Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Research Article

White Light Emission from Pr, Dy Doped ZnSiCa Glass

Author(s): Pingsheng Yu*, Wei Guo, Yilu Cheng, Liangbi Su and Jun Xu

Volume 12, Issue 2, 2019

Page: [154 - 160] Pages: 7

DOI: 10.2174/2666145413666200106144607

Price: $65

Abstract

Background: Luminescence glass is a potential candidate for developing white light emitting diode (W-LED) due to its good rare earth ion solubility, efficient luminescence, easy fabrication and good mold ability. Pr3+ ion has various visible emission bands from blue to red spectral region, and has attracted considerable attention for potential application to LEDs, ultraviolet laser, and scintillator. The Dy3+ ions can exhibit emission in blue and greenish-yellow (4F9/2→6H15/2, 13/2 transitions of Dy3+) spectral regions under excitation at near UV (ultraviolet). It is possible to obtain white luminescence if Pr3+ ions and Dy3+ ions can be excited simultaneous, due to their multiple luminescence in the visible region.

Methods: The Pr, Dy doped ZnSiCa glass samples were prepared by the conventional melting quenching procedure. The XRD, absorption spectra, emission spectra, and ICP-OES measurements were performed to investigate the properties of the materials.

Results: The Pr and Dy co-doped ZnSiCa glasses under 443 nm excitation show emission band peaking at about 483 nm, 575 nm and 670 nm / 676 nm. The glass samples exhibit chromaticity coordinates in the white light region in the CIE 1931 diagram, with a Correlated Color Temperature (CCT) at about 7000 K.

Conclusion: Pr, Dy codoped ZnSiCa glass samples show chromaticity coordinates in the white light region in the CIE 1931 diagram, with a CCT at about 7000 K. It is suggested that the Pr, Dy codoped ZnSiCa glasses might be considered as promising candidates for white light emitting sources.

Keywords: White light, Pr ions, Dy ions, ZnSiCa glass, absorption spectra, emission spectra.

[1]
Cimek J, Stępień R, Klimczak M, Zalewska I, Buczyński R. Development of thermally stable glass from SiO2-Bi2O3-PbO-ZnO-BaO oxide system suitable for all-solid photonic crystal fibers. Opt Mater 2017; 73: 277-83.
[http://dx.doi.org/10.1016/j.optmat.2017.08.028]
[2]
Bala R, Agrawal A, Sanghi S, Singh N. Effect of Bi2O3 on nonlinear optical properties of ZnO-Bi2O3-SiO2 glasses. Opt Mater 2013; 36: 352-6.
[http://dx.doi.org/10.1016/j.optmat.2013.09.021]
[3]
Eslami M, Hamnabard Z, Nemati A. Synthesis and spectral properties of Nd-doped glass-ceramics in SiO2-CaO-MgO system prepared by sol-gel method. J Rare Earths 2013; 31: 595-9.
[http://dx.doi.org/10.1016/S1002-0721(12)60326-3]
[4]
Jain D, Sudharsan V, Vatsa RK, Pillai CGS. Luminescence studies on ZnO–P2O5 glasses doped with Gd2O3:Eu nanoparticles and Eu2O3. J Lumin 2009; 129: 439-43.
[http://dx.doi.org/10.1016/j.jlumin.2008.11.011]
[5]
Sudarsan V, Jain D, Vatsa RK, Pillai CGS. Optical properties of (ZnO)0.5(P2O5)0.5 glasses doped with Gd2O3:Eu nanoparticles and Eu2O3. J Lumin 2010; 130: 1379-83.
[http://dx.doi.org/10.1016/j.jlumin.2010.02.050]
[6]
Zhang R, Liu YY, Ren J, Chen GR. Visible and near infrared photoluminescence of Pr3+ doped oxy-chalcohalide glasses. Chem Phys Lett 2013; 80–83: 568-9.
[http://dx.doi.org/10.1016/j.cplett.2013.03.018]
[7]
Zhang Y, Huang FF, Liu LW, Liu XQ, Zheng SP, Chen DP. Pr3+/Ho3+ co-doped glass phosphors for application in warm white light-emitting diodes. Mater Lett 2016; 167: 1-3.
[http://dx.doi.org/10.1016/j.matlet.2015.12.136]
[8]
Mahamuda S, Swapna K, Srinivasa Rao A, Sasikala T, Rama Moorthy L. Reddish-orange emission from Pr3+ doped zinc alumino bismuth borate glasses. Physica B 2013; 428: 36-42.
[http://dx.doi.org/10.1016/j.physb.2013.07.010]
[9]
Masai H, Okada G, Kawaguchi N, Yanagida T. Optical and luminescent properties of Pr-doped Li2O-MgO-Al2O3-SiO2 glasses. Opt Mater 2019; 88: 1-6.
[http://dx.doi.org/10.1016/j.optmat.2018.11.011]
[10]
Valiev D, Stepanov S, Polisadova E, Yao G. Scintillation properties of phosphate-borate-fluoride glass doped with Tb3+/Pr3+. Radiat Phys Chem 2018; 147: 59-63.
[http://dx.doi.org/10.1016/j.radphyschem.2018.02.007]
[11]
Meza-Rocha AN, Speghini A, Bettinelli M, Caldiňo U. White light generation through Zn(PO3)2 glass activated with Eu3+ and Dy3+. J Lumin 2016; 176: 235-9.
[http://dx.doi.org/10.1016/j.jlumin.2016.03.035]
[12]
Wang WC, Xiao YB, Zhou B, Xu SH, Zhang QY. Structural, thermal, and luminescent properties of germanate glass containing heavily Dy2O3 content. J Non-Cryst Solids 2019; 503-504: 400-8.
[http://dx.doi.org/10.1016/j.jnoncrysol.2018.10.037]
[13]
Sheng QC, Wang XL, Chen DP. Near-infrared emission from Pr-doped borophosphate glass for broadband telecommunication. J Lumin 2013; 135: 38-41.
[http://dx.doi.org/10.1016/j.jlumin.2012.10.040]
[14]
Swapna K, Mahamuda S, Srinivasa Rao A, Jayasimhadri M, Sasikala T, Rama Moorthy L. Optical absorption and luminescence characteristics of Dy3+ doped Zinc Alumino Bismuth Borate glasses for lasing materials and white LEDs. J Lumin 2013; 139: 119-24.
[http://dx.doi.org/10.1016/j.jlumin.2013.02.035]
[15]
Swapna K, Mahamuda S, Srinivasa Rao A, Jayasimhadri M, Sasikala T, Rama Moorthy L. Visible fluorescence characteristics of Dy3+ doped zinc alumino bismuth borate glasses for optoelectronic devices. Ceram Int 2013; 39: 8459-65.
[http://dx.doi.org/10.1016/j.ceramint.2013.04.028]
[16]
Ye YM, Wang SB, An H. White-light emission and chromaticity characterization of Dy3+ doped fluoride glass for standard white light source. J Non-Cryst Solids 2019; 526: 119697
[http://dx.doi.org/10.1016/j.jnoncrysol.2019.119697]
[17]
Zhang L, Li P, Zhao AK, Li X, Tang J, Zhang F, et al. Synthesis, structure, and color-tunable luminescence properties of lanthanide activator ions doped bismuth silicate as single-phase white light emitting phosphors. J Alloys Compd 2020; 816: 152546
[http://dx.doi.org/10.1016/j.jallcom.2019.152546]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy