulose with a monochloro-s-triazine-based N-halamine bio-cide. Polym. Adv. Technol., 2015, 27, 460-465.
[http://dx.doi.org/10.1002/pat.3691]
[113]
Jiang, Z.; Qiao, M.; Ren, X.; Zhu, P.; Huang, T.S. Preparation of antibacterial cellulose with s-triazine-based quaternarized N-halamine. J. Appl. Polym. Sci., 2017, 134, 1-8.
[http://dx.doi.org/10.1002/app.44998]
[114]
Lunagariya, V.D.; Desai, R.M.; Shah, V.H. Studies on bioactive bis-1,3,5-triazinyl dithiocarbamates. J. Serb. Chem. Soc., 2007, 72, 635-641.
[http://dx.doi.org/10.2298/JSC0707635L]
[115]
Chaudhari, J.A.; Patel, R.P.; Hathi, M.V. Studies on novel Bisaryl hydrazino-s-triazine derivatives - Part 2. E-J. Chem., 2007, 4, 385-389.
[http://dx.doi.org/10.1155/2007/805637]
[116]
Kumar, A.; Menon, S.K. Fullerene derivatized s-triazine analogues as antimicrobial agents. Eur. J. Med. Chem., 2009, 44(5), 2178-2183.
[http://dx.doi.org/10.1016/j.ejmech.2008.10.036] [PMID: 19062138]
[117]
Hou, A.; Zhou, M.; Wang, X. Preparation and characterization of durable antibacterial cellulose biomaterials modified with triazine derivatives. Carbohydr. Polym., 2009, 75, 328-332.
[http://dx.doi.org/10.1016/j.carbpol.2008.07.032]
[118]
Padalkar, V.S.; Gupta, V.D.; Phatangare, K.R.; Patil, V.S.; Umape, P.G.; Sekar, N. Synthesis of novel dipodal-benzimidazole, benzoxazole and benzothiazole from cyanuric chloride: Structural, photophysical and antimicrobial studies. J. Saudi Chem. Soc., 2011, 18, 262-268.
[http://dx.doi.org/10.1016/j.jscs.2011.07.001]
[119]
Kolesiska, B.; Motylski, R.; Kamiski, Z.J.; Kwinkowski, M.; Kaca, W.R. Synthesis of p-triazinylphosphonium salts-hybrid molecules with potential antimicrobial activity. Drug Res., 2011, 68, 387-391.
[120]
Machakanur, S.S.; Patil, B.R.; Pathan, A.H.; Naik, G.N.; Ligade, S.G.; Gudasi, K.B. Synthesis, antimicrobial and antimycobacterial evaluation of star shaped hydrazine derived from 1,3,5-triazine. Pharma. Chem., 2012, 4, 600-607.
[121]
Patel, A.B.; Patel, R.V.; Kumari, P.; Rajani, D.P.; Chikhalia, K.H. Synthesis of potential antitubercular and antimicrobial s-triazine-based scaffolds via Suzuki cross-coupling reaction. Med. Chem. Res., 2012, 22, 367-381.
[http://dx.doi.org/10.1007/s00044-012-0041-y]
[122]
Shanmugam, M.; Narayanan, K.; Chidambaranathan, V.; Kabilan, S. Synthesis, spectral characterization and antimicrobial studies of novel s-triazine derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 105, 383-390.
[http://dx.doi.org/10.1016/j.saa.2012.12.046] [PMID: 23333692]
[123]
Joshi, P.P.; Shastri, R.A. Synthesis and antimicrobial activity of some novel 1,3,5-triazin derivatives. World J. Pharma. Res., 2015, 4, 564-571.
[124]
Rajavelu, K.; Rajakumar, P. Synthesis and photophysical, electrochemical, antibacterial, and DNA binding studies of triazinocalix[2]arenes. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(16), 3340-3350.
[http://dx.doi.org/10.1039/C4TB01848F] [PMID: 32262328]
[125]
Desai, N.C.; Makwana, A.H.; Senta, R.D. Synthesis, characterization and antimicrobial activity of some new 4-(4-(2-isonicotinoylhydrazinyl)-6-((aryl)amino)-1,3,5-triazin-2-ylamino)-N-(pyrimidin-2-yl) benzenesulfonamides. J. Saudi Chem. Soc., 2017, 21, 25-34.
[http://dx.doi.org/10.1016/j.jscs.2013.09.006]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy