Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

中性粒细胞-淋巴细胞比率与中国老年人轻度认知障碍的关系:病例对照研究

卷 16, 期 14, 2019

页: [1309 - 1315] 页: 7

弟呕挨: 10.2174/1567205017666200103110521

价格: $65

摘要

背景:在先前的研究中,炎症在认知障碍的病理生理中起着重要作用。中性粒细胞-淋巴细胞比率(NLR)是系统性炎症的可靠指标。 目的:本研究旨在探讨NLR与轻度认知障碍(MCI)之间的关联,并进一步探索NLR炎症标志物对中国老年人MCI的诊断潜力。 方法:本研究连续评估了186名MCI受试者和153名认知功能正常的受试者。在空腹血样中测量中性粒细胞(NEUT)计数和淋巴细胞(LYM)计数。通过将绝对NEUT计数除以绝对LYM计数来计算NLR。多变量logistic回归用于评估NLR和MCI之间的潜在关联。使用接收器工作特性(ROC)曲线分析对用于预测MCI的NLR进行了分析。 结果:MCI组的NLR明显高于具有正常认知功能的受试者的NLR(2.39×0.55对1.94×0.51,P <0.001)。 Logistic回归分析显示,较高的NLR是MCI的独立危险因素(OR:4.549,95%CI:2.623-7.889,P <0.001)。 ROC分析表明,MCI的最佳NLR截止点为2.07,敏感性为73.66%,特异性为69.28%,阳性预测值(PPV)为74.48%,阴性预测值(NPV)为68.36%。相对于NLR <2.07,NLR≥2.07的受试者表现出更高的风险(或:5.933,95%CI:3.467-10.155,P <0.001)。 结论:NLR升高与MCI风险增加显着相关。特别是,高于2.07阈值的NLR水平与MCI的可能性显着相关。

关键词: 中性粒细胞-淋巴细胞比率,轻度认知障碍,全身性炎症,临界值,老年人,病例对照研究。

[1]
Rubenstein E, Hartley S, Bishop L. Epidemiology of dementia and Alzheimer disease in individuals with down syndrome. JAMA Neurol 2019.
[http://dx.doi.org/10.1001/jamaneurol.2019.3666] [PMID: 31657825]
[2]
Sanford AM. Mild cognitive impairment. Clin Geriatr Med 33(3): 325-37. (2017)
[http://dx.doi.org/10.1016/j.cger.2017.02.005] [PMID: 28689566]
[3]
Behrman S, Valkanova V, Allan CL. Diagnosing and managing mild cognitive impairment 261(1804): 17-20. (2017)
[4]
Alzheimer’s Association. 2015 Alzheimer’s disease facts and figures. Alzheimers Dement 11(3): 332-84. (2015)
[http://dx.doi.org/10.1016/j.jalz.2015.02.003] [PMID: 25984581]
[5]
Morris JC. Revised criteria for mild cognitive impairment may compromise the diagnosis of Alzheimer disease dementia. Arch Neurol 69(6): 700-8. (2012)
[http://dx.doi.org/10.1001/archneurol.2011.3152] [PMID: 22312163]
[6]
Bettcher BM, Fitch R, Wynn MJ, Lalli MA, Elofson J, Jastrzab L, et al. MCP-1 and eotaxin-1 selectively and negatively associate with memory in MCI and Alzheimer’s disease dementia phenotypes. Alzheimers Dement (Amst) 3: 91-7. (2016)
[http://dx.doi.org/10.1016/j.dadm.2016.05.004] [PMID: 27453930]
[7]
Moyse E, Haddad M, Benlabiod C, Ramassamy C, Krantic S. Common pathological mechanisms and risk factors for Alzheimer’s disease and type-2 diabetes: focus on inflammation. Curr Alzheimer Res 2019; 16(11): 986-1006.
[http://dx.doi.org/10.2174/1567205016666191106094356] [PMID: 31692443]
[8]
Lathe R, Sapronova A, Kotelevtsev Y. Atherosclerosis and Alzheimer--diseases with a common cause? Inflammation, oxysterols, vasculature. BMC Geriatr 14: 36. (2014)
[http://dx.doi.org/10.1186/1471-2318-14-36] [PMID: 24656052]
[9]
de Oliveira FF, de Almeida SS, Chen ES, Smith MC, Naffah-Mazzacoratti MDG, Bertolucci PHF. Lifetime risk factors for functional and cognitive outcomes in patients with Alzheimer’s disease. J Alzheimers Dis 65(4): 1283-99. (2018)
[http://dx.doi.org/10.3233/JAD-180303] [PMID: 30149448]
[10]
Paouri E, Georgopoulos S. Systemic and CNS inflammation crosstalk: implications for Alzheimer’s disease. Curr Alzheimer Res 16(6): 559-74. (2019)
[http://dx.doi.org/10.2174/1567205016666190321154618] [PMID: 30907316]
[11]
Magalhães CA, Ferreira CN, Loures CMG, Fraga VG, Chaves AC, Oliveira ACR, et al. Leptin, hsCRP, TNF-α and IL-6 levels from normal aging to dementia: relationship with cognitive and functional status. J Clin Neurosci 56: 150-5. (2018)
[http://dx.doi.org/10.1016/j.jocn.2018.08.027] [PMID: 30150062]
[12]
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4): 388-405. (2015)
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[13]
Bettcher BM, Kramer JH. Inflammation and clinical presentation in neurodegenerative disease: a volatile relationship. Neurocase 19(2): 182-200. (2013)
[http://dx.doi.org/10.1080/13554794.2011.654227] [PMID: 22515699]
[14]
Popp J, Oikonomidi A, Tautvydaitė D, Dayon L, Bacher M, Migliavacca E, et al. Markers of neuroinflammation associated with Alzheimer’s disease pathology in older adults. Brain Behav Immun 62: 203-11. (2017)
[http://dx.doi.org/10.1016/j.bbi.2017.01.020] [PMID: 28161476]
[15]
Kuyumcu ME, Yesil Y, Oztürk ZA, Kizilarslanoğlu C, Etgül S, Halil M, et al. The evaluation of neutrophil-lymphocyte ratio in Alzheimer’s disease. Dement Geriatr Cogn Disord 34(2): 69-74. (2012)
[http://dx.doi.org/10.1159/000341583] [PMID: 22922667]
[16]
Halazun HJ, Mergeche JL, Mallon KA, Connolly ES, Heyer EJ. Neutrophil-lymphocyte ratio as a predictor of cognitive dysfunction in carotid endarterectomy patients. J Vasc Surg 59(3): 768-73. (2014)
[http://dx.doi.org/10.1016/j.jvs.2013.08.095] [PMID: 24571940]
[17]
Malhotra K, Goyal N, Chang JJ, Broce M, Pandhi A, Kerro A, et al. Differential leukocyte counts on admission predict outcomes in patients with acute ischaemic stroke treated with intravenous thrombolysis. Eur J Neurol 25(12): 1417-24. (2018)
[http://dx.doi.org/10.1111/ene.13741] [PMID: 29953701]
[18]
Zhang J, Ren Q, Song Y, He M, Zeng Y, Liu Z, et al. Prognostic role of neutrophil-lymphocyte ratio in patients with acute ischemic stroke. Medicine (Baltimore) 96(45) e8624 (2017)
[http://dx.doi.org/10.1097/MD.0000000000008624] [PMID: 29137097]
[19]
Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 256(3): 183-94. (2004)
[http://dx.doi.org/10.1111/j.1365-2796.2004.01388.x] [PMID: 15324362]
[20]
Ritchie K, Artero S, Touchon J. Classification criteria for mild cognitive impairment: a population-based validation study. Neurology 56(1): 37-42. (2001)
[http://dx.doi.org/10.1212/WNL.56.1.37] [PMID: 11148233]
[21]
Perneczky R, Pohl C, Sorg C, Hartmann J, Komossa K, Alexopoulos P, et al. Complex activities of daily living in mild cognitive impairment: conceptual and diagnostic issues. Age Ageing 35(3): 240-5. (2006)
[http://dx.doi.org/10.1093/ageing/afj054] [PMID: 16513677]
[22]
Biggerstaff BJ. Comparing diagnostic tests: a simple graphic using likelihood ratios. Stat Med 19(5): 649-63. (2000)
[http://dx.doi.org/10.1002/(SICI)1097-0258(20000315)19:5<649:AID-SIM371>3.0.CO;2-H] [PMID: 10700737]
[23]
Lopez OL, Chang Y, Ives DG, Snitz BE, Fitzpatrick AL, Carlson MC, et al. Blood amyloid levels and risk of dementia in the Ginkgo Evaluation of Memory Study (GEMS): a longitudinal analysis. Alzheimers Dement 15(8): 1029-38. (2019)
[http://dx.doi.org/10.1016/j.jalz.2019.04.008] [PMID: 31255494]
[24]
Wang J, Qiao F, Shang S, Li P, Chen C, Dang L, et al. Elevation of plasma amyloid-β level is more significant in early stage of cognitive impairment: a population-based cross-sectional study. J Alzheimers Dis 64(1): 61-9. (2018)
[http://dx.doi.org/10.3233/JAD-180140] [PMID: 29865072]
[25]
Hilal S, Wolters FJ, Verbeek MM, Vanderstichele H, Ikram MK, Stoops E, et al. Plasma amyloid-β levels, cerebral atrophy and risk of dementia: a population-based study. Alzheimers Res Ther 10(1): 63. (2018)
[http://dx.doi.org/10.1186/s13195-018-0395-6] [PMID: 29960604]
[26]
Cervellati C, Trentini A, Bosi C, Valacchi G, Morieri ML, Zurlo A, et al. Low-grade systemic inflammation is associated with functional disability in elderly people affected by dementia. Geroscience 40(1): 61-9. (2018)
[http://dx.doi.org/10.1007/s11357-018-0010-6] [PMID: 29428983]
[27]
van Harten AE, Scheeren TW, Absalom AR. A review of postoperative cognitive dysfunction and neuroinflammation associated with cardiac surgery and anaesthesia. Anaesthesia 67(3): 280-93. (2012)
[http://dx.doi.org/10.1111/j.1365-2044.2011.07008.x] [PMID: 22321085]
[28]
Ohtani R, Nirengi S, Nakamura M, Murase N, Sainouchi M, Kuwata Y, et al. High-Density lipoprotein subclasses and mild cognitive impairment: study of outcome and apolipoproteins in dementia (STOP-Dementia)1. J Alzheimers Dis 66(1): 289-96. (2018)
[http://dx.doi.org/10.3233/JAD-180135] [PMID: 30248050]
[29]
Rembach A, Watt AD, Wilson WJ, Rainey-Smith S, Ellis KA, Rowe CC, et al. AIBL Research Group. An increased neutrophil-lymphocyte ratio in Alzheimer’s disease is a function of age and is weakly correlated with neocortical amyloid accumulation. J Neuroimmunol 273(1-2): 65-71. (2014)
[http://dx.doi.org/10.1016/j.jneuroim.2014.05.005] [PMID: 24907904]
[30]
Arima Y, Kamimura D, Sabharwal L, Yamada M, Bando H, Ogura H, et al. Regulation of immune cell infiltration into the CNS by regional neural inputs explained by the gate theory. Mediators Inflamm 2013 898165 (2013)
[http://dx.doi.org/10.1155/2013/898165] [PMID: 23990699]
[31]
Baruch K, Deczkowska A, David E, Castellano JM, Miller O, Kertser A, et al. Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science 346(6205): 89-93. (2014)
[http://dx.doi.org/10.1126/science.1252945] [PMID: 25147279]
[32]
Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560): 337-41. (2015)
[http://dx.doi.org/10.1038/nature14432] [PMID: 26030524]
[33]
Bu XL, Xiang Y, Jin WS, Wang J, Shen LL, Huang ZL, et al. Blood-derived amyloid-β protein induces Alzheimer’s disease pathologies. Mol Psychiatry 23(9): 1948-56. (2018)
[http://dx.doi.org/10.1038/mp.2017.204] [PMID: 29086767]
[34]
Wendeln AC, Degenhardt K, Kaurani L, Gertig M, Ulas T, Jain G, et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556(7701): 332-8. (2018)
[http://dx.doi.org/10.1038/s41586-018-0023-4] [PMID: 29643512]
[35]
Maitra U, Deng H, Glaros T, Baker B, Capelluto DG, Li Z, et al. Molecular mechanisms responsible for the selective and low-grade induction of proinflammatory mediators in murine macrophages by lipopolysaccharide. J Immunol 189(2): 1014-23. (2012)
[http://dx.doi.org/10.4049/jimmunol.1200857] [PMID: 22706082]
[36]
Colton CA, Mott RT, Sharpe H, Xu Q, Van Nostrand WE, Vitek MP. Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J Neuroinflammation 3: 27. (2006)
[http://dx.doi.org/10.1186/1742-2094-3-27] [PMID: 17005052]
[37]
Kyrkanides S, Tallents RH, Miller JN, Olschowka ME, Johnson R, Yang M, et al. Osteoarthritis accelerates and exacerbates Alzheimer’s disease pathology in mice. J Neuroinflammation 8: 112. (2011)
[http://dx.doi.org/10.1186/1742-2094-8-112] [PMID: 21899735]
[38]
Ma F, Wu T, Zhao J, Ji L, Song A, Zhang M, et al. Plasma homocysteine and serum folate and vitamin b12 levels in mild cognitive impairment and Alzheimer’s disease: a case-control study. Nutrients 9(7): 725. (2017)
[http://dx.doi.org/10.3390/nu9070725] [PMID: 28698453]
[39]
Kim G, Kim H, Kim KN, Son JI, Kim SY, Tamura T, et al. Relationship of cognitive function with B vitamin status, homocysteine, and tissue factor pathway inhibitor in cognitively impaired elderly: a cross-sectional survey. J Alzheimers Dis 33(3): 853-62. (2013)
[http://dx.doi.org/10.3233/JAD-2012-121345] [PMID: 23042212]
[40]
Pierozan P, Biasibetti-Brendler H, Schmitz F, Ferreira F, Netto CA, Wyse ATS. synergistic toxicity of the neurometabolites quinolinic acid and homocysteine in cortical neurons and astrocytes: implications in Alzheimer’s disease. Neurotox Res 34(1): 147-63. (2018)
[http://dx.doi.org/10.1007/s12640-017-9834-6] [PMID: 29124681]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy