Research Article

熊去氧胆酸(UDCA)通过胆酸(CA) -法尼酯X受体(FXR)通路促进小鼠肝细胞乳酸代谢

卷 20, 期 8, 2020

页: [661 - 666] 页: 6

弟呕挨: 10.2174/1566524020666200123161340

价格: $65

摘要

背景:持续性高乳酸血症与休克中更高的死亡率相关。肝脏是乳酸代谢的主要部位。 方法:第一部分,新鲜分离的肝细胞在10%胎牛血清William’s E培养基中培养,培养基中添加10mM乳酸。然后,细胞暴露于100μM的熊去氧胆酸(UDCA),没有添加(对照)2、4、6、8小时。在第二部分,肝细胞用靶向FXR的沉默子选择siRNA或scramble siRNA处理。siRNA处理24小时后重复进行,细胞在第二次处理24小时后用于实验。然后将肝细胞培养于10%胎牛血清William’s E培养基中,加入10mM乳酸盐。细胞暴露于100μM UDCA中2、4、6、8 h,采用ABL80全自动血气分析仪测定乳酸浓度。 结果:UDCA增加肝细胞清除乳酸的能力。FXR被敲除后,UDCA的作用减弱。 结论:这些结果表明UDCA通过CA-FXR途径促进小鼠肝细胞乳酸代谢。

关键词: 乳酸,熊去氧胆酸,胆酸,法尼酯X受体,肝细胞,高乳酸血症。

« Previous
[1]
Rosenstein PG, Tennent-Brown BS, Hughes D. Clinical use of plasma lactate concentration. Part 2: Prognostic and diagnostic utility and the clinical management of hyperlactatemia. J Vet Emerg Crit Care (San Antonio) 2018; 28(2): 106-21.
[http://dx.doi.org/10.1111/vec.12706] [PMID: 29533517]
[2]
Bolvardi E, Malmir J, Reihani H, et al. The Role of Lactate Clearance as a Predictor of Organ Dysfunction and Mortality in Patients with Severe Sepsis. Mater Sociomed 2016; 28(1): 57-60.
[http://dx.doi.org/10.5455/msm.2016.28.57-60] [PMID: 27047270]
[3]
Haas SA, Lange T, Saugel B, et al. Severe hyperlactatemia, lactate clearance and mortality in unselected critically ill patients. Intensive Care Med 2016; 42(2): 202-10.
[http://dx.doi.org/10.1007/s00134-015-4127-0] [PMID: 26556617]
[4]
Zhou X, Liu D, Su L. Lactate and stepwise lactate kinetics can be used to guide resuscitation. Crit Care 2017; 21(1): 267.
[http://dx.doi.org/10.1186/s13054-017-1859-y] [PMID: 29078796]
[5]
Zhou X, Liu D, Su L. Response to: Understanding the null hypothesis (H0) in non-inferiority trials. Crit Care 2017; 21(1): 201.
[http://dx.doi.org/10.1186/s13054-017-1790-2] [PMID: 28774313]
[6]
Zhou X, Liu D, Su L, et al. Use of stepwise lactate kinetics-oriented hemodynamic therapy could improve the clinical outcomes of patients with sepsis-associated hyperlactatemia. Crit Care 2017; 21(1): 33.
[http://dx.doi.org/10.1186/s13054-017-1617-1] [PMID: 28202033]
[7]
Arnold RC, Shapiro NI, Jones AE, et al. Emergency Medicine Shock Research Network (EMShockNet) Investigators. Multicenter study of early lactate clearance as a determinant of survival in patients with presumed sepsis. Shock 2009; 32(1): 35-9.
[http://dx.doi.org/10.1097/SHK.0b013e3181971d47] [PMID: 19533847]
[8]
Odom SR, Howell MD, Silva GS, et al. Lactate clearance as a predictor of mortality in trauma patients. J Trauma Acute Care Surg 2013; 74(4): 999-1004.
[http://dx.doi.org/10.1097/TA.0b013e3182858a3e] [PMID: 23511137]
[9]
Zhang Z, Xu X. Lactate clearance is a useful biomarker for the prediction of all-cause mortality in critically ill patients: a systematic review and meta-analysis*. Crit Care Med 2014; 42(9): 2118-25.
[http://dx.doi.org/10.1097/CCM.0000000000000405] [PMID: 24797375]
[10]
Gao F, Huang XL, Cai MX, et al. Prognostic value of serum lactate kinetics in critically ill patients with cirrhosis and acute-on-chronic liver failure: a multicenter study. Aging (Albany NY) 2019; 11(13): 4446-62.
[http://dx.doi.org/10.18632/aging.102062] [PMID: 31259742]
[11]
Takahashi K, Jafri SR, Safwan M, Abouljoud MS, Nagai S. Peri-transplant lactate levels and delayed lactate clearance as predictive factors for poor outcomes after liver transplantation: A propensity score-matched study. Clin Transplant 2019; 33(7)e13613
[http://dx.doi.org/10.1111/ctr.13613] [PMID: 31119814]
[12]
Li G. L Guo G. Farnesoid X receptor, the bile acid sensing nuclear receptor, in liver regeneration. Acta Pharm Sin B 2015; 5(2): 93-8.
[http://dx.doi.org/10.1016/j.apsb.2015.01.005] [PMID: 26579433]
[13]
Huang W, Ma K, Zhang J, et al. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science 2006; 312(5771): 233-6.
[http://dx.doi.org/10.1126/science.1121435] [PMID: 16614213]
[14]
Miura T, Tachikawa M, Ohtsuka H, et al. Application of Quantitative Targeted Absolute Proteomics to Profile Protein Expression Changes of Hepatic Transporters and Metabolizing Enzymes During Cholic Acid-Promoted Liver Regeneration. J Pharm Sci 2017; 106(9): 2499-508.
[http://dx.doi.org/10.1016/j.xphs.2017.02.018] [PMID: 28249806]
[15]
Bodewes FA, Bijvelds MJ, de Vries W, et al. Cholic acid induces a Cftr dependent biliary secretion and liver growth response in mice. PLoS One 2015; 10(2)e0117599
[http://dx.doi.org/10.1371/journal.pone.0117599] [PMID: 25680200]
[16]
Hongguang J, Xingjie H, Mingliang J, et al. Clinical effect of the extract of TCM Fructus akebiae combined with ursodeoxycholic acid on nonalcoholic fatty liver disease. Pak J Pharm Sci 2019; 32(1(Special)): 433-7.
[17]
Leoni MC, Amelung L, Lieveld FI, et al. Adherence to ursodeoxycholic acid therapy in patients with cholestatic and autoimmune liver disease. Clin Res Hepatol Gastroenterol 2019; 43(1): 37-44.
[http://dx.doi.org/10.1016/j.clinre.2018.08.006] [PMID: 30219692]
[18]
Kim DJ, Yoon S, Ji SC, et al. Ursodeoxycholic acid improves liver function via phenylalanine/tyrosine pathway and microbiome remodelling in patients with liver dysfunction. Sci Rep 2018; 8(1): 11874.
[http://dx.doi.org/10.1038/s41598-018-30349-1] [PMID: 30089798]
[19]
Lu Y, Zheng W, Lin S, et al. Identification of an Oleanane-Type Triterpene Hedragonic Acid as a Novel Farnesoid X Receptor Ligand with Liver Protective Effects and Anti-inflammatory Activity. Mol Pharmacol 2018; 93(2): 63-72.
[http://dx.doi.org/10.1124/mol.117.109900] [PMID: 29162643]
[20]
Halilbasic E, Fuchs C, Traussnigg S, Trauner M, Farnesoid X, Farnesoid X. Receptor Agonists and Other Bile Acid Signaling Strategies for Treatment of Liver Disease. Dig Dis 2016; 34(5): 580-8.
[http://dx.doi.org/10.1159/000445268] [PMID: 27332721]
[21]
Mroz MS, Lajczak NK, Goggins BJ, Keely S, Keely SJ. The bile acids, deoxycholic acid and ursodeoxycholic acid, regulate colonic epithelial wound healing. Am J Physiol Gastrointest Liver Physiol 2018; 314(3): G378-87.
[http://dx.doi.org/10.1152/ajpgi.00435.2016] [PMID: 29351391]
[22]
Chung J, An SH, Kang SW, Kwon K. Ursodeoxycholic Acid (UDCA) Exerts Anti-Atherogenic Effects by Inhibiting RAGE Signaling in Diabetic Atherosclerosis. PLoS One 2016; 11(1)e0147839
[http://dx.doi.org/10.1371/journal.pone.0147839] [PMID: 26807573]
[23]
Sun J, Li M, Fan S, et al. A novel liver-targeted nitric oxide donor UDCA-Thr-NO protects against cirrhosis and portal hypertension. Am J Transl Res 2018; 10(2): 392-401.
[PMID: 29511433]
[24]
Zhu GQ, Shi KQ, Huang S, et al. Network meta-analysis of randomized controlled trials: efficacy and safety of UDCA-based therapies in primary biliary cirrhosis. Medicine (Baltimore) 2015; 94(11)e609
[http://dx.doi.org/10.1097/MD.0000000000000609] [PMID: 25789951]
[25]
Mueller M, Castro RE, Thorell A, Marschall HU, Auer N, Herac M, et al. Ursodeoxycholic acid: Effects on hepatic unfolded protein response, apoptosis and oxidative stress in morbidly obese patients Liver international : official journal of the International Association for the Study of the Liver 2018; 38(3): 523-31.
[http://dx.doi.org/10.1111/liv.13562] [PMID: 5836915]
[26]
Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999; 284(5418): 1365-8.
[http://dx.doi.org/10.1126/science.284.5418.1365] [PMID: 10334993]
[27]
Xiang D, Yang J, Liu Y, et al. Calculus Bovis Sativus Improves Bile Acid Homeostasis via Farnesoid X Receptor-Mediated Signaling in Rats With Estrogen-Induced Cholestasis. Front Pharmacol 2019; 10: 48.
[http://dx.doi.org/10.3389/fphar.2019.00048] [PMID: 30774596]
[28]
Zhang Y, Jackson JP, St Claire RL III, Freeman K, Brouwer KR, Edwards JE. Obeticholic acid, a selective farnesoid X receptor agonist, regulates bile acid homeostasis in sandwich-cultured human hepatocytes. Pharmacol Res Perspect 2017; 5(4)
[http://dx.doi.org/10.1002/prp2.329] [PMID: 28805978]
[29]
Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science 2001; 294(5548): 1866-70.
[http://dx.doi.org/10.1126/science.294.5548.1866] [PMID: 11729302]
[30]
Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 2009; 89(1): 147-91.
[http://dx.doi.org/10.1152/physrev.00010.2008] [PMID: 19126757]
[31]
Wang N, Zou Q, Xu J, Zhang J, Liu J. Ligand binding and heterodimerization with retinoid X receptor α (RXRα) induce farnesoid X receptor (FXR) conformational changes affecting coactivator binding. J Biol Chem 2018; 293(47): 18180-91.
[http://dx.doi.org/10.1074/jbc.RA118.004652] [PMID: 30275017]
[32]
Giaginis C, Koutsounas I, Alexandrou P, et al. Elevated Farnesoid X Receptor (FXR) and Retinoid X Receptors (RXRs) expression is associated with less tumor aggressiveness and favourable prognosis in patients with pancreatic adenocarcinoma. Neoplasma 2015; 62(2): 332-41.
[http://dx.doi.org/10.4149/neo_2015_040] [PMID: 25591600]
[33]
Maloney PR, Parks DJ, Haffner CD, et al. Identification of a chemical tool for the orphan nuclear receptor FXR. J Med Chem 2000; 43(16): 2971-4.
[http://dx.doi.org/10.1021/jm0002127] [PMID: 10956205]
[34]
Flatt B, Martin R, Wang TL, et al. Discovery of XL335 (WAY-362450), a highly potent, selective, and orally active agonist of the farnesoid X receptor (FXR). J Med Chem 2009; 52(4): 904-7.
[http://dx.doi.org/10.1021/jm8014124] [PMID: 19159286]
[35]
Cao Y, Xiao Y, Zhou K, et al. FXR agonist GW4064 improves liver and intestinal pathology and alters bile acid metabolism in rats undergoing small intestinal resection. Am J Physiol Gastrointest Liver Physiol 2019; 317(2): G108-15.
[http://dx.doi.org/10.1152/ajpgi.00356.2017] [PMID: 30920307]
[36]
Kim I, Ahn SH, Inagaki T, et al. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res 2007; 48(12): 2664-72.
[http://dx.doi.org/10.1194/jlr.M700330-JLR200] [PMID: 17720959]
[37]
Borude P, Edwards G, Walesky C, et al. Hepatocyte-specific deletion of farnesoid X receptor delays but does not inhibit liver regeneration after partial hepatectomy in mice. Hepatology 2012; 56(6): 2344-52.
[http://dx.doi.org/10.1002/hep.25918] [PMID: 22730081]
[38]
Manley S, Ding W. Role of farnesoid X receptor and bile acids in alcoholic liver disease. Acta Pharm Sin B 2015; 5(2): 158-67.
[http://dx.doi.org/10.1016/j.apsb.2014.12.011] [PMID: 26579442]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy