Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Roles of Programmed Cell Death Ligand-1/ Programmed Cell Death-1 (PD-L1/PD-1) in HPV-induced Cervical Cancer and Potential for their Use in Blockade Therapy

Author(s): Lifang Zhang, Yu Zhao, Quanmei Tu, Xiangyang Xue, Xueqiong Zhu and Kong-Nan Zhao*

Volume 28, Issue 5, 2021

Published on: 28 January, 2020

Page: [893 - 909] Pages: 17

DOI: 10.2174/0929867327666200128105459

Price: $65

Abstract

Background: Cervical cancer induced by infection with human papillomavirus (HPV) remains a leading cause of mortality for women worldwide although preventive vaccines and early diagnosis have reduced morbidity and mortality. Advanced cervical cancer can only be treated with either chemotherapy or radiotherapy but the outcomes are poor. The median survival for advanced cervical cancer patients is only 16.8 months.

Methods: We undertook a structural search of peer-reviewed published studies based on 1). Characteristics of programmed cell death ligand-1/programmed cell death-1(PD-L1/PD-1) expression in cervical cancer and upstream regulatory signals of PD-L1/PD-1 expression, 2). The role of the PD-L1/PD-1 axis in cervical carcinogenesis induced by HPV infection and 3). Whether the PD-L1/PD-1 axis has emerged as a potential target for cervical cancer therapies.

Results: One hundred and twenty-six published papers were included in the review, demonstrating that expression of PD-L1/PD-1 is associated with HPV-caused cancer, especially with HPV 16 and 18 which account for approximately 70% of cervical cancer cases. HPV E5/E6/E7 oncogenes activate multiple signalling pathways including PI3K/AKT, MAPK, hypoxia-inducible factor 1α, STAT3/NF-kB and microRNA, which regulate PD-L1/PD-1 axis to promote HPV-induced cervical carcinogenesis. The PD-L1/PD-1 axis plays a crucial role in the immune escape of cervical cancer through inhibition of host immune response. Creating an "immune-privileged" site for initial viral infection and subsequent adaptive immune resistance, which provides a rationale for the therapeutic blockade of this axis in HPV-positive cancers. Currently, Phase I/II clinical trials evaluating the effects of PDL1/ PD-1 targeted therapies are in progress for cervical carcinoma, which provide an important opportunity for the application of anti-PD-L1/anti-PD-1 antibodies in cervical cancer treatment.

Conclusion: Recent research developments have led to an entirely new class of drugs using antibodies against the PD-L1/PD-1 thus promoting the body’s immune system to fight cancer. The expression and roles of the PD-L1/ PD-1 axis in the progression of cervical cancer provide great potential for using PD-L1/PD-1 antibodies as a targeted cancer therapy.

Keywords: Programmed cell death ligand-1(PD-L1), programmed cell death-1(PD-1), cervical cancer, human papillomavirus, cancer immunotherapy, vaccination.

[1]
Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin., 2014, 64(1), 9-29.
[http://dx.doi.org/10.3322/caac.21208] [PMID: 24399786]
[2]
Forouzanfar, M.H.; Foreman, K.J.; Delossantos, A.M.; Lozano, R.; Lopez, A.D.; Murray, C.J.; Naghavi, M. Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic analysis. Lancet, 2011, 378(9801), 1461-1484.
[http://dx.doi.org/10.1016/S0140-6736(11)61351-2] [PMID: 21924486]
[3]
Zhang, L.; Wu, J.; Ling, M.T.; Zhao, L.; Zhao, K-N. The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses. Mol. Cancer, 2015, 14, 87.
[http://dx.doi.org/10.1186/s12943-015-0361-x] [PMID: 26022660]
[4]
Wu, J.; Chen, C.; Zhao, K-N. Phosphatidylinositol 3-kinase signaling as a therapeutic target for cervical cancer. Curr. Cancer Drug Targets, 2013, 13(2), 143-156.
[http://dx.doi.org/10.2174/1568009611313020004] [PMID: 23297827]
[5]
Muñoz, N.; Bosch, F.X.; de Sanjosé, S.; Herrero, R.; Castellsagué, X.; Shah, K.V.; Snijders, P.J.; Meijer, C.J. International agency for research on cancer multicenter cervical cancer study group. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med., 2003, 348(6), 518-527.
[http://dx.doi.org/10.1056/NEJMoa021641] [PMID: 12571259]
[6]
Petry, K.U. HPV and cervical cancer. Scand. J. Clin. Lab. Invest. Suppl., 2014, 244(S244), 59-62.
[http://dx.doi.org/10.3109/00365513.2014.936683] [PMID: 25083895]
[7]
Zhang, L.; Zhou, F.; Zhao, K.N. Molecular approaches target to immunotherapy for HPV-associated cancers. Curr. Cancer Drug Targets, 2017, 17(6), 512-521.
[http://dx.doi.org/10.2174/1568009616666161216094701] [PMID: 27993116]
[8]
Saslow, D.; Castle, P.E.; Cox, J.T.; Davey, D.D.; Einstein, M.H.; Ferris, D.G.; Goldie, S.J.; Harper, D.M.; Kinney, W.; Moscicki, A.B.; Noller, K.L.; Wheeler, C.M.; Ades, T.; Andrews, K.S.; Doroshenk, M.K.; Kahn, K.G.; Schmidt, C.; Shafey, O.; Smith, R.A.; Partridge, E.E.; Garcia, F. Gynecologic cancer advisory group. American cancer society guideline for human papillomavirus (HPV) vaccine use to prevent cervical cancer and its precursors. CA Cancer J. Clin., 2007, 57(1), 7-28.
[http://dx.doi.org/10.3322/canjclin.57.1.7] [PMID: 17237032]
[9]
Harper, D.M.; Franco, E.L.; Wheeler, C.; Ferris, D.G.; Jenkins, D.; Schuind, A.; Zahaf, T.; Innis, B.; Naud, P.; De Carvalho, N.S.; Roteli-Martins, C.M.; Teixeira, J.; Blatter, M.M.; Korn, A.P.; Quint, W.; Dubin, G. GlaxoSmithKline HPV Vaccine Study Group. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet, 2004, 364(9447), 1757-1765.
[http://dx.doi.org/10.1016/S0140-6736(04)17398-4] [PMID: 15541448]
[10]
Giuliano, A.R.; Palefsky, J.M.; Goldstone, S.; Moreira, E.D. Jr.; Penny, M.E.; Aranda, C.; Vardas, E.; Moi, H.; Jessen, H.; Hillman, R.; Chang, Y.H.; Ferris, D.; Rouleau, D.; Bryan, J.; Marshall, J.B.; Vuocolo, S.; Barr, E.; Radley, D.; Haupt, R.M.; Guris, D. Efficacy of quadrivalent HPV vaccine against HPV Infection and disease in males. N. Engl. J. Med., 2011, 364(5), 401-411.
[http://dx.doi.org/10.1056/NEJMoa0909537] [PMID: 21288094]
[11]
Huh, W.K.; Joura, E.A.; Giuliano, A.R.; Iversen, O.E.; de Andrade, R.P.; Ault, K.A.; Bartholomew, D.; Cestero, R.M.; Fedrizzi, E.N.; Hirschberg, A.L.; Mayrand, M.H.; Ruiz-Sternberg, A.M.; Stapleton, J.T.; Wiley, D.J.; Ferenczy, A.; Kurman, R.; Ronnett, B.M.; Stoler, M.H.; Cuzick, J.; Garland, S.M.; Kjaer, S.K.; Bautista, O.M.; Haupt, R.; Moeller, E.; Ritter, M.; Roberts, C.C.; Shields, C.; Luxembourg, A. Final efficacy, immunogenicity, and safety analyses of a nine-valent human papillomavirus vaccine in women aged 16-26 years: a randomised, double-blind trial. Lancet, 2017, 390(10108), 2143-2159.
[http://dx.doi.org/10.1016/S0140-6736(17)31821-4] [PMID: 28886907]
[12]
Landoni, F.; Maneo, A.; Colombo, A.; Placa, F.; Milani, R.; Perego, P.; Favini, G.; Ferri, L.; Mangioni, C. Randomised study of radical surgery versus radiotherapy for stage Ib-IIa cervical cancer. Lancet, 1997, 350(9077), 535-540.
[http://dx.doi.org/10.1016/S0140-6736(97)02250-2] [PMID: 9284774]
[13]
Friedlander, M.; Grogan, M.U.S. Preventative services task force. Guidelines for the treatment of recurrent and metastatic cervical cancer. Oncologist, 2002, 7(4), 342-347.
[http://dx.doi.org/10.1634/theoncologist.2002-0342] [PMID: 12185296]
[14]
Orbegoso, C.; Murali, K.; Banerjee, S. The current status of immunotherapy for cervical cancer. Rep. Pract. Oncol. Radiother., 2018, 23(6), 580-588.
[http://dx.doi.org/10.1016/j.rpor.2018.05.001] [PMID: 30534022]
[15]
Westermann, C.; Fischer, A.; Clad, A. Treatment of vulvar intraepithelial neoplasia with topical 5% imiquimod cream. Int. J. Gynaecol. Obstet., 2013, 120(3), 266-270.
[http://dx.doi.org/10.1016/j.ijgo.2012.09.020] [PMID: 23219095]
[16]
Daayana, S.; Elkord, E.; Winters, U.; Pawlita, M.; Roden, R.; Stern, P.L.; Kitchener, H.C. Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. Br. J. Cancer, 2010, 102(7), 1129-1136.
[http://dx.doi.org/10.1038/sj.bjc.6605611] [PMID: 20234368]
[17]
Grimm, C.; Polterauer, S.; Natter, C.; Rahhal, J.; Hefler, L.; Tempfer, C.B.; Heinze, G.; Stary, G.; Reinthaller, A.; Speiser, P. Treatment of cervical intraepithelial neoplasia with topical imiquimod: a randomized controlled trial. Obstet. Gynecol., 2012, 120(1), 152-159.
[http://dx.doi.org/10.1097/AOG.0b013e31825bc6e8] [PMID: 22914404]
[18]
Terlou, A.; van Seters, M.; Kleinjan, A.; Heijmans-Antonissen, C.; Santegoets, L.A.; Beckmann, I.; van Beurden, M.; Helmerhorst, T.J.; Blok, L.J. Imiquimod-induced clearance of HPV is associated with normalization of immune cell counts in usual type vulvar intraepithelial neoplasia. Int. J. Cancer, 2010, 127(12), 2831-2840.
[http://dx.doi.org/10.1002/ijc.25302] [PMID: 21351262]
[19]
Soong, R.S.; Song, L.; Trieu, J.; Knoff, J.; He, L.; Tsai, Y.C.; Huh, W.; Chang, Y.N.; Cheng, W.F.; Roden, R.B.; Wu, T.C.; Trimble, C.L.; Hung, C.F. Toll-like receptor agonist imiquimod facilitates antigen-specific CD8+ T-cell accumulation in the genital tract leading to tumor control through IFNγ. Clin. Cancer Res., 2014, 20(21), 5456-5467.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0344] [PMID: 24893628]
[20]
Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.; Hwu, W-J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; Pitot, H.C.; Hamid, O.; Bhatia, S.; Martins, R.; Eaton, K.; Chen, S.; Salay, T.M.; Alaparthy, S.; Grosso, J.F.; Korman, A.J.; Parker, S.M.; Agrawal, S.; Goldberg, S.M.; Pardoll, D.M.; Gupta, A.; Wigginton, J.M. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med., 2012, 366(26), 2455-2465.
[http://dx.doi.org/10.1056/NEJMoa1200694] [PMID: 22658128]
[21]
Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr. Opin. Immunol., 2012, 24(2), 207-212.
[http://dx.doi.org/10.1016/j.coi.2011.12.009] [PMID: 22236695]
[22]
Li, Z.; Song, W.; Rubinstein, M.; Liu, D. Recent updates in cancer immunotherapy: a comprehensive review and perspective of the 2018 China cancer immunotherapy workshop in Beijing. J. Hematol. Oncol., 2018, 11(1), 142.
[http://dx.doi.org/10.1186/s13045-018-0684-3] [PMID: 30577797]
[23]
Lin, D.Y.; Tanaka, Y.; Iwasaki, M.; Gittis, A.G.; Su, H.P.; Mikami, B.; Okazaki, T.; Honjo, T.; Minato, N.; Garboczi, D.N. The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proc. Natl. Acad. Sci. USA, 2008, 105(8), 3011-3016.
[http://dx.doi.org/10.1073/pnas.0712278105] [PMID: 18287011]
[24]
George, J.; Saito, M.; Tsuta, K.; Iwakawa, R.; Shiraishi, K.; Scheel, A.H.; Uchida, S.; Watanabe, S.I.; Nishikawa, R.; Noguchi, M.; Peifer, M.; Jang, S.J.; Petersen, I.; Büttner, R.; Harris, C.C.; Yokota, J.; Thomas, R.K.; Kohno, T. Genomic amplification of CD274 (PD-L1) in small-cell lung cancer. Clin. Cancer Res., 2017, 23(5), 1220-1226.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1069] [PMID: 27620277]
[25]
Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J., 1992, 11(11), 3887-3895.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05481.x] [PMID: 1396582]
[26]
Linsley, P.S.; Greene, J.L.; Brady, W.; Bajorath, J.; Ledbetter, J.A.; Peach, R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity, 1994, 1(9), 793-801.
[http://dx.doi.org/10.1016/S1074-7613(94)80021-9] [PMID: 7534620]
[27]
Wolchok, J.D.; Kluger, H.; Callahan, M.K.; Postow, M.A.; Rizvi, N.A.; Lesokhin, A.M.; Segal, N.H.; Ariyan, C.E.; Gordon, R-A.; Reed, K.; Burke, M.M.; Caldwell, A.; Kronenberg, S.A.; Agunwamba, B.U.; Zhang, X.; Lowy, I.; Inzunza, H.D.; Feely, W.; Horak, C.E.; Hong, Q.; Korman, A.J.; Wigginton, J.M.; Gupta, A.; Sznol, M. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med., 2013, 369(2), 122-133.
[http://dx.doi.org/10.1056/NEJMoa1302369] [PMID: 23724867]
[28]
Mkrtichyan, M.; Najjar, Y.G.; Raulfs, E.C.; Abdalla, M.Y.; Samara, R.; Rotem-Yehudar, R.; Cook, L.; Khleif, S.N. Anti-PD-1 synergizes with cyclophosphamide to induce potent anti-tumor vaccine effects through novel mechanisms. Eur. J. Immunol., 2011, 41(10), 2977-2986.
[http://dx.doi.org/10.1002/eji.201141639] [PMID: 21710477]
[29]
Youngblood, B.; Oestreich, K.J.; Ha, S.J.; Duraiswamy, J.; Akondy, R.S.; West, E.E.; Wei, Z.; Lu, P.; Austin, J.W.; Riley, J.L.; Boss, J.M.; Ahmed, R. Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity, 2011, 35(3), 400-412.
[http://dx.doi.org/10.1016/j.immuni.2011.06.015] [PMID: 21943489]
[30]
Mezache, L.; Paniccia, B.; Nyinawabera, A.; Nuovo, G.J. Enhanced expression of PD L1 in cervical intraepithelial neoplasia and cervical cancers. Mod. Pathol., 2015, 28(12), 1594-1602.
[http://dx.doi.org/10.1038/modpathol.2015.108] [PMID: 26403783]
[31]
Reddy, O.L.; Shintaku, P.I.; Moatamed, N.A. Programmed death-ligand 1 (PD-L1) is expressed in a significant number of the uterine cervical carcinomas. Diagn. Pathol., 2017, 12(1), 45.
[http://dx.doi.org/10.1186/s13000-017-0631-6] [PMID: 28623908]
[32]
Malm, I-J.; Bruno, T.C.; Fu, J.; Zeng, Q.; Taube, J.M.; Westra, W.; Pardoll, D.; Drake, C.G.; Kim, Y.J. Expression profile and in vitro blockade of programmed death-1 in human papillomavirus-negative head and neck squamous cell carcinoma. Head Neck, 2015, 37(8), 1088-1095.
[http://dx.doi.org/10.1002/hed.23706] [PMID: 24710745]
[33]
Zhang, H.; Zhang, T.; You, Z.; Zhang, Y. Positive surgical margin, HPV persistence, and expression of both TPX2 and PD-L1 are associated with persistence/recurrence of cervical intraepithelial neoplasia after cervical conization. PLoS One, 2015, 10(12)e0142868
[http://dx.doi.org/10.1371/journal.pone.0142868] [PMID: 26624896]
[34]
Enwere, E.K.; Kornaga, E.N.; Dean, M.; Koulis, T.A.; Phan, T.; Kalantarian, M.; Köbel, M.; Ghatage, P.; Magliocco, A.M.; Lees-Miller, S.P.; Doll, C.M. Expression of PD-L1 and presence of CD8-positive T cells in pre-treatment specimens of locally advanced cervical cancer. Mod. Pathol., 2017, 30(4), 577-586.
[http://dx.doi.org/10.1038/modpathol.2016.221] [PMID: 28059093]
[35]
Saglam, O.; Conejo-Garcia, J. PD-1/PD-L1 immune checkpoint inhibitors in advanced cervical cancer. Integr. Cancer Sci. Ther., 2018, 5(2)
[http://dx.doi.org/10.15761/ICST.1000272] [http://dx.doi.org/10.15761/ICST.1000272] [PMID: 29955379]
[36]
Kim, M.; Kim, H.; Suh, D.H.; Kim, K.; Kim, H.; Kim, Y.B.; No, J.H. Identifying rational candidates for immunotherapy targeting PD-1/PD-L1 in cervical cancer. Anticancer Res., 2017, 37(9), 5087-5094.
[http://dx.doi.org/10.21873/anticanres.11926] [PMID: 28870938]
[37]
Feng, Y-C.; Ji, W-L.; Yue, N.; Huang, Y-C.; Ma, X-M. The relationship between the PD-1/PD-L1 pathway and DNA mismatch repair in cervical cancer and its clinical significance. Cancer Manag. Res., 2018, 10, 105-113.
[http://dx.doi.org/10.2147/CMAR.S152232] [PMID: 29403308]
[38]
Lin, P-L.; Cheng, Y-M.; Wu, D-W.; Huang, Y-J.; Lin, H-C.; Chen, C-Y.; Lee, H. A combination of anti-PD-L1 mAb plus Lm-LLO-E6 vaccine efficiently suppresses tumor growth and metastasis in HPV-infected cancers. Cancer Med., 2017, 6(9), 2052-2062.
[http://dx.doi.org/10.1002/cam4.1143] [PMID: 28795532]
[39]
Budczies, J.; Bockmayr, M.; Denkert, C.; Klauschen, F.; Gröschel, S.; Darb-Esfahani, S.; Pfarr, N.; Leichsenring, J.; Onozato, M.L.; Lennerz, J.K.; Dietel, M.; Fröhling, S.; Schirmacher, P.; Iafrate, A.J.; Weichert, W.; Stenzinger, A. Pan-cancer analysis of copy number changes in programmed death-ligand 1 (PD-L1, CD274) - associations with gene expression, mutational load, and survival. Genes Chrom. Cancer, 2016, 55(8), 626-639.
[http://dx.doi.org/10.1002/gcc.22365] [PMID: 27106868]
[40]
Budczies, J.; Denkert, C.; Győrffy, B.; Schirmacher, P.; Stenzinger, A. Chromosome 9p copy number gains involving PD-L1 are associated with a specific proliferation and immune-modulating gene expression program active across major cancer types. BMC Med. Genomics, 2017, 10(1), 74.
[http://dx.doi.org/10.1186/s12920-017-0308-8] [PMID: 29212506]
[41]
Ock, C.Y.; Keam, B.; Kim, S.; Lee, J.S.; Kim, M.; Kim, T.M.; Jeon, Y.K.; Kim, D.W.; Chung, D.H.; Heo, D.S. Pan-cancer immunogenomic perspective on the tumor microenvironment based on PD-L1 and CD8 T cell infiltration. Clin. Cancer Res., 2016, 22(9), 2261-2270.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2834] [PMID: 26819449]
[42]
Mushtaq, M.U.; Papadas, A.; Pagenkopf, A.; Flietner, E.; Morrow, Z.; Chaudhary, S.G.; Asimakopoulos, F. Tumor matrix remodeling and novel immunotherapies: the promise of matrix-derived immune biomarkers. J. Immunother. Cancer, 2018, 6(1), 65.
[http://dx.doi.org/10.1186/s40425-018-0376-0] [PMID: 29970158]
[43]
Chen, J.; Jiang, C.C.; Jin, L.; Zhang, X.D. Regulation of PD-L1: A novel role of pro-survival signalling in cancer. Ann. Oncol., 2016, 27(3), 409-416.
[http://dx.doi.org/10.1093/annonc/mdv615] [PMID: 26681673]
[44]
Chen, J.; Zhang, X.D.; Proud, C. Dissecting the signaling pathways that mediate cancer in PTEN and LKB1 double-knockout mice. Sci. Signal., 2015, 8(392), pe1-pe1.
[http://dx.doi.org/10.1126/scisignal.aac8321] [PMID: 26329580]
[45]
Chen, J. Signaling pathways in HPV-associated cancers and therapeutic implications. Rev. Med. Virol., 2015, 25(Suppl. 1), 24-53.
[http://dx.doi.org/10.1002/rmv.1823] [PMID: 25752815]
[46]
Wu, J.; Chen, J.; Zhang, L.; Masci, P.P.; Zhao, K.N. Four major factors regulate phosphatidylinositol 3-kinase signaling pathway in cancers induced by infection of human papilloma viruses. Curr. Med. Chem., 2014, 21(26), 3057-3069.
[http://dx.doi.org/10.2174/0929867321666140414101528] [PMID: 24735365]
[47]
Almozyan, S.; Colak, D.; Mansour, F.; Alaiya, A.; Al-Harazi, O.; Qattan, A.; Al-Mohanna, F.; Al-Alwan, M.; Ghebeh, H. PD-L1 promotes OCT4 and Nanog expression in breast cancer stem cells by sustaining PI3K/AKT pathway activation. Int. J. Cancer, 2017, 141(7), 1402-1412.
[http://dx.doi.org/10.1002/ijc.30834] [PMID: 28614911]
[48]
Lastwika, K.J.; Wilson, W., III; Li, Q.K.; Norris, J.; Xu, H.; Ghazarian, S.R.; Kitagawa, H.; Kawabata, S.; Taube, J.M.; Yao, S.; Liu, L.N.; Gills, J.J.; Dennis, P.A. control of pd-l1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res., 2016, 76(2), 227-238.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3362] [PMID: 26637667]
[49]
Dong, P.; Xiong, Y.; Yu, J.; Chen, L.; Tao, T.; Yi, S.; Hanley, S.J.B.; Yue, J.; Watari, H.; Sakuragi, N. Control of PD-L1 expression by miR-140/142/340/383 and oncogenic activation of the OCT4-miR-18a pathway in cervical cancer. Oncogene, 2018, 37(39), 5257-5268.
[http://dx.doi.org/10.1038/s41388-018-0347-4] [PMID: 29855617]
[50]
Fang, J.Y.; Richardson, B.C. The MAPK signalling pathways and colorectal cancer. Lancet Oncol., 2005, 6(5), 322-327.
[http://dx.doi.org/10.1016/S1470-2045(05)70168-6] [PMID: 15863380]
[51]
Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer, 2003, 3(1), 11-22.
[http://dx.doi.org/10.1038/nrc969] [PMID: 12509763]
[52]
Dhillon, A.S.; Hagan, S.; Rath, O.; Kolch, W. MAP kinase signalling pathways in cancer. Oncogene, 2007, 26(22), 3279-3290.
[http://dx.doi.org/10.1038/sj.onc.1210421] [PMID: 17496922]
[53]
Sumimoto, H.; Imabayashi, F.; Iwata, T.; Kawakami, Y. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J. Exp. Med., 2006, 203(7), 1651-1656.
[http://dx.doi.org/10.1084/jem.20051848] [PMID: 16801397]
[54]
Vanden Borre, P.; Gunda, V.; McFadden, D.G.; Sadow, P.M.; Varmeh, S.; Bernasconi, M.; Parangi, S. Combined BRAF(V600E)- and SRC-inhibition induces apoptosis, evokes an immune response and reduces tumor growth in an immunocompetent orthotopic mouse model of anaplastic thyroid cancer. Oncotarget, 2014, 5(12), 3996-4010.
[http://dx.doi.org/10.18632/oncotarget.2130] [PMID: 24994118]
[55]
Jiang, X.; Zhou, J.; Giobbie-Hurder, A.; Wargo, J.; Hodi, F.S. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin. Cancer Res., 2013, 19(3), 598-609.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2731] [PMID: 23095323]
[56]
Ortmann, B.; Druker, J.; Rocha, S. Cell cycle progression in response to oxygen levels. Cell. Mol. Life Sci., 2014, 71(18), 3569-3582.
[http://dx.doi.org/10.1007/s00018-014-1645-9] [PMID: 24858415]
[57]
Brown, J.M.; Wilson, W.R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer, 2004, 4(6), 437-447.
[http://dx.doi.org/10.1038/nrc1367] [PMID: 15170446]
[58]
Wilson, W.R.; Hay, M.P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer, 2011, 11(6), 393-410.
[http://dx.doi.org/10.1038/nrc3064] [PMID: 21606941]
[59]
Vaupel, P.; Mayer, A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev., 2007, 26(2), 225-239.
[http://dx.doi.org/10.1007/s10555-007-9055-1] [PMID: 17440684]
[60]
Birner, P.; Schindl, M.; Obermair, A.; Plank, C.; Breitenecker, G.; Oberhuber, G. Overexpression of hypoxia-inducible factor 1α is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res., 2000, 60(17), 4693-4696.
[PMID: 10987269]
[61]
Yatabe, N.; Kyo, S.; Maida, Y.; Nishi, H.; Nakamura, M.; Kanaya, T.; Tanaka, M.; Isaka, K.; Ogawa, S.; Inoue, M. HIF-1-mediated activation of telomerase in cervical cancer cells. Oncogene, 2004, 23(20), 3708-3715.
[http://dx.doi.org/10.1038/sj.onc.1207460] [PMID: 15048086]
[62]
Nakamura, M.; Bodily, J.M.; Beglin, M.; Kyo, S.; Inoue, M.; Laimins, L.A. Hypoxia-specific stabilization of HIF-1alpha by human papillomaviruses. Virology, 2009, 387(2), 442-448.
[http://dx.doi.org/10.1016/j.virol.2009.02.036] [PMID: 19321184]
[63]
Pollizzi, K.N.; Powell, J.D. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat. Rev. Immunol., 2014, 14(7), 435-446.
[http://dx.doi.org/10.1038/nri3701] [PMID: 24962260]
[64]
Pawelec, G.; Derhovanessian, E.; Larbi, A. Immunosenescence and cancer. Crit. Rev. Oncol. Hematol., 2010, 75(2), 165-172.
[http://dx.doi.org/10.1016/j.critrevonc.2010.06.012] [PMID: 20656212]
[65]
Barsoum, I.B.; Koti, M.; Siemens, D.R.; Graham, C.H. Mechanisms of hypoxia-mediated immune escape in cancer. Cancer Res., 2014, 74(24), 7185-7190.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2598] [PMID: 25344227]
[66]
Shehade, H.; Oldenhove, G.; Moser, M. Hypoxia in the intestine or solid tumors: a beneficial or deleterious alarm signal? Eur. J. Immunol., 2014, 44(9), 2550-2557.
[http://dx.doi.org/10.1002/eji.201444719] [PMID: 25043839]
[67]
Barsoum, I.B.; Smallwood, C.A.; Siemens, D.R.; Graham, C.H. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res., 2014, 74(3), 665-674.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0992] [PMID: 24336068]
[68]
Noman, M.Z.; Desantis, G.; Janji, B.; Hasmim, M.; Karray, S.; Dessen, P.; Bronte, V.; Chouaib, S. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med., 2014, 211(5), 781-790.
[http://dx.doi.org/10.1084/jem.20131916] [PMID: 24778419]
[69]
Koh, J.; Jang, J.Y.; Keam, B.; Kim, S.; Kim, M.Y.; Go, H.; Kim, T.M.; Kim, D.W.; Kim, C.W.; Jeon, Y.K.; Chung, D.H. EML4-ALK enhances programmed cell death-ligand 1 expression in pulmonary adenocarcinoma via hypoxia-inducible factor (HIF)-1α and STAT3. OncoImmunology, 2015, 5(3)e1108514
[http://dx.doi.org/10.1080/2162402X.2015.1108514] [PMID: 27141364]
[70]
Noman, M.Z.; Chouaib, S. Targeting hypoxia at the forefront of anticancer immune responses. OncoImmunology, 2015, 3(12)e954463
[http://dx.doi.org/10.4161/21624011.2014.954463] [PMID: 25964858]
[71]
Chen, C-L.; Hsieh, F-C.; Lieblein, J.C.; Brown, J.; Chan, C.; Wallace, J.A.; Cheng, G.; Hall, B.M.; Lin, J. Stat3 activation in human endometrial and cervical cancers. Br. J. Cancer, 2007, 96(4), 591-599.
[http://dx.doi.org/10.1038/sj.bjc.6603597] [PMID: 17311011]
[72]
Page, C.; Huang, M.; Jin, X.; Cho, K.; Lilja, J.; Reynolds, R.K.; Lin, J. Elevated phosphorylation of AKT and Stat3 in prostate, breast, and cervical cancer cells. Int. J. Oncol., 2000, 17(1), 23-28.
[http://dx.doi.org/10.3892/ijo.17.1.23] [PMID: 10853013]
[73]
Marzec, M.; Zhang, Q.; Goradia, A.; Raghunath, P.N.; Liu, X.; Paessler, M.; Wang, H.Y.; Wysocka, M.; Cheng, M.; Ruggeri, B.A.; Wasik, M.A. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc. Natl. Acad. Sci. USA, 2008, 105(52), 20852-20857.
[http://dx.doi.org/10.1073/pnas.0810958105] [PMID: 19088198]
[74]
Fang, W.; Zhang, J.; Hong, S.; Zhan, J.; Chen, N.; Qin, T.; Tang, Y.; Zhang, Y.; Kang, S.; Zhou, T.; Wu, X.; Liang, W.; Hu, Z.; Ma, Y.; Zhao, Y.; Tian, Y.; Yang, Y.; Xue, C.; Yan, Y.; Hou, X.; Huang, P.; Huang, Y.; Zhao, H.; Zhang, L. EBV-driven LMP1 and IFN-γ up-regulate PD-L1 in nasopharyngeal carcinoma: implications for oncotargeted therapy. Oncotarget, 2014, 5(23), 12189-12202.
[http://dx.doi.org/10.18632/oncotarget.2608] [PMID: 25361008]
[75]
Gowrishankar, K.; Gunatilake, D.; Gallagher, S.-J.; Tiffen, J.; Rizos, H.; Hersey, P. Inducible but not constitutive expression of Pd-L1 in human melanoma cells is dependent on activation of NF-κB., 2015, 10(4)e0123410
[http://dx.doi.org/10.1371/journal.pone.0123410] [PMID: 25844720]
[76]
Ma, C.; Horlad, H.; Pan, C.; Yano, H.; Ohnishi, K.; Fujiwara, Y.; Matsuoka, M.; Lee, A.; Niidome, T.; Yamanaka, R.; Takeya, M.; Komohara, Y. Stat3 inhibitor abrogates the expression of PD-1 ligands on lymphoma cell lines. J. Clin. Exp. Hematop., 2017, 57(1), 21-25.
[http://dx.doi.org/10.3960/jslrt.17006] [PMID: 28496056]
[77]
Tilborghs, S.; Corthouts, J.; Verhoeven, Y.; Arias, D.; Rolfo, C.; Trinh, X.B.; van Dam, P.A. The role of Nuclear Factor-kappa B signaling in human cervical cancer. Crit. Rev. Oncol. Hematol., 2017, 120, 141-150.
[http://dx.doi.org/10.1016/j.critrevonc.2017.11.001] [PMID: 29198328]
[78]
Liu, J.; Liu, Y.; Meng, L.; Liu, K.; Ji, B. Targeting the PD-L1/DNMT1 axis in acquired resistance to sorafenib in human hepatocellular carcinoma. Oncol. Rep., 2017, 38(2), 899-907.
[http://dx.doi.org/10.3892/or.2017.5722] [PMID: 28627705]
[79]
Sun, C.; Lan, P.; Han, Q.; Huang, M.; Zhang, Z.; Xu, G.; Song, J.; Wang, J.; Wei, H.; Zhang, J.; Sun, R.; Zhang, C.; Tian, Z. Oncofetal gene SALL4 reactivation by hepatitis B virus counteracts miR-200c in PD-L1-induced T cell exhaustion. Nat. Commun., 2018, 9(1), 1241.
[http://dx.doi.org/10.1038/s41467-018-03584-3] [PMID: 29593314]
[80]
Pedroza-Torres, A.; López-Urrutia, E.; García-Castillo, V.; Jacobo-Herrera, N.; Herrera, L.A.; Peralta-Zaragoza, O.; López-Camarillo, C.; De Leon, D.C.; Fernández-Retana, J.; Cerna-Cortés, J.F.; Pérez-Plasencia, C. MicroRNAs in cervical cancer: evidences for a miRNA profile deregulated by HPV and its impact on radio-resistance. Molecules, 2014, 19(5), 6263-6281.
[http://dx.doi.org/10.3390/molecules19056263] [PMID: 24840898]
[81]
Chen, L.; Gibbons, D.L.; Goswami, S.; Cortez, M.A.; Ahn, Y.H.; Byers, L.A.; Zhang, X.; Yi, X.; Dwyer, D.; Lin, W.; Diao, L.; Wang, J.; Roybal, J.; Patel, M.; Ungewiss, C.; Peng, D.; Antonia, S.; Mediavilla-Varela, M.; Robertson, G.; Suraokar, M.; Welsh, J.W.; Erez, B.; Wistuba, I.I.; Chen, L.; Peng, D.; Wang, S.; Ullrich, S.E.; Heymach, J.V.; Kurie, J.M.; Qin, F.X. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat. Commun., 2014, 5, 5241.
[http://dx.doi.org/10.1038/ncomms6241] [PMID: 25348003]
[82]
Geng, D.; Song, X.; Ning, F.; Song, Q.; Yin, H. MiR-34a inhibits viability and invasion of human papillomavirus-positive cervical cancer cells by targeting E2F3 and regulating survivin. Int. J. Gynecol. Cancer, 2015, 25(4), 707-713.
[http://dx.doi.org/10.1097/IGC.0000000000000399] [PMID: 25675046]
[83]
Chen, J.; Zhao, K.N. HPV-p53-miR-34a axis in HPV-associated cancers. Ann. Transl. Med., 2015, 3(21), 331.
[http://dx.doi.org/10.3978/j.issn.2305-5839.2015.09.39] [PMID: 26734641]
[84]
Chiantore, M.V.; Mangino, G.; Iuliano, M.; Zangrillo, M.S.; De Lillis, I.; Vaccari, G.; Accardi, R.; Tommasino, M.; Columba Cabezas, S.; Federico, M.; Fiorucci, G.; Romeo, G. Human papillomavirus E6 and E7 oncoproteins affect the expression of cancer-related microRNAs: additional evidence in HPV-induced tumorigenesis. J. Cancer Res. Clin. Oncol., 2016, 142(8), 1751-1763.
[http://dx.doi.org/10.1007/s00432-016-2189-1] [PMID: 27300513]
[85]
Wu, Q.; Zhao, Y.; Wang, P. miR-204 inhibits angiogenesis and promotes sensitivity to cetuximab in head and neck squamous cell carcinoma cells by blocking JAK2-STAT3 signaling. Biomed. Pharmacother., 2018, 99, 278-285.
[http://dx.doi.org/10.1016/j.biopha.2018.01.055] [PMID: 29353201]
[86]
Heeren, A.M.; Punt, S.; Bleeker, M.C.; Gaarenstroom, K.N.; van der Velden, J.; Kenter, G.G.; de Gruijl, T.D.; Jordanova, E.S. Prognostic effect of different PD-L1 expression patterns in squamous cell carcinoma and adenocarcinoma of the cervix. Mod. Pathol., 2016, 29(7), 753-763.
[http://dx.doi.org/10.1038/modpathol.2016.64] [PMID: 27056074]
[87]
Heeren, A.M.; Koster, B.D.; Samuels, S.; Ferns, D.M.; Chondronasiou, D.; Kenter, G.G.; Jordanova, E.S.; de Gruijl, T.D. High and interrelated rates of PD-L1+CD14+ antigen-presenting cells and regulatory T cells mark the microenvironment of metastatic lymph nodes from patients with cervical cancer. Cancer Immunol. Res., 2015, 3(1), 48-58.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0149] [PMID: 25361854]
[88]
Heeren, A.M.; Kenter, G.G.; Jordanova, E.S.; de Gruijl, T.D. CD14+ macrophage-like cells as the linchpin of cervical cancer perpetrated immune suppression and early metastatic spread: A new therapeutic lead? OncoImmunology, 2015, 4(6)e1009296
[http://dx.doi.org/10.1080/2162402X.2015.1009296] [PMID: 26155430]
[89]
Heeren, A.M.; de Boer, E.; Bleeker, M.C.; Musters, R.J.; Buist, M.R.; Kenter, G.G.; de Gruijl, T.D.; Jordanova, E.S. Nodal metastasis in cervical cancer occurs in clearly delineated fields of immune suppression in the pelvic lymph catchment area. Oncotarget, 2015, 6(32), 32484-32493.
[http://dx.doi.org/10.18632/oncotarget.5398] [PMID: 26431490]
[90]
Yang, W.; Lu, Y.P.; Yang, Y.Z.; Kang, J.R.; Jin, Y.D.; Wang, H.W. Expressions of programmed death (PD)-1 and PD-1 ligand (PD-L1) in cervical intraepithelial neoplasia and cervical squamous cell carcinomas are of prognostic value and associated with human papillomavirus status. J. Obstet. Gynaecol. Res., 2017, 43(10), 1602-1612.
[http://dx.doi.org/10.1111/jog.13411] [PMID: 28833798]
[91]
Yang, W.; Song, Y.; Lu, Y.L.; Sun, J.Z.; Wang, H.W. Increased expression of programmed death (PD)-1 and its ligand PD-L1 correlates with impaired cell-mediated immunity in high-risk human papillomavirus-related cervical intraepithelial neoplasia. Immunology, 2013, 139(4), 513-522.
[http://dx.doi.org/10.1111/imm.12101] [PMID: 23521696]
[92]
Karim, R.; Jordanova, E.S.; Piersma, S.J.; Kenter, G.G.; Chen, L.; Boer, J.M.; Melief, C.J.; van der Burg, S.H. Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T-cell infiltration and survival of patients with cervical carcinoma. Clin. Cancer Res., 2009, 15(20), 6341-6347.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1652] [PMID: 19825956]
[93]
Hatam, L.J.; Devoti, J.A.; Rosenthal, D.W.; Lam, F.; Abramson, A.L.; Steinberg, B.M.; Bonagura, V.R. Immune suppression in premalignant respiratory papillomas: enriched functional CD4+Foxp3+ regulatory T cells and PD-1/PD-L1/L2 expression. Clin. Cancer Res., 2012, 18(7), 1925-1935.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2941] [PMID: 22322668]
[94]
Tait Wojno, E.D.; Hunter, C.A.; Stumhofer, J.S. The immunobiology of the interleukin-12 family: room for discovery. Immunity, 2019, 50(4), 851-870.
[http://dx.doi.org/10.1016/j.immuni.2019.03.011] [PMID: 30995503]
[95]
Meng, Y.; Liang, H.; Hu, J.; Liu, S.; Hao, X.; Wong, M.S.K.; Li, X.; Hu, L. PD-L1 expression correlates with tumor infiltrating lymphocytes and response to neoadjuvant chemotherapy in cervical cancer. J. Cancer, 2018, 9(16), 2938-2945.
[http://dx.doi.org/10.7150/jca.22532] [PMID: 30123362]
[96]
Thompson, R.H.; Gillett, M.D.; Cheville, J.C.; Lohse, C.M.; Dong, H.; Webster, W.S.; Krejci, K.G.; Lobo, J.R.; Sengupta, S.; Chen, L.; Zincke, H.; Blute, M.L.; Strome, S.E.; Leibovich, B.C.; Kwon, E.D. Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc. Natl. Acad. Sci. USA, 2004, 101(49), 17174-17179.
[http://dx.doi.org/10.1073/pnas.0406351101] [PMID: 15569934]
[97]
Riella, L.V.; Paterson, A.M.; Sharpe, A.H.; Chandraker, A. Role of the PD-1 pathway in the immune response. Am. J. Transplant., 2012, 12(10), 2575-2587.
[http://dx.doi.org/10.1111/j.1600-6143.2012.04224.x] [PMID: 22900886]
[98]
Chang, D.Y.; Song, S.H.; You, S.; Lee, J.; Kim, J.; Racanelli, V.; Son, H.; Shin, E.C. Programmed death-1 (PD-1)-dependent functional impairment of CD4(+) T cells in recurrent genital papilloma. Clin. Exp. Med., 2014, 14(3), 305-313.
[http://dx.doi.org/10.1007/s10238-013-0245-6] [PMID: 23824147]
[99]
Heeren, A.M.; Koster, B.D.; Samuels, S.; Ferns, D.M.; Chondronasiou, D.; Kenter, G.G.; Jordanova, E.S.; de Gruijl, T.D. High and interrelated rates of PD-L1+ CD14+ antigen-presenting cells and regulatory T cells mark the microenvironment of metastatic lymph nodes from patients with cervical cancer. Cancer Immunol. Res., 2015, 3(1), 48-58.
[http://dx.doi.org/10.1158/2326-6066.cir-14-0149] [PMID: 25361854]
[100]
Chen, Y.; Wang, Q.; Shi, B.; Xu, P.; Hu, Z.; Bai, L.; Zhang, X. Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines. Cytokine, 2011, 56(2), 231-238.
[http://dx.doi.org/10.1016/j.cyto.2011.06.004] [PMID: 21733718]
[101]
Rossille, D.; Gressier, M.; Damotte, D.; Maucort-Boulch, D.; Pangault, C.; Semana, G.; Le Gouill, S.; Haioun, C.; Tarte, K.; Lamy, T.; Milpied, N.; Fest, T. Groupe Ouest-Est des Leucémies et Autres Maladies du Sang; Groupe Ouest-Est des Leucémies et Autres Maladies du Sang. High level of soluble programmed cell death ligand 1 in blood impacts overall survival in aggressive diffuse large B-cell lymphoma: results from a French multicenter clinical trial. Leukemia, 2014, 28(12), 2367-2375.
[http://dx.doi.org/10.1038/leu.2014.137] [PMID: 24732592]
[102]
Junjun, C.; Hongbing, S.; Xiao, Z.; Gui, C.; Jun, X.; Lujun, C.; Jin, J. Detection of soluble B7-H4 molecules in serum of patients with breast cancer and its clinical significance. J. Int. Trans. Med., 2013, 1(4), 215-218.
[103]
Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Ge, J.; Xiang, B.; Wu, X.; Ma, J.; Zhou, M.; Li, X.; Li, Y.; Li, G.; Xiong, W.; Guo, C.; Zeng, Z. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol. Cancer, 2019, 18(1), 10.
[http://dx.doi.org/10.1186/s12943-018-0928-4] [PMID: 30646912]
[104]
Lyford-Pike, S.; Peng, S.; Young, G.D.; Taube, J.M.; Westra, W.H.; Akpeng, B.; Bruno, T.C.; Richmon, J.D.; Wang, H.; Bishop, J.A.; Chen, L.; Drake, C.G.; Topalian, S.L.; Pardoll, D.M.; Pai, S.I. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res., 2013, 73(6), 1733-1741.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2384] [PMID: 23288508]
[105]
Song, M.Y.; Park, S.H.; Nam, H.J.; Choi, D.H.; Sung, Y.C. Enhancement of vaccine-induced primary and memory CD8(+) T-cell responses by soluble PD-1. J. Immunother., 2011, 34(3), 297-306.
[http://dx.doi.org/10.1097/CJI.0b013e318210ed0e] [PMID: 21389868]
[106]
Howitt, B.E.; Sun, H.H.; Roemer, M.G.; Kelley, A.; Chapuy, B.; Aviki, E.; Pak, C.; Connelly, C.; Gjini, E.; Shi, Y.; Lee, L.; Viswanathan, A.; Horowitz, N.; Neuberg, D.; Crum, C.P.; Lindeman, N.L.; Kuo, F.; Ligon, A.H.; Freeman, G.J.; Hodi, F.S.; Shipp, M.A.; Rodig, S.J. Genetic basis for PD-L1 expression in squamous cell carcinomas of the cervix and vulva. JAMA Oncol., 2016, 2(4), 518-522.
[http://dx.doi.org/10.1001/jamaoncol.2015.6326] [PMID: 26913631]
[107]
Liu, G.B.; Chen, J.; Wu, Z.H.; Zhao, K.N. Association of human papillomavirus with Fanconi anemia promotes carcinogenesis in Fanconi anemia patients. Rev. Med. Virol., 2015, 25(6), 345-353.
[http://dx.doi.org/10.1002/rmv.1834] [PMID: 25776992]
[108]
Reardon, D.A.; Gokhale, P.C.; Klein, S.R.; Ligon, K.L.; Rodig, S.J.; Ramkissoon, S.H.; Jones, K.L.; Conway, A.S.; Liao, X.; Zhou, J.; Wen, P.Y.; Van Den Abbeele, A.D.; Hodi, F.S.; Qin, L.; Kohl, N.E.; Sharpe, A.H.; Dranoff, G.; Freeman, G.J. Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol. Res., 2016, 4(2), 124-135.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0151] [PMID: 26546453]
[109]
Zhang, Y.; Gallastegui, N.; Rosenblatt, J.D. Regulatory B cells in anti-tumor immunity. Int. Immunol., 2015, 27(10), 521-530.
[http://dx.doi.org/10.1093/intimm/dxv034] [PMID: 25999597]
[110]
Scurr, M.; Pembroke, T.; Bloom, A.; Roberts, D.; Thomson, A.; Smart, K.; Bridgeman, H.; Adams, R.; Brewster, A.; Jones, R.; Gwynne, S.; Blount, D.; Harrop, R.; Hills, R.; Gallimore, A.; Godkin, A. Low-dose cyclophosphamide induces antitumor T-cell responses, which associate with survival in metastatic colorectal cancer. Clin. Cancer Res., 2017, 23(22), 6771-6780.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0895] [PMID: 28855352]
[111]
Rice, A.E.; Latchman, Y.E.; Balint, J.P.; Lee, J.H.; Gabitzsch, E.S.; Jones, F.R. An HPV-E6/E7 immunotherapy plus PD-1 checkpoint inhibition results in tumor regression and reduction in PD-L1 expression. Cancer Gene Ther., 2015, 22(9), 454-462.
[http://dx.doi.org/10.1038/cgt.2015.40] [PMID: 26337747]
[112]
Cheng, W-F.; Hung, C-F.; Chai, C-Y.; Hsu, K-F.; He, L.; Ling, M.; Wu, T-C. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J. Clin. Invest., 2001, 108(5), 669-678.
[http://dx.doi.org/10.1172/JCI200112346] [PMID: 11544272]
[113]
Chuang, C-M.; Monie, A.; Hung, C-F.; Wu, T-C. Treatment with imiquimod enhances antitumor immunity induced by therapeutic HPV DNA vaccination. J. Biomed. Sci., 2010, 17(1), 32.
[http://dx.doi.org/10.1186/1423-0127-17-32] [PMID: 20426849]
[114]
Liu, Z.; Zhou, H.; Wang, W.; Fu, Y.X.; Zhu, M. A novel dendritic cell targeting HPV16 E7 synthetic vaccine in combination with PD-L1 blockade elicits therapeutic antitumor immunity in mice. OncoImmunology, 2016, 5(6)e1147641
[http://dx.doi.org/10.1080/2162402X.2016.1147641] [PMID: 27471615]
[115]
White, E.A.; Munger, K. Crowd control: E7 conservation is the key to cancer. Cell, 2017, 170(6), 1057-1059.
[http://dx.doi.org/10.1016/j.cell.2017.08.033] [PMID: 28886377]
[116]
Fischer, M.; Uxa, S.; Stanko, C.; Magin, T.M.; Engeland, K. Human papilloma virus E7 oncoprotein abrogates the p53-p21-DREAM pathway. Sci. Rep., 2017, 7(1), 2603.
[http://dx.doi.org/10.1038/s41598-017-02831-9] [PMID: 28572607]
[117]
Pai, S.I. Mission impossible: how HPV-associated head and neck cancers escape a primed immune response. Oral Oncol., 2013, 49(8), 723-725.
[http://dx.doi.org/10.1016/j.oraloncology.2013.03.453] [PMID: 23643070]
[118]
Badoual, C.; Hans, S.; Merillon, N.; Van Ryswick, C.; Ravel, P.; Benhamouda, N.; Levionnois, E.; Nizard, M.; Si-Mohamed, A.; Besnier, N.; Gey, A.; Rotem-Yehudar, R.; Pere, H.; Tran, T.; Guerin, C.L.; Chauvat, A.; Dransart, E.; Alanio, C.; Albert, S.; Barry, B.; Sandoval, F.; Quintin-Colonna, F.; Bruneval, P.; Fridman, W.H.; Lemoine, F.M.; Oudard, S.; Johannes, L.; Olive, D.; Brasnu, D.; Tartour, E. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res., 2013, 73(1), 128-138.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2606] [PMID: 23135914]
[119]
Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; West, A.N.; Carmona, M.; Kivork, C.; Seja, E.; Cherry, G.; Gutierrez, A.J.; Grogan, T.R.; Mateus, C.; Tomasic, G.; Glaspy, J.A.; Emerson, R.O.; Robins, H.; Pierce, R.H.; Elashoff, D.A.; Robert, C.; Ribas, A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 2014, 515(7528), 568-571.
[http://dx.doi.org/10.1038/nature13954] [PMID: 25428505]
[120]
Chen, L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat. Rev. Immunol., 2004, 4(5), 336-347.
[http://dx.doi.org/10.1038/nri1349] [PMID: 15122199]
[121]
Ahmadzadeh, M.; Johnson, L.A.; Heemskerk, B.; Wunderlich, J.R.; Dudley, M.E.; White, D.E.; Rosenberg, S.A. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood, 2009, 114(8), 1537-1544.
[http://dx.doi.org/10.1182/blood-2008-12-195792] [PMID: 19423728]
[122]
Weber, J. Immune checkpoint proteins: a new therapeutic paradigm for cancer--preclinical background: CTLA-4 and PD-1 blockade. Semin. Oncol., 2010, 37(5), 430-439.
[http://dx.doi.org/10.1053/j.seminoncol.2010.09.005] [PMID: 21074057]
[123]
Blackburn, S.D.; Crawford, A.; Shin, H.; Polley, A.; Freeman, G.J.; Wherry, E.J. Tissue-specific differences in PD-1 and PD-L1 expression during chronic viral infection: implications for CD8 T-cell exhaustion. J. Virol., 2010, 84(4), 2078-2089.
[http://dx.doi.org/10.1128/JVI.01579-09] [PMID: 19955307]
[124]
Frenel, J.S.; Le Tourneau, C.; O’Neil, B.; Ott, P.A.; Piha-Paul, S.A.; Gomez-Roca, C.; van Brummelen, E.M.J.; Rugo, H.S.; Thomas, S.; Saraf, S.; Rangwala, R.; Varga, A. Safety and efficacy of pembrolizumab in advanced, programmed death ligand 1-positive cervical cancer: results from the phase Ib KEYNOTE-028 trial. J. Clin. Oncol., 2017, 35(36), 4035-4041.
[http://dx.doi.org/10.1200/JCO.2017.74.5471] [PMID: 29095678]
[125]
Chung, H.C.; Ros, W.; Delord, J.P.; Perets, R.; Italiano, A.; Shapira-Frommer, R.; Manzuk, L.; Piha-Paul, S.A.; Xu, L.; Zeigenfuss, S.; Pruitt, S.K.; Leary, A. Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol., 2019, 37(17), 1470-1478.
[http://dx.doi.org/10.1200/JCO.18.01265] [PMID: 30943124]
[126]
Kranawetter, M.; Röhrich, S.; Müllauer, L.; Obermair, H.; Reinthaller, A.; Grimm, C.; Sturdza, A.; Köstler, W.J.; Polterauer, S. Activity of pembrolizumab in recurrent cervical cancer: case series and review of published data. Int. J. Gynecol. Cancer, 2018, 28(6), 1196-1202.
[http://dx.doi.org/10.1097/IGC.0000000000001291] [PMID: 29787422]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy