Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Recent Advances in the Development of Macrolide Antibiotics as Antimicrobial Agents

Author(s): Yinhui Qin and Shutao Ma*

Volume 20, Issue 7, 2020

Page: [601 - 625] Pages: 25

DOI: 10.2174/1389557520666191223160942

Price: $65

Abstract

The chemical modification of natural products has been a major method in the discovery and synthesis of new macrolide antibiotics (MA) to treat a variety of infectious diseases. However, a lot of MA obtained in the above methods are no longer effective, because the bacteria quickly develop their resistance to these new macrolides, which has become a great threat to successful treatment of infectious diseases, such as infections of the respiratory system and urinary system. In this paper, total synthetic methods for MA that include erythromycin A (ERY), azithromycin (AZM), the clinical candidate solithromycin (CEM-101), as well as 14-membered and 15-membered azaketolides have been systematically reviewed on the basis of the literature reported previously. The total synthetic methods we describe here helps to accelerate the discovery of newer MA to deal with the serious problem of bacterial resistance.

Keywords: Macrolide antibiotics, chemical modification, total synthesis, bacterial resistance, ketolide, azaketolide.

Graphical Abstract

[1]
McGUIRE. J.M.; Bunch, R.L.; Anderson, R.C.; Boaz, H.E.; Flynn, E.H.; Powell, H.M.; Smith, J.W. Ilotycin, a new antibiotic. Antibiot. Chemother. (Northfield), 1952, 2(6), 281-283.
[PMID: 24541924]
[2]
Kurath, P.; Jones, P.H.; Egan, R.S.; Perun, T.J. Acid degradation of erythromycin A and erythromycin B. Experientia, 1971, 27(4), 362.
[http://dx.doi.org/10.1007/BF02137246] [PMID: 5581079]
[3]
Morimoto, S.; Takahashi, Y.; Watanabe, Y.; Omura, S. Chemical modification of erythromycins. I. Synthesis and antibacterial activity of 6-O-methylerythromycins A. J. Antibiot. (Tokyo), 1984, 37(2), 187-189.
[http://dx.doi.org/10.7164/antibiotics.37.187] [PMID: 6706855]
[4]
Omura, S.; Morimoto, S.; Nagate, T.; Adachi, T.; Kohno, Y. [Research and development of clarithromycin] Yakugaku Zasshi, 1992, 112(9), 593-614.
[http://dx.doi.org/10.1248/yakushi1947.112.9_593] [PMID: 1469609]
[5]
Retsema, J.; Girard, A.; Schelkly, W.; Manousos, M.; Anderson, M.; Bright, G.; Borovoy, R.; Brennan, L.; Mason, R. Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms. Antimicrob. Agents Chemother., 1987, 31(12), 1939-1947.
[http://dx.doi.org/10.1128/AAC.31.12.1939] [PMID: 2449865]
[6]
Girard, A.E.; Girard, D.; English, A.R.; Gootz, T.D.; Cimochowski, C.R.; Faiella, J.A.; Haskell, S.L.; Retsema, J.A. Pharmacokinetic and in vivo studies with azithromycin (CP-62,993), a new macrolide with an extended half-life and excellent tissue distribution. Antimicrob. Agents Chemother., 1987, 31(12), 1948-1954.
[http://dx.doi.org/10.1128/AAC.31.12.1948] [PMID: 2830841]
[7]
Schönwald, S.; Skerk, V.; Petricevic, I.; Car, V.; Majerus-Misic, L.; Gunjaca, M. Comparison of three-day and five-day courses of azithromycin in the treatment of atypical pneumonia. Eur. J. Clin. Microbiol. Infect. Dis., 1991, 10(10), 877-880.
[http://dx.doi.org/10.1007/BF01975847] [PMID: 1662637]
[8]
Asaka, T.; Manaka, A.; Sugiyama, H. Recent developments in macrolide antimicrobial research. Curr. Top. Med. Chem., 2003, 3(9), 961-989.
[http://dx.doi.org/10.2174/1568026033452140] [PMID: 12678832]
[9]
Denis, A.; Agouridas, C.; Auger, J.M.; Benedetti, Y.; Bonnefoy, A.; Bretin, F.; Chantot, J.F.; Dussarat, A.; Fromentin, C.; D’Ambrières, S.G.; Lachaud, S.; Laurin, P.; Le Martret, O.; Loyau, V.; Tessot, N.; Pejac, J.M.; Perron, S. Synthesis and antibacterial activity of HMR 3647 a new ketolide highly potent against erythromycin-resistant and susceptible pathogens. Bioorg. Med. Chem. Lett., 1999, 9(21), 3075-3080.
[http://dx.doi.org/10.1016/S0960-894X(99)00534-X] [PMID: 10560728]
[10]
Or, Y.S.; Clark, R.F.; Wang, S.; Chu, D.T.; Nilius, A.M.; Flamm, R.K.; Mitten, M.; Ewing, P.; Alder, J.; Ma, Z. Design, synthesis, and antimicrobial activity of 6-O-substituted ketolides active against resistant respiratory tract pathogens. J. Med. Chem., 2000, 43(6), 1045-1049.
[http://dx.doi.org/10.1021/jm990618n] [PMID: 10737737]
[11]
LeTourneau, N.; Vimal, P.; Klepacki, D.; Mankin, A.; Melman, A. Synthesis and antibacterial activity of desosamine-modified macrolide derivatives. Bioorg. Med. Chem. Lett., 2012, 22(14), 4575-4578.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.110] [PMID: 22738632]
[12]
Felmingham, D.; Reinert, R.R.; Hirakata, Y.; Rodloff, A. Increasing prevalence of antimicrobial resistance among isolates of Streptococcus pneumoniae from the PROTEKT surveillance study, and compatative in vitro activity of the ketolide, telithromycin. J. Antimicrob. Chemother., 2002, 50(Suppl. S1), 25-37.
[http://dx.doi.org/10.1093/jac/dkf808] [PMID: 12239226]
[13]
Putnam, S.D.; Sader, H.S.; Farrell, D.J.; Biedenbach, D.J.; Castanheira, M. Antimicrobial characterisation of solithromycin (CEM-101), a novel fluoroketolide: Activity against staphylococci and enterococci. Int. J. Antimicrob. Agents, 2011, 37(1), 39-45.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.08.021] [PMID: 21075602]
[14]
Berisio, R.; Harms, J.; Schluenzen, F.; Zarivach, R.; Hansen, H.A.; Fucini, P.; Yonath, A. Structural insight into the antibiotic action of telithromycin against resistant mutants. J. Bacteriol., 2003, 185(14), 4276-4279.
[http://dx.doi.org/10.1128/JB.185.14.4276-4279.2003] [PMID: 12837804]
[15]
Llano-Sotelo, B.; Dunkle, J.; Klepacki, D.; Zhang, W.; Fernandes, P.; Cate, J.H.; Mankin, A.S. Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis. Antimicrob. Agents Chemother., 2010, 54(12), 4961-4970.
[http://dx.doi.org/10.1128/AAC.00860-10] [PMID: 20855725]
[16]
Bulkley, D.; Innis, C.A.; Blaha, G.; Steitz, T.A. Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proc. Natl. Acad. Sci. USA, 2010, 107(40), 17158-17163.
[http://dx.doi.org/10.1073/pnas.1008685107] [PMID: 20876130]
[17]
Eyal, Z.; Matzov, D.; Krupkin, M.; Wekselman, I.; Paukner, S.; Zimmerman, E.; Rozenberg, H.; Bashan, A.; Yonath, A. Structural insights into species-specific features of the ribosome from the pathogen Staphylococcus aureus. Proc. Natl. Acad. Sci. USA, 2015, 112(43), E5805-E5814.
[http://dx.doi.org/10.1073/pnas.1517952112] [PMID: 26464510]
[18]
Chu, S.Y.; Deaton, R.; Cavanaugh, J. Absolute bioavailability of clarithromycin after oral administration in humans. Antimicrob. Agents Chemother., 1992, 36(5), 1147-1150.
[http://dx.doi.org/10.1128/AAC.36.5.1147] [PMID: 1387301]
[19]
Chu, S.Y.; Sennello, L.T.; Bunnell, S.T.; Varga, L.L.; Wilson, D.S.; Sonders, R.C. Pharmacokinetics of clarithromycin, a new macrolide, after single ascending oral doses. Antimicrob. Agents Chemother., 1992, 36(11), 2447-2453.
[http://dx.doi.org/10.1128/AAC.36.11.2447] [PMID: 1489187]
[20]
Sturgill, M.G.; Rapp, R.P. Clarithromycin: review of a new macrolide antibiotic with improved microbiologic spectrum and favorable pharmacokinetic and adverse effect profiles. Ann. Pharmacother., 1992, 26(9), 1099-1108.
[http://dx.doi.org/10.1177/106002809202600912] [PMID: 1421677]
[21]
Foulds, G.; Shepard, R.M.; Johnson, R.B. The pharmacokinetics of azithromycin in human serum and tissues. J. Antimicrob. Chemother., 1990, 25(Suppl. A), 73-82.
[http://dx.doi.org/10.1093/jac/25.suppl_A.73] [PMID: 2154441]
[22]
Perret, C.; Lenfant, B.; Weinling, E.; Wessels, D.H.; Scholtz, H.E.; Montay, G.; Sultan, E. Pharmacokinetics and absolute oral bioavailability of an 800-mg oral dose of telithromycin in healthy young and elderly volunteers. Chemotherapy, 2002, 48(5), 217-223.
[http://dx.doi.org/10.1159/000066766] [PMID: 12476037]
[23]
Zhanel, G.G.; Walters, M.; Noreddin, A.; Vercaigne, L.M.; Wierzbowski, A.; Embil, J.M.; Gin, A.S.; Douthwaite, S.; Hoban, D.J. The ketolides: A critical review. Drugs, 2002, 62(12), 1771-1804.
[http://dx.doi.org/10.2165/00003495-200262120-00006] [PMID: 12149046]
[24]
Lee, J.H.; Lee, M.G. Effects of acute renal failure on the pharmacokinetics of telithromycin in rats: Negligible effects of increase in CYP3A1 on the metabolism of telithromycin. Biopharm. Drug Dispos., 2007, 28(4), 157-166.
[http://dx.doi.org/10.1002/bdd.542] [PMID: 17377958]
[25]
Namour, F.; Wessels, D.H.; Pascual, M.H.; Reynolds, D.; Sultan, E.; Lenfant, B. Pharmacokinetics of the new ketolide telithromycin (HMR 3647) administered in ascending single and multiple doses. Antimicrob. Agents Chemother., 2001, 45(1), 170-175.
[http://dx.doi.org/10.1128/AAC.45.1.170-175.2001] [PMID: 11120961]
[26]
Still, J.G.; Schranz, J.; Degenhardt, T.P.; Scott, D.; Fernandes, P.; Gutierrez, M.J.; Clark, K. Pharmacokinetics of solithromycin (CEM-101) after single or multiple oral doses and effects of food on single-dose bioavailability in healthy adult subjects. Antimicrob. Agents Chemother., 2011, 55(5), 1997-2003.
[http://dx.doi.org/10.1128/AAC.01429-10] [PMID: 21282444]
[27]
Nissen, P.; Hansen, J.; Ban, N.; Moore, P.B.; Steitz, T.A. The structural basis of ribosome activity in peptide bond synthesis. Science, 2000, 289(5481), 920-930.
[http://dx.doi.org/10.1126/science.289.5481.920] [PMID: 10937990]
[28]
Fulle, S.; Gohlke, H. Statics of the ribosomal exit tunnel: Implications for cotranslational peptide folding, elongation regulation, and antibiotics binding. J. Mol. Biol., 2009, 387(2), 502-517.
[http://dx.doi.org/10.1016/j.jmb.2009.01.037] [PMID: 19356596]
[29]
Tenson, T.; Lovmar, M.; Ehrenberg, M. The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. J. Mol. Biol., 2003, 330(5), 1005-1014.
[http://dx.doi.org/10.1016/S0022-2836(03)00662-4] [PMID: 12860123]
[30]
Katz, L.; Ashley, G.W. Translation and protein synthesis: Macrolides. Chem. Rev., 2005, 105(2), 499-528.
[http://dx.doi.org/10.1021/cr030107f] [PMID: 15700954]
[31]
Jenni, S.; Ban, N. The chemistry of protein synthesis and voyage through the ribosomal tunnel. Curr. Opin. Struct. Biol., 2003, 13(2), 212-219.
[http://dx.doi.org/10.1016/S0959-440X(03)00034-4] [PMID: 12727515]
[32]
Brunet, E.; Munoz, D.M.; Parra, F.; Mantecon, S.; Juanes, O.; Rodríguez-Ubis, J.C.; Cruzado, M.C.; Asensio, R. Preparation of clarithromycin. Selective 6-O-methylation of the novel erythromycin A 9-O-(2-pyrimidyl) oxime. Tetrahedron Lett., 2007, 48(8), 1321-1324.
[http://dx.doi.org/10.1016/j.tetlet.2006.12.124]
[33]
Bright, G.M.; Nagel, A.A.; Bordner, J.; Desai, K.A.; Dibrino, J.N.; Nowakowska, J.; Vincent, L.; Watrous, R.M.; Sciavolino, F.C.; English, A.R. Synthesis, in vitro and in vivo activity of novel 9-deoxo-9a-AZA-9a-homoerythromycin A derivatives; a new class of macrolide antibiotics, the azalides. J. Antibiot. (Tokyo), 1988, 41(8), 1029-1047.
[http://dx.doi.org/10.7164/antibiotics.41.1029] [PMID: 3139603]
[34]
Plata, D.J.; Leanna, M.R.; Rasmussen, M.; McLaughlin, M.A.; Condon, S.L.; Kerdesky, F.A.; King, S.A.; Peterson, M.J.; Stoner, E.J.; Wittenberger, S.J. The synthesis of ketolide antibiotic ABT-773 (cethromycin). Tetrahedron, 2004, 60(45), 10171-10180.
[http://dx.doi.org/10.1016/j.tet.2004.09.027]
[35]
Ferrié, L.; Fenneteau, J.; Figadère, B. Total Synthesis of the Marine Macrolide Amphidinolide F. Org. Lett., 2018, 20(11), 3192-3196.
[http://dx.doi.org/10.1021/acs.orglett.8b01020] [PMID: 29762038]
[36]
Schlünzen, F.; Zarivach, R.; Harms, J.; Bashan, A.; Tocilj, A.; Albrecht, R.; Yonath, A.; Franceschi, F. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature, 2001, 413(6858), 814-821.
[http://dx.doi.org/10.1038/35101544] [PMID: 11677599]
[37]
Tu, D.; Blaha, G.; Moore, P.B.; Steitz, T.A. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell, 2005, 121(2), 257-270.
[http://dx.doi.org/10.1016/j.cell.2005.02.005] [PMID: 15851032]
[38]
Woodward, R.B.; Logusch, E.; Nambiar, K.P.; Sakan, K.; Ward, D.E.; Au-Yeung, B.W.; Balaram, P.; Browne, L.J.; Card, P.J.; Chen, C.H. Asymmetric total synthesis of erythromcin. 1. Synthesis of an erythronolide A secoacid derivative via asymmetric induction. J. Am. Chem. Soc., 1981, 103(11), 3210-3213.
[http://dx.doi.org/10.1021/ja00401a049]
[39]
Woodward, R.B.; Logusch, E.; Nambiar, K.P.; Sakan, K.; Ward, D.E.; Au-Yeung, B.W.; Balaram, P.; Browne, L.J.; Card, P.J.; Chen, C.H. Asymmetric total synthesis of erythromycin. 2. Synthesis of an erythronolide A lactone system. J. Am. Chem. Soc., 1981, 103(11), 3213-3215.
[http://dx.doi.org/10.1021/ja00401a050]
[40]
Woodward, R.B.; Logusch, E.; Nambiar, K.P.; Sakan, K.; Ward, D.E.; Au-Yeung, B.W.; Balaram, P.; Browne, L.J.; Card, P.J.; Chen, C.H. Asymmetric total synthesis of erythromycin. 3. Total synthesis of erythromycin. J. Am. Chem. Soc., 1981, 103(11), 3215-3217.
[http://dx.doi.org/10.1021/ja00401a051]
[41]
Muri, D.; Lohse-Fraefel, N.; Carreira, E.M. Total synthesis of erythronolide A by Mg(II)-mediated cycloadditions of nitrile oxides. Angew. Chem. Int. Ed. Engl., 2005, 44(26), 4036-4038.
[http://dx.doi.org/10.1002/anie.200500172] [PMID: 15906401]
[42]
Breton, P.; Hergenrother, P.J.; Hida, T.; Hodgson, A.; Judd, A.S.; Kraynack, E.; Kym, P.R.; Lee, W-C.; Loft, M.S.; Yamashita, M.; Stephen, F.M. Total synthesis of erythromycin B. Tetrahedron, 2007, 63(26), 5709-5729.
[http://dx.doi.org/10.1016/j.tet.2007.02.044]
[43]
Marshall, J.A.; Wuts, P.G. Stereoselective synthesis of racemic occidentalol and related cis-fused hexahydronaphthalenes from m-toluic acid. J. Org. Chem., 1977, 42(10), 1794-1798.
[http://dx.doi.org/10.1021/jo00430a027]
[44]
Wemple, J. The reaction of thiol esters with lithium diisopropylamide. Condensation reactions of thiol ester enolates. Tetrahedron Lett., 1975, 16(38), 3255-3258.
[http://dx.doi.org/10.1016/S0040-4039(00)91418-7]
[45]
Cram, D.J.; Elhafez, F.A.A. Studies in Stereochemistry. X. The rule of “Steric control of asymmetric induction” in the syntheses of acyclic systems. J. Am. Chem. Soc., 1952, 74(23), 5828-5835.
[http://dx.doi.org/10.1021/ja01143a007]
[46]
Corey, E.; Clark, D.A. A new method for the synthesis of 2-pyridinethiol carboxylic esters. Tetrahedron Lett., 1979, 20(31), 2875-2878.
[http://dx.doi.org/10.1016/S0040-4039(01)86439-X]
[47]
Scribner, R.M.; Azaprostanoids, I. Synthesis of (RAC)-11-desoxy-12-azaprostanoids. Tetrahedron Lett., 1976, 17(43), 3853-3856.
[http://dx.doi.org/10.1016/0040-4039(76)80165-7]
[48]
Flynn, E.H. Sigal; Max, V. Jr.; Wiley, P.F.; Gerzon, K. Erythromycin I. Properties and degradation studies. J. Am. Chem. Soc., 1954, 76(12), 3121-3131.
[http://dx.doi.org/10.1021/ja01641a005]
[49]
West, A.C.; Schuerch, C. Reverse anomeric effect and the synthesis of a-glycosides. J. Am. Chem. Soc., 1973, 95(4), 1333-1335.
[http://dx.doi.org/10.1021/ja00785a053]
[50]
Lemieux, R.; Morgan, A. The abnormal conformations of pyridinium α-glycopyranosides. Cancer. J. Chem., 1965, 43(8), 2205-2213.
[http://dx.doi.org/10.1139/v65-298]
[51]
Massey, E.H.; Kitchell, B.; Martin, L.D.; Gerzon, K.; Murphy, H.W. Erythromycylamine. Tetrahedron Lett., 1970, 11(2), 157-160.
[http://dx.doi.org/10.1016/S0040-4039(01)97664-6] [PMID: 5416094]
[52]
Wildsmith, E. Reaction of erythromycin hydrazone with nitrous acid. New route to erythromycylamine. Tetrahedron Lett., 1972, (1), 29-30.
[http://dx.doi.org/10.1016/S0040-4039(01)84230-1]
[53]
Bode, J.W.; Fraefel, N.; Muri, D.; Carreira, E.M. A general solution to the modular synthesis of polyketide building blocks by kanemasa hydroxy-directed nitrile oxide cycloadditions. Angew. Chem. Int. Ed., 2001, 40(11), 2082-2085.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2082::AID-ANIE2082>3.0.CO;2-1]
[54]
Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. Asymmetric transfer hydrogenation of α, β-acetylenic ketones. J. Am. Chem. Soc., 1997, 119(37), 8738-8739.
[http://dx.doi.org/10.1021/ja971570a]
[55]
Hamed, O.; Henry, P.M. Oxidation of olefins by palladium (II). 15.1 oxidation of (R)-(-)-(Z)-and (R)-(+)-(E)-3-Penten-2-ol using several nucleophiles to give chiral β-Substituted Ketones. A method of finding modes of palladation of olefins using chirality transfer. Organometallics, 1997, 16(22), 4903-4909.
[http://dx.doi.org/10.1021/om970497u]
[56]
Griffith, W.P.; Ley, S.V.; Whitcombe, G.P.; White, A.D. Preparation and use of tetra-n-butylammonium per-ruthenate (TBAP reagent) and tetra-n-propylammonium per-ruthenate (TPAP reagent) as new catalytic oxidants for alcohols. J. Chem. Soc. Chem. Commun., 1987, 1(21), 1625-1627.
[http://dx.doi.org/10.1039/c39870001625]
[57]
Curran, D.P. Reduction of DELTA. 2-isoxazolines. 3. Raney nickel catalyzed formation of beta-hydroxy ketones. J. Am. Chem. Soc., 1983, 105(18), 5826-5833.
[http://dx.doi.org/10.1021/ja00356a021]
[58]
Curran, D.P.; Scanga, S.A.; Fenk, C.J. Reduction of substituted. DELTA. 2-isoxazolines. Synthesis of beta-hydroxy acid derivatives. J. Org. Chem., 1984, 49(19), 3474-3478.
[http://dx.doi.org/10.1021/jo00193a008]
[59]
Nakata, T.T.Y.; Hatozaki, M.; Oishi, T. Stereoselective reduction of alpha-methyl-beta-hydroxy ketones with zinc borohydride. Chem. Pharm. Bull. (Tokyo), 1984, 32(4), 1411-1415.
[http://dx.doi.org/10.1248/cpb.32.1411]
[60]
Kolb, H.C.; VanNieuwenhze, M.S.; Sharpless, K.B. Catalytic asymmetric dihydroxylation. Chem. Rev., 1994, 94(8), 2483-2547.
[http://dx.doi.org/10.1021/cr00032a009]
[61]
Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. A rapid esterification by means of mixed anhydride and its application to large-ring lactonization. Bull. Chem. Soc. Jpn., 1979, 52(7), 1989-1993.
[http://dx.doi.org/10.1246/bcsj.52.1989]
[62]
LeMahieu, R.A.; Carson, M.; Kierstead, R.W. A facile preparation or erythronolide A oxime. J. Antibiot. (Tokyo), 1975, 28(9), 704-704.
[http://dx.doi.org/10.7164/antibiotics.28.704] [PMID: 1184479]
[63]
LeMahieu, R.A.; Carson, M.; Kierstead, R.W.; Fern, L.M.; Grunberg, E. Glycoside cleavage reactions on erythromycin A. Preparation of erythronolide A. J. Med. Chem., 1974, 17(9), 953-956.
[http://dx.doi.org/10.1021/jm00255a009] [PMID: 4213128]
[64]
Evans, D.A.; Bartroli, J.; Shih, T. Enantioselective aldol condensations. 2. Erythro-selective chiral aldol condensations via boron enolates. J. Am. Chem. Soc., 1981, 103(8), 2127-2129.
[http://dx.doi.org/10.1021/ja00398a058]
[65]
Penning, T.D.; Djuric, S.W.; Haack, R.A.; Kalish, V.J.; Miyashiro, J.M.; Rowell, B.W.; Yu, S.S. Improved procedure for the reduction of N-acyloxazolidinones. Synth. Commun., 1990, 20(2), 307-312.
[http://dx.doi.org/10.1080/00397919008052299]
[66]
Imamoto, T.; Kusumoto, T.; Tawarayama, Y.; Sugiura, Y.; Mita, T.; Hatanaka, Y.; Yokoyama, M. Carbon-carbon bond-forming reactions using cerium metal or organocerium (III) reagents. J. Org. Chem., 1984, 49(21), 3904-3912.
[http://dx.doi.org/10.1021/jo00195a006]
[67]
Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.; Kamiya, Y. Reactions of carbonyl compounds with Grignard reagents in the presence of cerium chloride. J. Am. Chem. Soc., 1989, 111(12), 4392-4398.
[http://dx.doi.org/10.1021/ja00194a037]
[68]
Denmark, S.E.; Edwards, J.P.; Nicaise, O. Organocerium additions to hydrazones: Effects of reagent stoichiometry on efficiency and selectivity. J. Org. Chem., 1993, 58(3), 569-578.
[http://dx.doi.org/10.1021/jo00055a008]
[69]
Dess, D.; Martin, J. Readily accessible 12-I-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. J. Org. Chem., 1983, 48(22), 4155-4156.
[http://dx.doi.org/10.1021/jo00170a070]
[70]
Dess, D.; Martin, J. A useful 12-I-5 triacetoxyperiodinane (the Dess-Martin periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-I-5 species. J. Am. Chem. Soc., 1991, 113(19), 7277-7287.
[http://dx.doi.org/10.1021/ja00019a027]
[71]
Toshima, K.; Nozaki, Y.; Mukaiyama, S.; Tamai, T.; Nakata, M.; Tatsuta, K.; Kinoshita, M. Application of highly stereocontrolled glycosidations employing 2, 6-anhydro-2-thio sugars to the syntheses of erythromycin A and olivomycin A trisaccharide. J. Am. Chem. Soc., 1995, 117(13), 3717-3727.
[http://dx.doi.org/10.1021/ja00118a008]
[72]
Schlünzen, F.; Harms, J.M.; Franceschi, F.; Hansen, H.A.; Bartels, H.; Zarivach, R.; Yonath, A. Structural basis for the antibiotic activity of ketolides and azalides. Structure, 2003, 11(3), 329-338.
[http://dx.doi.org/10.1016/S0969-2126(03)00022-4] [PMID: 12623020]
[73]
Kim, H.C.; Kang, S.H. Total synthesis of azithromycin. Angew. Chem. Int. Ed. Engl., 2009, 48(10), 1827-1829.
[http://dx.doi.org/10.1002/anie.200805334] [PMID: 19173267]
[74]
Jung, B.; Kang, S.H. Chiral imine copper chloride-catalyzed enantioselective desymmetrization of 2-substituted 1,2,3-propanetriols. Proc. Natl. Acad. Sci. USA, 2007, 104(5), 1471-1475.
[http://dx.doi.org/10.1073/pnas.0607865104] [PMID: 17242359]
[75]
Parikh, J.R.; Doering, W. Sulfur trioxide in the oxidation of alcohols by dimethyl sulfoxide. J. Am. Chem. Soc., 1967, 89(21), 5505-5507.
[http://dx.doi.org/10.1021/ja00997a067]
[76]
Ko, D-H.; Kim, K.H.; Ha, D-C. Enantioselective additions of diethylzinc and diphenylzinc to aldehydes using 2-dialkyl-aminomethyl-2′-hydroxy- 1,1′-binaphthyls. Org. Lett., 2002, 4(21), 3759-3762.
[http://dx.doi.org/10.1021/ol026761j] [PMID: 12375937]
[77]
Caron, M.; Sharpless, K. Titanium isopropoxide-mediated nucleophilic openings of 2, 3-epoxy alcohols. A mild procedure for regioselective ring-opening. J. Org. Chem., 1985, 50(9), 1557-1560.
[http://dx.doi.org/10.1021/jo00209a047]
[78]
Konosu, T.; Oida, S. Enantiocontrolled synthesis of the antifungal. beta-lactam (2R, 5S)-2-(Hydroxymethyl) clavam. Chem. Pharm. Bull. (Tokyo), 1991, 39(9), 2212-2215.
[http://dx.doi.org/10.1248/cpb.39.2212] [PMID: 1799936]
[79]
Brown, H.C.; Bhat, K.S.; Randad, R.S. Chiral synthesis via organoboranes 21 Allyl-and crotylboration of alpha-chiral aldehydes with diisopinocampheylboron as the chiral auxiliary. J. Org. Chem., 1989, 54(7), 1570-1576.
[http://dx.doi.org/10.1021/jo00268a017]
[80]
Marshall, J.A.; Jablonowski, J.A.; Welmaker, G.S. On the relative reactivities of Allyl, Crotyl, α-Oxygenated Crotyl, γ-Oxygenated α-Methylallyl, and Allenyl Tri-n-butylstannane Reagents in Lewis acid promoted additions to Aldehydes. J. Org. Chem., 1996, 61(8), 2904-2907.
[http://dx.doi.org/10.1021/jo9519975] [PMID: 11667135]
[81]
Travis, B.R.; Narayan, R.S.; Borhan, B. Osmium tetroxide-promoted catalytic oxidative cleavage of olefins: An organometallic ozonolysis. J. Am. Chem. Soc., 2002, 124(15), 3824-3825.
[http://dx.doi.org/10.1021/ja017295g] [PMID: 11942807]
[82]
Farrell, D.J.; Sader, H.S.; Castanheira, M.; Biedenbach, D.J.; Rhomberg, P.R.; Jones, R.N. Antimicrobial characterisation of CEM-101 activity against respiratory tract pathogens, including multidrug-resistant pneumococcal serogroup 19A isolates. Int. J. Antimicrob. Agents, 2010, 35(6), 537-543.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.01.026] [PMID: 20211548]
[83]
Seiple, I.B.; Zhang, Z.; Jakubec, P.; Langlois-Mercier, A.; Wright, P.M.; Hog, D.T.; Yabu, K.; Allu, S.R.; Fukuzaki, T.; Carlsen, P.N.; Kitamura, Y.; Zhou, X.; Condakes, M.L.; Szczypiński, F.T.; Green, W.D.; Myers, A.G. A platform for the discovery of new macrolide antibiotics. Nature, 2016, 533(7603), 338-345.
[http://dx.doi.org/10.1038/nature17967] [PMID: 27193679]
[84]
Seiple, I.B.; Hog, D.T.; Myers, A.G. Practical protocols for the preparation of highly enantioenriched silyl ethers of (R)-3-hydroxypentan-2-one, building blocks for the synthesis of macrolide antibiotics. Synlett, 2016, 27(1), 57-60.
[85]
Leyes, A.E.; Poulter, C.D. Synthesis of (R)-[2-2H]isopentenyl diphosphate and determination of its enantiopurity by 2H NMR spectroscopy in a lyotropic medium. Org. Lett., 1999, 1(7), 1067-1070.
[http://dx.doi.org/10.1021/ol990875m] [PMID: 10825959]
[86]
Tan, Z.; Negishi, E. An efficient and general method for the synthesis of α,ω-difunctional reduced polypropionates by Zr-catalyzed asymmetric carboalumination: Synthesis of the scyphostatin side chain. Angew. Chem. Int. Ed. Engl., 2004, 43(22), 2911-2914.
[http://dx.doi.org/10.1002/anie.200353429] [PMID: 15170301]
[87]
Mukaiyama, T.; Narasaka, K.; Banno, K. New aldol type reaction. Chem. Lett., 1973, (9), 1011-1014.
[http://dx.doi.org/10.1246/cl.1973.1011]
[88]
Zhang, Z.; Fukuzaki, T.; Myers, A.G. Synthesis of D-Desosamine and analogs by rapid assembly of 3-Amino sugars. Angew. Chem. Int. Ed. Engl., 2016, 55(2), 523-527.
[http://dx.doi.org/10.1002/anie.201507357] [PMID: 26612347]
[89]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl., 2002, 41(14), 2596-2599.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[90]
Sato, F.; Ishikawa, H.; Watanabe, H.; Miyake, T.; Sato, M. Specific hydromagnesiation of prop-2-ynylic alcohols. A simple and specific route to terpenoids. J. Chem. Soc. Chem. Commun., 1981, (14), 718-720.
[http://dx.doi.org/10.1039/c39810000718]
[91]
Boeckman, R.K.; Jr Pruitt, J.R. A new, highly efficient, selective methodology for formation of medium-ring and macrocyclic lactones via intramolecular ketene trapping: An application to a convergent synthesis of (-)-kromycin. J. Am. Chem. Soc., 1989, 111(21), 8286-8288.
[http://dx.doi.org/10.1021/ja00203a044]
[92]
Boeckman, R.K.; Jr Perni, R.B. Studies directed toward the synthesis of naturally occurring acyltetramic acids. 2. Preparation of the macrocyclic subunit of ikarugamycin. J. Org. Chem., 1986, 51(26), 5486-5489.
[http://dx.doi.org/10.1021/jo00376a101]
[93]
Bryskier, A. Ketolides-telithromycin, an example of a new class of antibacterial agents. Clin. Microbiol. Infect., 2000, 6(12), 661-669.
[http://dx.doi.org/10.1046/j.1469-0691.2000.00185.x] [PMID: 11284926]
[94]
Girard, A.E.; Girard, D.; English, A.R.; Gootz, T.D.; Cimochowski, C.R.; Faiella, J.A.; Haskell, S.L.; Retsema, J.A. Pharmacokinetic and in vivo studies with azithromycin (CP-62,993), a new macrolide with an extended half-life and excellent tissue distribution. Antimicrob. Agents Chemother., 1987, 31(12), 1948-1954.
[http://dx.doi.org/10.1128/AAC.31.12.1948] [PMID: 2830841]
[95]
Seiple, I.B.; Mercer, J.A.; Sussman, R.J.; Zhang, Z.; Myers, A.G. Stereocontrolled synthesis of syn-β-Hydroxy-α-amino acids by direct aldolization of pseudoephenamine glycinamide. Angew. Chem. Int. Ed. Engl., 2014, 53(18), 4642-4647.
[http://dx.doi.org/10.1002/anie.201400928] [PMID: 24692320]
[96]
Mikami, K.; Kawakami, Y.; Akiyama, K.; Aikawa, K. Enantioselective catalysis of ketoester-ene reaction of silyl enol ether to construct quaternary carbons by chiral dicationic palladium(II) complexes. J. Am. Chem. Soc., 2007, 129(43), 12950-12951.
[http://dx.doi.org/10.1021/ja076539f] [PMID: 17918947]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy