Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

18F-FDG PET/CT in Restaging and Evaluation of Response to Therapy in Lung Cancer: State of the Art

Author(s): Angelo Castello , Sabrina Rossi and Egesta Lopci *

Volume 13, Issue 3, 2020

Page: [228 - 237] Pages: 10

DOI: 10.2174/1874471013666191230144821

Abstract

Background: Metabolic information provided by 18F-FDG PET/CT are useful for initial staging, therapy planning, response evaluation, and to a lesser extent for the follow-up of non-small cell lung cancer (NSCLC). To date, there are no established clinical guidelines in treatment response and early detection of recurrence.

Objective: To provide an overview of 18F-FDG PET/CT in NSCLC and in particular, to discuss its utility in treatment response evaluation and restaging of lung cancer.

Methods: A comprehensive search was used based on PubMed results. From all studies published in English those that explored the role of 18F-FDG PET/CT in the treatment response scenario were selected.

Results: Several studies have demonstrated that modifications in metabolic activity, expressed by changes in SUV both in the primary tumor as well as in regional lymph nodes, are associated with tumor response and survival. Beside SUV, other metabolic parameters (i.e. MTV, TLG, and percentage changes) are emerging to be helpful for predicting clinical outcomes.

Conclusion: 18F-FDG parameters appear to be promising factors for evaluating treatment response and for detecting recurrences, although larger prospective trials are needed to confirm these evidences and to determine optimal cut-off values.

Keywords: Lung cancer, NSCLC, FDG PET, response evaluation, restaging, PET/CT.

Graphical Abstract

[1]
Postmus, PE; Kerr, KM; Oudkerk, M. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2017, 284, iv1-iv21.
[2]
Novello, S.; Barlesi, F.; Califano, R.; Cufer, T.; Ekman, S.; Levra, M.G.; Kerr, K.; Popat, S.; Reck, M.; Senan, S.; Simo, G.V.; Vansteenkiste, J.; Peters, S. ESMO guidelines committee. metastatic non-small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2016, 27(Suppl. 5), v1-v27.
[http://dx.doi.org/10.1093/annonc/mdw326] [PMID: 27664245]
[3]
Ettinger, D.S.; Aisner, D.L.; Wood, D.E.; Akerley, W.; Bauman, J.; Chang, J.Y.; Chirieac, L.R.; D’Amico, T.A.; Dilling, T.J.; Dobelbower, M.; Govindan, R.; Gubens, M.A.; Hennon, M.; Horn, L.; Lackner, R.P.; Lanuti, M.; Leal, T.A.; Lilenbaum, R.; Lin, J.; Loo, B.W.; Martins, R.; Otterson, G.A.; Patel, S.P.; Reckamp, K.; Riely, G.J.; Schild, S.E.; Shapiro, T.A.; Stevenson, J.; Swanson, S.J.; Tauer, K.; Yang, S.C.; Gregory, K.; Hughes, M. NCCN guidelines insights: non-small cell lung cancer, version 5.2018. J. Natl. Compr. Canc. Netw., 2018, 16(7), 807-821.
[http://dx.doi.org/10.6004/jnccn.2018.0062] [PMID: 30006423]
[4]
Austin, J.H.; Müller, N.L.; Friedman, P.J.; Hansell, D.M.; Naidich, D.P.; Remy-Jardin, M.; Webb, W.R.; Zerhouni, E.A. Glossary of terms for CT of the lungs: recommendations of the Nomenclature Committee of the Fleischner Society. Radiology, 1996, 200(2), 327-331.
[http://dx.doi.org/10.1148/radiology.200.2.8685321] [PMID: 8685321]
[5]
Gould, M.K.; Maclean, C.C.; Kuschner, W.G.; Rydzak, C.E.; Owens, D.K. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA, 2001, 285(7), 914-924.
[http://dx.doi.org/10.1001/jama.285.7.914] [PMID: 11180735]
[6]
Zhuang, H.; Pourdehnad, M.; Lambright, E.S.; Yamamoto, A.J.; Lanuti, M.; Li, P.; Mozley, P.D.; Rossman, M.D.; Albelda, S.M.; Alavi, A. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J. Nucl. Med., 2001, 42(9), 1412-1417.
[PMID: 11535734]
[7]
Quint, L.E. Staging non-small cell lung cancer. Cancer Imaging, 2007, 7, 148-159.
[http://dx.doi.org/10.1102/1470-7330.2007.0026] [PMID: 17964957]
[8]
Martini, N.; Kris, M.G.; Ginsberg, R.J. The role of multimodality therapy in locoregional non-small cell lung cancer. Surg. Oncol. Clin. N. Am., 1997, 6(4), 769-791.
[http://dx.doi.org/10.1016/S1055-3207(18)30303-X] [PMID: 9309093]
[9]
Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; Rubinstein, L.; Shankar, L.; Dodd, L.; Kaplan, R.; Lacombe, D.; Verweij, J. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer, 2009, 45(2), 228-247.
[http://dx.doi.org/10.1016/j.ejca.2008.10.026] [PMID: 19097774]
[10]
Zhang, C.; Liu, J.; Tong, J.; Sun, X.; Song, S.; Huang, G. 18F-FDG-PET evaluation of pathological tumour response to neoadjuvant therapy in patients with NSCLC. Nucl. Med. Commun., 2013, 34(1), 71-77.
[http://dx.doi.org/10.1097/MNM.0b013e3283599999] [PMID: 23086204]
[11]
He, Y.Q.; Gong, H.L.; Deng, Y.F.; Li, W.M. He YQ1. Diagnostic efficacy of PET and PET/CT for recurrent lung cancer: a meta-analysis. Acta Radiol., 2014, 55(3), 309-317.
[http://dx.doi.org/10.1177/0284185113498536] [PMID: 24081215]
[12]
Cuaron, J.; Dunphy, M.; Rimner, A. Role of FDG-PET scans in staging, response assessment, and follow-up care for non-small cell lung cancer. Front. Oncol., 2013, 2, 208.
[http://dx.doi.org/10.3389/fonc.2012.00208] [PMID: 23316478]
[13]
Ung, Y.C.; Maziak, D.E.; Vanderveen, J.A.; Smith, C.A.; Gulenchyn, K.; Lacchetti, C.; Evans, W.K. Lung Cancer Disease Site Group of Cancer Care Ontario’s Program in Evidence-Based Care. 18Fluorodeoxyglucose positron emission tomography in the diagnosis and staging of lung cancer: a systematic review. J. Natl. Cancer Inst., 2007, 99(23), 1753-1767.
[http://dx.doi.org/10.1093/jnci/djm232] [PMID: 18042932]
[14]
Hicks, R.J. Role of 18F-FDG PET in assessment of response in non-small cell lung cancer. J. Nucl. Med., 2009, 50(Suppl. 1), 31S-42S.
[http://dx.doi.org/10.2967/jnumed.108.057216] [PMID: 19380411]
[15]
Sheikhbahaei, S.; Mena, E.; Yanamadala, A.; Reddy, S.; Solnes, L.B.; Wachsmann, J.; Subramaniam, R.M. The value of FDG PET/CT in treatment response assessment, follow-up, and surveillance of lung cancer. AJR Am. J. Roentgenol., 2017, 208(2), 420-433.
[http://dx.doi.org/10.2214/AJR.16.16532] [PMID: 27726427]
[16]
Cheng, G.; Huang, H. Prognostic value of 18F-fluorodeoxyglucose PET/computed tomography in non-small-cell lung Cancer. PET Clin., 2018, 13(1), 59-72.
[http://dx.doi.org/10.1016/j.cpet.2017.08.006] [PMID: 29157386]
[17]
Nishino, M.; Hatabu, H.; Johnson, B.E.; McLoud, T.C. State of the art: Response assessment in lung cancer in the era of genomic medicine. Radiology, 2014, 271(1), 6-27.
[http://dx.doi.org/10.1148/radiol.14122524] [PMID: 24661292]
[18]
Decoster, L.; Schallier, D.; Everaert, H.; Nieboer, K.; Meysman, M.; Neyns, B.; De Mey, J.; De Grève, J. Complete metabolic tumour response, assessed by 18-fluorodeoxyglucose positron emission tomography (18FDG-PET), after induction chemotherapy predicts a favourable outcome in patients with locally advanced non-small cell lung cancer (NSCLC). Lung Cancer, 2008, 62(1), 55-61.
[http://dx.doi.org/10.1016/j.lungcan.2008.02.015] [PMID: 18394750]
[19]
Kim, S.H.; Lee, J.H.; Lee, G.J.; Jeong, S.; Kwak, Y.K.; Kim, H.K.; Cho, D.G.; Park, Y.H.; Yu, M.; Yoon, S.C. Interpretation and prognostic value of positron emission tomographycomputed tomography after induction chemotherapy with or without radiation in IIIA-N2 non-small cell lung cancer patients who receive curative surgery. Medicine (Baltimore), 2015, 94(24)e955
[http://dx.doi.org/10.1097/MD.0000000000000955] [PMID: 26091460]
[20]
Barnett, S.A.; Downey, R.J.; Zheng, J.; Plourde, G.; Shen, R.; Chaft, J.; Akhurst, T.; Park, B.J.; Rusch, V.W. Utility of routine PET imaging to predict response and survival after induction therapy for non-small cell lung cancer. Ann. Thorac. Surg., 2016, 101(3), 1052-1059.
[http://dx.doi.org/10.1016/j.athoracsur.2015.09.099] [PMID: 26794896]
[21]
Skoura, E.; Datseris, I.E.; Platis, I.; Oikonomopoulos, G.; Syrigos, K.N. Role of positron emission tomography in the early prediction of response to chemotherapy in patients with non--small-cell lung cancer. Clin. Lung Cancer, 2012, 13(3), 181-187.
[http://dx.doi.org/10.1016/j.cllc.2011.05.004] [PMID: 22137017]
[22]
Na, F.; Wang, J.; Li, C.; Deng, L.; Xue, J.; Lu, Y. Primary tumor standardized uptake value measured on F18-Fluorodeoxyglucose positron emission tomography is of prediction value for survival and local control in non-small-cell lung cancer receiving radiotherapy: meta-analysis. J. Thorac. Oncol., 2014, 9(6), 834-842.
[http://dx.doi.org/10.1097/JTO.0000000000000185] [PMID: 24787963]
[23]
Wang, J.; Wong, K.K.; Piert, M.; Stanton, P.; Frey, K.A.; Kong, F.S. Metabolic response assessment with 18F-FDG PET/CT: inter-method comparison and prognostic significance for patients with non-small cell lung cancer. J. Radiat. Oncol., 2015, 4(3), 249-256.
[http://dx.doi.org/10.1007/s13566-015-0184-9] [PMID: 26366253]
[24]
Clarke, K.; Taremi, M.; Dahele, M.; Freeman, M.; Fung, S.; Franks, K.; Bezjak, A.; Brade, A.; Cho, J.; Hope, A.; Sun, A. Stereotactic body radiotherapy (SBRT) for non-small cell lung cancer (NSCLC): is FDG-PET a predictor of outcome? Radiother. Oncol., 2012, 104(1), 62-66.
[http://dx.doi.org/10.1016/j.radonc.2012.04.019] [PMID: 22682749]
[25]
Bollineni, V.R.; Widder, J.; Pruim, J.; Langendijk, J.A.; Wiegman, E.M. Residual 18F-FDG-PET uptake 12 weeks after stereotactic ablative radiotherapy for stage I non-small-cell lung cancer predicts local control. Int. J. Radiat. Oncol. Biol. Phys., 2012, 83(4), e551-e555.
[http://dx.doi.org/10.1016/j.ijrobp.2012.01.012] [PMID: 22417800]
[26]
Kremer, R.; Peysakhovich, Y.; Dan, L.F.; Guralnik, L.; Kagna, O.; Nir, R.R.; Bar-Shalom, R. FDG PET/CT for assessing the resectability of NSCLC patients with N2 disease after neoadjuvant therapy. Ann. Nucl. Med., 2016, 30(2), 114-121.
[http://dx.doi.org/10.1007/s12149-015-1038-7] [PMID: 26613715]
[27]
De Leyn, P.; Stroobants, S.; De Wever, W.; Lerut, T.; Coosemans, W.; Decker, G.; Nafteux, P.; Van Raemdonck, D.; Mortelmans, L.; Nackaerts, K.; Vansteenkiste, J. Prospective comparative study of integrated positron emission tomography-computed tomography scan compared with remediastinoscopy in the assessment of residual mediastinal lymph node disease after induction chemotherapy for mediastinoscopy-proven stage IIIA-N2 Non-small-cell lung cancer: a Leuven Lung Cancer Group Study. J. Clin. Oncol., 2006, 24(21), 3333-3339.
[http://dx.doi.org/10.1200/JCO.2006.05.6341] [PMID: 16849747]
[28]
Stamatis, G. Staging of lung cancer: the role of noninvasive, minimally invasive and invasive techniques. Eur. Respir. J., 2015, 46(2), 521-531.
[http://dx.doi.org/10.1183/09031936.00126714] [PMID: 25976686]
[29]
Kamel, M.K.; Rahouma, M.; Ghaly, G.; Nasar, A.; Port, J.L.; Stiles, B.M.; Nguyen, A.B.; Altorki, N.K.; Lee, P.C. Clinical predictors of persistent mediastinal nodal disease after induction therapy for stage IIIA N2 non-small cell lung cancer. Ann. Thorac. Surg., 2017, 103(1), 281-286.
[http://dx.doi.org/10.1016/j.athoracsur.2016.06.061] [PMID: 27623273]
[30]
Fledelius, J.; Khalil, A.A.; Hjorthaug, K.; Frøkiaer, J. Using positron emission tomography (PET) response criteria in solid tumours (PERCIST) 1.0 for evaluation of 2′-deoxy-2′-[18F] fluoro-D-glucose-PET/CT scans to predict survival early during treatment of locally advanced non-small cell lung cancer (NSCLC). J. Med. Imaging Radiat. Oncol., 2016, 60(2), 231-238.
[http://dx.doi.org/10.1111/1754-9485.12427] [PMID: 26678718]
[31]
Winther-Larsen, A.; Fledelius, J.; Sorensen, B.S.; Meldgaard, P. Metabolic tumor burden as marker of outcome in advanced EGFR wild-type NSCLC patients treated with erlotinib. Lung Cancer, 2016, 94, 81-87.
[http://dx.doi.org/10.1016/j.lungcan.2016.01.024] [PMID: 26973211]
[32]
Castello, A; Toschi, L; Rossi, S Predictive and prognostic role of metabolic response in patients with stage III NSCLC Treated with neoadjuvant chemotherapy. Clin. Lung Cancer, 2019, S1525-7304(19), 30208-6.
[http://dx.doi.org/10.1016/j.cllc.2019.07.004]
[33]
Soussan, M.; Chouahnia, K.; Maisonobe, J-A.; Boubaya, M.; Eder, V.; Morère, J.F.; Buvat, I. Prognostic implications of volume-based measurements on FDG PET/CT in stage III non-small-cell lung cancer after induction chemotherapy. Eur. J. Nucl. Med. Mol. Imaging, 2013, 40(5), 668-676.
[http://dx.doi.org/10.1007/s00259-012-2321-7] [PMID: 23306807]
[34]
Kahraman, D.; Holstein, A.; Scheffler, M.; Zander, T.; Nogova, L.; Lammertsma, A.A.; Boellaard, R.; Neumaier, B.; Dietlein, M.; Wolf, J.; Kobe, C. Tumor lesion glycolysis and tumor lesion proliferation for response prediction and prognostic differentiation in patients with advanced non-small cell lung cancer treated with erlotinib. Clin. Nucl. Med., 2012, 37(11), 1058-1064.
[http://dx.doi.org/10.1097/RLU.0b013e3182639747] [PMID: 23027207]
[35]
Zaizen, Y.; Azuma, K.; Kurata, S.; Sadashima, E.; Hattori, S.; Sasada, T.; Imamura, Y.; Kaida, H.; Kawahara, A.; Kinoshita, T.; Ishibashi, M.; Hoshino, T. Prognostic significance of total lesion glycolysis in patients with advanced non-small cell lung cancer receiving chemotherapy. Eur. J. Radiol., 2012, 81(12), 4179-4184.
[http://dx.doi.org/10.1016/j.ejrad.2012.07.009] [PMID: 22884163]
[36]
Hyun, S.H.; Ahn, H.K.; Ahn, M-J.; Ahn, Y.C.; Kim, J.; Shim, Y.M.; Choi, J.Y. Volume-based assessment with 18F-FDG PET/CT improves outcome prediction for patients with stage IIIA-N2 non-small cell lung cancer. AJR Am. J. Roentgenol., 2015, 205(3), 623-628.
[http://dx.doi.org/10.2214/AJR.14.13847] [PMID: 26295651]
[37]
Colt, H.G.; Murgu, S.D.; Korst, R.J.; Slatore, C.G.; Unger, M.; Quadrelli, S. RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J. Nucl. Med., 2013, 50, 1122S-50S.
[38]
Crabtree, T.D.; Puri, V.; Chen, S.B.; Gierada, D.S.; Bell, J.M.; Broderick, S.; Krupnick, A.S.; Kreisel, D.; Patterson, G.A.; Meyers, B.F. Does the method of radiologic surveillance affect survival after resection of stage I non-small cell lung cancer? J. Thorac. Cardiovasc. Surg. 2015, 149(1), 45-52. 53.e1-53.e3.
[http://dx.doi.org/10.1016/j.jtcvs.2014.07.095 ] [PMID: 25218540]
[39]
Wahl, R.L.; Jacene, H.; Kasamon, Y.; Lodge, M.A. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J. Nucl. Med., 2009, 50(Suppl. 1), 122S-150S.
[http://dx.doi.org/10.2967/jnumed.108.057307] [PMID: 19403881]
[40]
Ding, Q.; Cheng, X.; Yang, L.; Zhang, Q.; Chen, J.; Li, T.; Shi, H. PET/CT evaluation of response to chemotherapy in non-small cell lung cancer: PET response criteria in solid tumors (PERCIST) versus response evaluation criteria in solid tumors (RECIST). J. Thorac. Dis., 2014, 6(6), 677-683.
[PMID: 24976990]
[41]
Usmanij, E.A.; Natroshvili, T.; Timmer-Bonte, J.N.H.; Oyen, W.J.G.; van der Drift, M.A.; Bussink, J.; Geus-Oei, L.F. The predictive value of early in-treatment 18F-FDG PET/CT response to chemotherapy in combination with bevacizumab in advanced nonsquamous non-small cell lung cancer. J. Nucl. Med., 2017, 58(8), 1243-1248.
[http://dx.doi.org/10.2967/jnumed.116.185314] [PMID: 28336778]
[42]
Ziai, D.; Wagner, T.; El Badaoui, A.; Hitzel, A.; Woillard, J.B.; Melloni, B.; Monteil, J. Therapy response evaluation with FDG-PET/CT in small cell lung cancer: a prognostic and comparison study of the PERCIST and EORTC criteria. Cancer Imaging, 2013, 13, 73-80.
[http://dx.doi.org/10.1102/1470-7330.2013.0008] [PMID: 23466871]
[43]
Shang, J.; Ling, X.; Zhang, L.; Tang, Y.; Xiao, Z.; Cheng, Y.; Guo, B.; Gong, J.; Huang, L.; Xu, H. Comparison of RECIST, EORTC criteria and PERCIST for evaluation of early response to chemotherapy in patients with non-small-cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(11), 1945-1953.
[http://dx.doi.org/10.1007/s00259-016-3420-7] [PMID: 27236466]
[44]
Sheikhbahaei, S.; Mena, E.; Marcus, C.; Wray, R.; Taghipour, M.; Subramaniam, R.M. 18F-fluorodeoxyglucose PET/CT: therapy response assessment interpretation (Hopkins criteria) and survival outcomes in lung cancer patients. J. Nucl. Med., 2016, 57(6), 855-860.
[http://dx.doi.org/10.2967/jnumed.115.165480] [PMID: 26837337]
[45]
Usmanij, E.A.; de Geus-Oei, L.F.; Troost, E.G.; Peters-Bax, L.; van der Heijden, E.H.; Kaanders, J.H.; Oyen, W.J.; Schuurbiers, O.C.; Bussink, J. 18F-FDG PET early response evaluation of locally advanced non-small cell lung cancer treated with concomitant chemoradiotherapy. J. Nucl. Med., 2013, 54(9), 1528-1534.
[http://dx.doi.org/10.2967/jnumed.112.116921] [PMID: 23864719]
[46]
Zhang, H.Q.; Yu, J.M.; Meng, X.; Yue, J.B.; Feng, R.; Ma, L. Prognostic value of serial [18F]fluorodeoxyglucose PET-CT uptake in stage III patients with non-small cell lung cancer treated by concurrent chemoradiotherapy. Eur. J. Radiol., 2011, 77(1), 92-96.
[http://dx.doi.org/10.1016/j.ejrad.2009.07.023] [PMID: 19695804]
[47]
Huang, W.; Fan, M.; Liu, B.; Fu, Z.; Zhou, T.; Zhang, Z.; Gong, H.; Li, B. Value of metabolic tumor volume on repeated 18F-FDG PET/CT for early prediction of survival in locally advanced non-small cell lung cancer treated with concurrent chemoradiotherapy. J. Nucl. Med., 2014, 55(10), 1584-1590.
[http://dx.doi.org/10.2967/jnumed.114.142919] [PMID: 25214640]
[48]
Burger, I.A.; Vargas, H.A.; Apte, A.; Beattie, B.J.; Humm, J.L.; Gonen, M.; Larson, S.M.; Ross Schmidtlein, C. PET quantification with a histogram derived total activity metric: superior quantitative consistency compared to total lesion glycolysis with absolute or relative SUV thresholds in phantoms and lung cancer patients. Nucl. Med. Biol., 2014, 41(5), 410-418.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.02.006] [PMID: 24666719]
[49]
Burger, I.A.; Casanova, R.; Steiger, S.; Husmann, L.; Stolzmann, P.; Huellner, M.W.; Curioni, A.; Hillinger, S.; Schmidtlein, C.R.; Soltermann, A. 18F-FDG PET/CT of non-small cell lung carcinoma under neoadjuvant chemotherapy: background-based adaptive-volume metrics outperform TLG and MTV in predicting histopathologic response. J. Nucl. Med., 2016, 57(6), 849-854.
[http://dx.doi.org/10.2967/jnumed.115.167684] [PMID: 26823566]
[50]
Roy, S.; Pathy, S.; Kumar, R.; Mohanti, B.K.; Raina, V.; Jaiswal, A.; Taywade, S.; Garg, K.; Thulkar, S.; Mohan, A.; Mathur, S.; Behera, D. Efficacy of 18F-fluorodeoxyglucose positron emission tomography/computed tomography as a predictor of response in locally advanced non-small-cell carcinoma of the lung. Nucl. Med. Commun., 2016, 37(2), 129-138.
[http://dx.doi.org/10.1097/MNM.0000000000000422] [PMID: 26544097]
[51]
Liu, J.; Dong, M.; Sun, X.; Li, W.; Xing, L.; Yu, J. Prognostic value of 18F-FDG PET/CT in surgical non-small cell lung cancer: a meta-analysis. PLoS One, 2016, 11(1)e0146195
[http://dx.doi.org/10.1371/journal.pone.0146195] [PMID: 26727114]
[52]
Im, H-J.; Pak, K.; Cheon, G.J.; Kang, K.W.; Kim, S.J.; Kim, I.J.; Chung, J.K.; Kim, E.E.; Lee, D.S. Prognostic value of volumetric parameters of (18)F-FDG PET in non-small-cell lung cancer: a meta-analysis. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(2), 241-251.
[http://dx.doi.org/10.1007/s00259-014-2903-7] [PMID: 25193652]
[53]
Rossi, S.; Castello, A.; Toschi, L.; Lopci, E. Immunotherapy in non-small-cell lung cancer: potential predictors of response and new strategies to assess activity. Immunotherapy, 2018, 10(9), 797-805.
[http://dx.doi.org/10.2217/imt-2017-0187] [PMID: 30008262]
[54]
Cho, S.Y.; Lipson, E.J. Im, H.J.; Rowe, S.P.; Gonzalez, E.M.; Blackford, A.; Chirindel, A.; Pardoll, D.M.; Topalian, S.L.; Wahl, R.L. Prediction of Response to Immune Checkpoint Inhibitor Therapy Using Early-Time-Point 18F-FDG PET/CT Imaging in Patients with Advanced Melanoma. J. Nucl. Med., 2017, 58(9), 1421-1428.
[http://dx.doi.org/10.2967/jnumed.116.188839] [PMID: 28360208]
[55]
Natarajan, A.; Mayer, A.T.; Xu, L.; Reeves, R.E.; Gano, J.; Gambhir, S.S. Novel radiotracer for ImmunoPET imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes. Bioconjug. Chem., 2015, 26(10), 2062-2069.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00318] [PMID: 26307602]

© 2024 Bentham Science Publishers | Privacy Policy