Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Recent Advances of Plasmonic Gold Nanoparticles in Optical Sensing and Therapy

Author(s): He Zhou, Hongwei Yang, Guangke Wang, Aijun Gao* and Zhiqin Yuan*

Volume 25, Issue 46, 2019

Page: [4861 - 4876] Pages: 16

DOI: 10.2174/1381612826666191219130033

Price: $65

conference banner
Abstract

Gold nanoparticles with special surface plasmon resonance have been widely used in sensing and therapy because of their easy preparation, unique optical properties, excellent biocompatibility, etc. The applications of gold nanoparticles in chemo/biosensing, imaging, and therapy reported in 2016-2019, are summarized in this review. Regarding the gold nanoparticle-based sensing or imaging, sensing mechanisms and strategies are provided to illustrate the concepts for designing sensitive and selective detection platforms. Gold nanoparticlemediated therapy is introduced by surface plasmon resonance-based therapy and delivery-based therapy. Beyond the sole therapeutic system, platforms through synergistic therapy are also discussed. In the end, discussion of the challenges and future trends of gold nanoparticle-based sensing and therapy systems is described.

Keywords: Gold nanoparticle, surface plasmon resonance, sensing, spectral analysis, therapy, delivery.

[1]
Alanazi FK, Radwan AA, Alsarra IA. Biopharmaceutical applications of nanogold. Saudi Pharm J 2010; 18(4): 179-93.
[http://dx.doi.org/10.1016/j.jsps.2010.07.002] [PMID: 24936133]
[2]
Khan AK, Rashid R, Murtaza G, Zahra A. Gold nanoparticles: synthesis and applications in drug delivery. Trop J Pharm Res 2014; 13: 1169.
[http://dx.doi.org/10.4314/tjpr.v13i7.23]
[3]
Boverhof DR, Bramante CM, Butala JH, et al. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol 2015; 73(1): 137-50.
[http://dx.doi.org/10.1016/j.yrtph.2015.06.001] [PMID: 26111608]
[4]
Hochella MF Jr, Lower SK, Maurice PA, et al. Nanominerals, mineral nanoparticles, and Earth systems. Science 2008; 319(5870): 1631-5.
[http://dx.doi.org/10.1126/science.1141134] [PMID: 18356515]
[5]
Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ, Wang W. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 2017; 22(9): 1445.
[http://dx.doi.org/10.3390/molecules22091445] [PMID: 28858253]
[6]
Qin L, Zeng G, Lai C, et al. “Gold rush” in modern science: fabrication strategies and typical advanced applications of gold nanoparticles in sensing. Coord Chem Rev 2018; 359: 1-31.
[http://dx.doi.org/10.1016/j.ccr.2018.01.006]
[7]
Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM. Shape control in gold nanoparticle synthesis. Chem Soc Rev 2008; 37(9): 1783-91.
[http://dx.doi.org/10.1039/b711490g] [PMID: 18762828]
[8]
Lin YW, Huang CC, Chang HT. Gold nanoparticle probes for the detection of mercury, lead and copper ions. Analyst (Lond) 2011; 136(5): 863-71.
[http://dx.doi.org/10.1039/C0AN00652A] [PMID: 21157604]
[9]
Hotze EM, Phenrat T, Lowry GV. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 2010; 39(6): 1909-24.
[http://dx.doi.org/10.2134/jeq2009.0462] [PMID: 21284288]
[10]
Chen L-Y, Wang C-W, Yuan Z, Chang H-T. Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem 2015; 87(1): 216-29.
[http://dx.doi.org/10.1021/ac503636j] [PMID: 25275676]
[11]
Mondal B, Mukherjee PS. Cage encapsulated gold nanoparticles as heterogeneous photocatalyst for facile and selective reduction of nitroarenes to azo compounds. J Am Chem Soc 2018; 140(39): 12592-601.
[http://dx.doi.org/10.1021/jacs.8b07767] [PMID: 30199241]
[12]
Tan SF, Chee SW, Baraissov Z, Jin H, Tan TL, Mirsaidov U. Real-time imaging of nanoscale redox reactions over bimetallic nanoparticles. Adv Funct Mater 2019; 29 1903242
[http://dx.doi.org/10.1002/adfm.201903242]
[13]
Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004; 104(1): 293-346.
[http://dx.doi.org/10.1021/cr030698+] [PMID: 14719978]
[14]
Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: a review. Talanta 2018; 184: 537-56.
[http://dx.doi.org/10.1016/j.talanta.2018.02.088] [PMID: 29674080]
[15]
Daraio C, Jin S. Synthesis and patterning methods for nanostructures useful for biological applications. In: Silva G, Parpura V, Eds. Nanotechnology for Biology and Medicine Fundamental Biomedical Technologies. New York: Springer 2012; pp. 27-44.
[http://dx.doi.org/10.1007/978-0-387-31296-5_2]
[16]
Freitas de Freitas L, Varca GHC, Dos Santos Batista JG, Benévolo Lugão A. An overview of the synthesis of gold nanoparticles using radiation technologies. Nanomaterials (Basel) 2018; 8(11): 939.
[http://dx.doi.org/10.3390/nano8110939] [PMID: 30445694]
[17]
Daruich De Souza C, Ribeiro Nogueira B, Rostelato MECM. Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. J Alloys Compd 2019; 798: 714-40.
[http://dx.doi.org/10.1016/j.jallcom.2019.05.153]
[18]
Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B. Gold nanoparticles in cancer treatment. Mol Pharm 2019; 16(1): 1-23.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00810] [PMID: 30452861]
[19]
Adnan NNM, Cheng YY, Ong NMN, et al. Effect of gold nanoparticle shapes for phototherapy and drug delivery. Polym Chem 2016; 7: 2888-903.
[http://dx.doi.org/10.1039/C6PY00465B]
[20]
Sau TK, Murphy CJ. Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir 2005; 21(7): 2923-9.
[http://dx.doi.org/10.1021/la047488s] [PMID: 15779967]
[21]
Yuan Z, Hu CC, Chang HT, Lu C. Gold nanoparticles as sensitive optical probes. Analyst (Lond) 2016; 141(5): 1611-26.
[http://dx.doi.org/10.1039/C5AN02651B] [PMID: 26853370]
[22]
Cai Y, Liang P, Tang Q, et al. Diketopyrrolopyrrole-triphenylamine organic nanoparticles as multifunctional reagents for photoacoustic imaging-guided photodynamic/photothermal synergistic tumor therapy. ACS Nano 2017; 11(1): 1054-63.
[http://dx.doi.org/10.1021/acsnano.6b07927] [PMID: 28033465]
[23]
Zheng T, Pierre-Pierre N, Yan X, et al. Gold nanoparticle-enabled blood test for early stage cancer detection and risk assessment. ACS Appl Mater Interfaces 2015; 7(12): 6819-27.
[http://dx.doi.org/10.1021/acsami.5b00371] [PMID: 25757512]
[24]
Ajnai G, Chiu A, Kan T, Cheng C-C, Tsai T-H, Chang J. Trends of gold nanoparticle-based drug delivery system in cancer therapy. J Exp Clin Med 2014; 6: 172-8.
[http://dx.doi.org/10.1016/j.jecm.2014.10.015]
[25]
Shen W, Qu Y, Pei X, et al. Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au. J Hazard Mater 2017; 321: 299-306.
[http://dx.doi.org/10.1016/j.jhazmat.2016.07.051] [PMID: 27637096]
[26]
Dissanayake NM, Arachchilage JS, Samuels TA, Obare SO. Highly sensitive plasmonic metal nanoparticle-based sensors for the detection of organophosphorus pesticides. Talanta 2019; 200: 218-27.
[http://dx.doi.org/10.1016/j.talanta.2019.03.042] [PMID: 31036176]
[27]
Cao Y, Griffith B, Bhomkar P, Wishart DS, McDermott MT. Functionalized gold nanoparticle-enhanced competitive assay for sensitive small-molecule metabolite detection using surface plasmon resonance. Analyst (Lond) 2017; 143(1): 289-96.
[http://dx.doi.org/10.1039/C7AN01680H] [PMID: 29184920]
[28]
Sun Y, Xia Y. Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst (Lond) 2003; 128(6): 686-91.
[http://dx.doi.org/10.1039/b212437h] [PMID: 12866889]
[29]
González AL, Noguez C, Beránek J, Barnard AS. Size, shape, stability, and color of plasmonic silver nanoparticles. J Phys Chem C 2014; 118: 9128-36.
[http://dx.doi.org/10.1021/jp5018168]
[30]
Jans H, Huo Q. Gold nanoparticle-enabled biological and chemical detection and analysis. Chem Soc Rev 2012; 41(7): 2849-66.
[http://dx.doi.org/10.1039/C1CS15280G] [PMID: 22182959]
[31]
Heuer-Jungemann A, Harimech PK, Brown T, Kanaras AG. Gold nanoparticles and fluorescently-labelled DNA as a platform for biological sensing. Nanoscale 2013; 5(20): 9503-10.
[http://dx.doi.org/10.1039/c3nr03707j] [PMID: 23982570]
[32]
Upadhyayula VK. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review. Anal Chim Acta 2012; 715: 1-18.
[http://dx.doi.org/10.1016/j.aca.2011.12.008] [PMID: 22244163]
[33]
Whitesides GM. Nanoscience, nanotechnology, and chemistry. Small 2005; 1(2): 172-9.
[http://dx.doi.org/10.1002/smll.200400130] [PMID: 17193427]
[34]
Beik J, Khateri M, Khosravi Z, et al. Gold nanoparticles in combinatorial cancer therapy strategies. Coord Chem Rev 2019; 387: 299-324.
[http://dx.doi.org/10.1016/j.ccr.2019.02.025]
[35]
Willner MR, Vikesland PJ. Nanomaterial enabled sensors for environmental contaminants. J Nanobiotechnology 2018; 16(1): 95.
[http://dx.doi.org/10.1186/s12951-018-0419-1] [PMID: 30466465]
[36]
Kenry, Lim CT. Nanofiber technology: current status and emerging developments. Prog Polym Sci 2017; 70: 1-17.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.03.002]
[37]
Zhou W, Gao X, Liu D, Chen X. Gold nanoparticles for in vitro diagnostics. Chem Rev 2015; 115(19): 10575-636.
[http://dx.doi.org/10.1021/acs.chemrev.5b00100] [PMID: 26114396]
[38]
Martínez-Aquino C, Costero AM, Gil S, Gaviña P. Resorcinol functionalized gold nanoparticles for formaldehyde colorimetric detection. Nanomaterials (Basel) 2019; 9(2): 302.
[http://dx.doi.org/10.3390/nano9020302] [PMID: 30813298]
[39]
Chen Y, Zhang J, Gao Y, Lee J, Chen H, Yin Y. Visual determination of aliphatic diamines based on host-guest recognition of calix[4]arene derivatives capped gold nanoparticles. Biosens Bioelectron 2015; 72: 306-12.
[http://dx.doi.org/10.1016/j.bios.2015.04.036] [PMID: 26002014]
[40]
Shellaiah M, Simon T, Sun KW, Ko F-H. Simple bare gold nanoparticles for rapid colorimetric detection of Cr3+ ions in aqueous medium with real sample applications. Sens Actuators B Chem 2016; 226: 44-51.
[http://dx.doi.org/10.1016/j.snb.2015.11.123]
[41]
Hu R, Furukawa T, Wang X, Nagatsu M. Tailoring amino-functionalized graphitic carbon-encapsulated gold core/shell nanostructures for the sensitive and selective detection of copper ions. Adv Funct Mater 2017; 27 1702232
[http://dx.doi.org/10.1002/adfm.201702232]
[42]
Shinde S, Kim DY, Saratale RG, Syed A, Ameen F, Ghodake G. A spectral probe for detection of aluminum(III) ions using surface functionalized gold nanoparticles. Nanomaterials (Basel) 2017; 7(10): 287.
[http://dx.doi.org/10.3390/nano7100287] [PMID: 28937661]
[43]
Xu D, Chen H, Lin Q, Li Z, Yang T, Yuan Z. Selective and sensitive colorimetric determination of cobalt ions using Ag-Au bimetallic nanoparticles. RSC Advances 2017; 7: 16295-301.
[http://dx.doi.org/10.1039/C7RA00900C]
[44]
Jia Y, Zheng W, Zhao X, Zhang J, Chen W, Jiang X. Mixing-to-answer iodide sensing with commercial chemicals. Anal Chem 2018; 90(13): 8276-82.
[http://dx.doi.org/10.1021/acs.analchem.8b02126] [PMID: 29874045]
[45]
Kobiela T, Nowakowski B, Duś R. The influence of gas phase composition on the process of Au-Hg amalgam formation. Appl Surf Sci 2003; 206: 78-89.
[http://dx.doi.org/10.1016/S0169-4332(02)01190-X]
[46]
Chen Z, Zhang C, Gao Q, Wang G, Tan L, Liao Q. Colorimetric signal amplification assay for mercury ions based on the catalysis of gold amalgam. Anal Chem 2015; 87(21): 10963-8.
[http://dx.doi.org/10.1021/acs.analchem.5b02812] [PMID: 26434980]
[47]
Chen G, Hai J, Wang H, Liu W, Chen F, Wang B. Gold nanoparticles and the corresponding filter membrane as chemosensors and adsorbents for dual signal amplification detection and fast removal of mercury(ii). Nanoscale 2017; 9(9): 3315-21.
[http://dx.doi.org/10.1039/C6NR09638G] [PMID: 28225117]
[48]
Senapati D, Dasary SSR, Singh AK, Senapati T, Yu H, Ray PC. A label-free gold-nanoparticle-based SERS assay for direct cyanide detection at the parts-per-trillion level. Chemistry 2011; 17(30): 8445-51.
[http://dx.doi.org/10.1002/chem.201100617] [PMID: 21744401]
[49]
Dong Z-Z, Yang C, Vellaisamy K, Li G, Leung C-H, Ma D-L. Construction of a nano biosensor for cyanide anion detection and its application in environmental and biological systems. ACS Sens 2017; 2(10): 1517-22.
[http://dx.doi.org/10.1021/acssensors.7b00553] [PMID: 28948760]
[50]
Cheng C, Chen H-Y, Wu C-S, Meena JS, Simon T, Ko F-H. A highly sensitive and selective cyanide detection using a gold nanoparticle-based dual fluorescence-colorimetric sensor with a wide concentration range. Sens Actuators B Chem 2016; 227: 283-90.
[http://dx.doi.org/10.1016/j.snb.2015.12.057]
[51]
Wu Y, Wang Q, Wu T, et al. Detection and imaging of hydrogen sulfide in lysosome of living cells with an activatable fluorescence quantum dots. ACS Appl Mater Interfaces 2018; 10: 50.
[52]
Yuan Z, Lu F, Peng M, et al. Selective colorimetric detection of hydrogen sulfide based on primary amine-active ester cross-linking of gold nanoparticles. Anal Chem 2015; 87(14): 7267-73.
[http://dx.doi.org/10.1021/acs.analchem.5b01302] [PMID: 26082264]
[53]
Luo Y, Xu J, Li Y, et al. A novel colorimetric aptasensor using cysteamine-stabilized gold nanoparticles as probe for rapid and specific detection of tetracycline in raw milk. Food Control 2015; 54: 7-15.
[http://dx.doi.org/10.1016/j.foodcont.2015.01.005]
[54]
Dong H, Zou F, Hu X, Zhu H, Koh K, Chen H. Analyte induced AuNPs aggregation enhanced surface plasmon resonance for sensitive detection of paraquat. Biosens Bioelectron 2018; 117: 605-12.
[http://dx.doi.org/10.1016/j.bios.2018.06.057] [PMID: 30005380]
[55]
Yola ML, Eren T, Atar N. A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: application to selective determination of tyrosine in milk. Sens Actuators B Chem 2015; 210: 149-57.
[http://dx.doi.org/10.1016/j.snb.2014.12.098]
[56]
Yang Y-C, Tseng W-L. 1,4-Benzenediboronic-acid-induced aggregation of gold nanoparticles: application to hydrogen peroxide detection and biotin-avidin-mediated immunoassay with naked-eye detection. Anal Chem 2016; 88(10): 5355-62.
[http://dx.doi.org/10.1021/acs.analchem.6b00668] [PMID: 27091002]
[57]
Mao J-Y, Li H-W, Wei S-C, et al. DNA Modulates the interaction of genetically engineered DNA-binding proteins and gold nanoparticles: diagnosis of high-risk HPV infection. ACS Appl Mater Interfaces 2017; 9(51): 44307-15.
[http://dx.doi.org/10.1021/acsami.7b13873] [PMID: 29202217]
[58]
Cao X, Lei G, Feng J, Pan Q, Wen X, He Y. A novel color modulation analysis strategy through tunable multiband laser for nanoparticle identification and evaluation. Anal Chem 2018; 90(4): 2501-7.
[http://dx.doi.org/10.1021/acs.analchem.7b03636] [PMID: 29334223]
[59]
Xiao L, Wei L, He Y, Yeung ES. Single molecule biosensing using color coded plasmon resonant metal nanoparticles. Anal Chem 2010; 82(14): 6308-14.
[http://dx.doi.org/10.1021/ac101018v] [PMID: 20568720]
[60]
Qi F, Han Y, Ye Z, Liu H, Wei L, Xiao L. Color-coded single-particle pyrophosphate assay with dark-field optical microscopy. Anal Chem 2018; 90(18): 11146-53.
[http://dx.doi.org/10.1021/acs.analchem.8b03211] [PMID: 30114901]
[61]
Tsai T-T, Huang C-Y, Chen C-A, et al. Diagnosis of tuberculosis using colorimetric gold nanoparticles on a paper-based analytical device. ACS Sens 2017; 2(9): 1345-54.
[http://dx.doi.org/10.1021/acssensors.7b00450] [PMID: 28901134]
[62]
Huang J-Y, Lin H-T, Chen T-H, Chen C-A, Chang H-T, Chen C-F. Signal amplified gold nanoparticles for cancer diagnosis on paper-based analytical devices. ACS Sens 2018; 3(1): 174-82.
[http://dx.doi.org/10.1021/acssensors.7b00823] [PMID: 29282979]
[63]
Huang X, O’Connor R, Kwizera EA. Gold nanoparticle based platforms for circulating cancer marker detection. Nanotheranostics 2017; 1(1): 80-102.
[http://dx.doi.org/10.7150/ntno.18216] [PMID: 28217434]
[64]
Sun J, Lu Y, He L, Pang J, Yang F, Liu Y. A colorimetric sensor array for protein discrimination based on carbon nanodots-induced reversible aggregation of AuNP with GSH as a regulator. Sens Actuators B Chem 2019; 296 126677
[http://dx.doi.org/10.1016/j.snb.2019.126677]
[65]
Yuan Z, Du Y, Tseng YT, et al. Fluorescent gold nanodots based sensor array for proteins discrimination. Anal Chem 2015; 87(8): 4253-9.
[http://dx.doi.org/10.1021/ac5045302] [PMID: 25824850]
[66]
Yang H, Lu F, Sun Y, Yuan Z, Lu C. Fluorescent gold nanocluster-based sensor array for nitrophenol isomer discrimination via an integration of host-guest interaction and inner filter effect. Anal Chem 2018; 90(21): 12846-53.
[http://dx.doi.org/10.1021/acs.analchem.8b03394] [PMID: 30296826]
[67]
Abrao Nemeir I, Saab J, Hleihel W, Errachid A, Jafferzic-Renault N, Zine N. The advent of salivary breast cancer biomarker detection using affinity sensors. Sensors (Basel) 2019; 19(10): 2373.
[http://dx.doi.org/10.3390/s19102373] [PMID: 31126047]
[68]
Cheng X, Sun R, Yin L, Chai Z, Shi H, Gao M. Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Adv Mater 2017; 29(6) 1604894
[http://dx.doi.org/10.1002/adma.201604894] [PMID: 27921316]
[69]
Kim H, Park M, Hwang J, et al. Development of label-free colorimetric assay for MERS-CoV using gold nanoparticles. ACS Sens 2019; 4(5): 1306-12.
[http://dx.doi.org/10.1021/acssensors.9b00175] [PMID: 31062580]
[70]
Ye Z, Wei L, Zeng X, et al. Background-free imaging of a viral capsid proteins coated anisotropic nanoparticle on a living cell membrane with dark-field optical microscopy. Anal Chem 2018; 90(2): 1177-85.
[http://dx.doi.org/10.1021/acs.analchem.7b03762] [PMID: 29243478]
[71]
Moros M, Kyriazi ME, El-Sagheer AH, Brown T, Tortiglione C, Kanaras AG. DNA-coated gold nanoparticles for the detection of mRNA in live Hydra vulgaris animals. ACS Appl Mater Interfaces 2019; 11(15): 13905-11.
[http://dx.doi.org/10.1021/acsami.8b17846] [PMID: 30525369]
[72]
Li N, Xiang M-H, Liu J-W, Tang H, Jiang J-H. DNA polymer nanoparticles programmed via supersandwich hybridization for imaging and therapy of cancer cells. Anal Chem 2018; 90(21): 12951-8.
[http://dx.doi.org/10.1021/acs.analchem.8b03253] [PMID: 30303006]
[73]
Sun J, Cui F, Zhang R, et al. Comet-like heterodimers “gold nanoflower @graphene quantum dots” probe with FRET “off” to NDA circuit signal “on” for sensing and imaging microRNA in vitro and in vivo. Anal Chem 2018; 90(19): 11538-47.
[http://dx.doi.org/10.1021/acs.analchem.8b02854] [PMID: 30182713]
[74]
Yang C, Yin X, Huan S-Y, et al. Two-photon DNAzyme-gold nanoparticle probe for imaging intracellular metal ions. Anal Chem 2018; 90(5): 3118-23.
[http://dx.doi.org/10.1021/acs.analchem.7b04171] [PMID: 29409318]
[75]
Manoharan D, Li W-P, Yeh C-S. Advances in controlled gas-releasing nanomaterials for therapeutic applications. Nanoscale Horiz 2019; 4: 557-78.
[http://dx.doi.org/10.1039/C8NH00191J]
[76]
Li Z, Guo S, Yuan Z, Lu C. Carbon quantum dot-gold nanocluster nanosatellite for ratiometric fluorescence probe and imaging for hydrogen peroxide in living cells. Sens Actuators B Chem 2017; 241: 821-7.
[http://dx.doi.org/10.1016/j.snb.2016.10.134]
[77]
Xie Y, Xianyu Y, Wang N, et al. Functionalized gold nanoclusters identify highly reactive oxygen species in living organisms. Adv Funct Mater 2018; 28(14) 1702026
[http://dx.doi.org/10.1002/adfm.201702026]
[78]
Cui K, Fan C, Chen G, et al. para-Aminothiophenol radical reaction-functionalized gold nanoprobe for one-to-all detection of five reactive oxygen species in vivo. Anal Chem 2018; 90(20): 12137-44.
[http://dx.doi.org/10.1021/acs.analchem.8b03116] [PMID: 30207154]
[79]
Lv Q, Min H, Duan D-B, et al. Total aqueous synthesis of Au@Cu2-xS core-shell nanoparticles for in vitro and in vivo SERS/PA imaging-guided photothermal cancer therapy. Adv Healthc Mater 2019; 8(2) e1801257
[PMID: 30548216]
[80]
Cheng X, Cao X, Xiong B, He Y, Yeung ES. Background-free three-dimensional selective imaging of anisotropic plasmonic nanoparticles. Nano Res 2017; 10: 1423-33.
[http://dx.doi.org/10.1007/s12274-017-1524-4]
[81]
Lee N, Choi SH, Hyeon T. Nano-sized CT contrast agents. Adv Mater 2013; 25(19): 2641-60.
[http://dx.doi.org/10.1002/adma.201300081] [PMID: 23553799]
[82]
Cole LE, Ross RD, Tilley JMR, Vargo-Gogola T, Roeder RK. Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomedicine (Lond) 2015; 10(2): 321-41.
[http://dx.doi.org/10.2217/nnm.14.171] [PMID: 25600973]
[83]
Zhou B, Xiong Z, Wang P, Peng C, Shen M, Shi X. Acetylated polyethylenimine-entrapped gold nanoparticles enable negative computed tomography imaging of orthotopic hepatic carcinoma. Langmuir 2018; 34(29): 8701-7.
[http://dx.doi.org/10.1021/acs.langmuir.8b01669] [PMID: 29958496]
[84]
Chen Q, Wang H, Liu H, et al. Multifunctional dendrimer-entrapped gold nanoparticles modified with RGD peptide for targeted computed tomography/magnetic resonance dual-modal imaging of tumors. Anal Chem 2015; 87(7): 3949-56.
[http://dx.doi.org/10.1021/acs.analchem.5b00135] [PMID: 25768040]
[85]
Wan D, Chen D, Li K, et al. Gold nanoparticles as a potential cellular probe for tracking of stem cells in bone regeneration using dual-energy computed tomography. ACS Appl Mater Interfaces 2016; 8(47): 32241-9.
[http://dx.doi.org/10.1021/acsami.6b11856] [PMID: 27933815]
[86]
Guerrero AR, Aroca RF. Surface-enhanced fluorescence with shell-isolated nanoparticles (SHINEF). Angew Chem Int Ed Engl 2011; 50(3): 665-8.
[http://dx.doi.org/10.1002/anie.201004806] [PMID: 21226148]
[87]
Li JF, Li CY, Aroca RF. Plasmon-enhanced fluorescence spectroscopy. Chem Soc Rev 2017; 46(13): 3962-79.
[http://dx.doi.org/10.1039/C7CS00169J] [PMID: 28639669]
[88]
Jiang X, Li BQ, Qu X, Yang H, Shao J, Zhang H. Multilayered dual functional SiO2@Au@SiO2@QD nanoparticles for simultaneous intracellular heating and temperature measurement. Langmuir 2019; 35(19): 6367-78.
[http://dx.doi.org/10.1021/acs.langmuir.8b04263] [PMID: 30889952]
[89]
Ye Z, Weng R, Ma Y, et al. Label-free, single-particle, colorimetric detection of permanganate by GNPs@Ag core-shell nanoparticles with dark-field optical microscopy. Anal Chem 2018; 90(21): 13044-50.
[http://dx.doi.org/10.1021/acs.analchem.8b04024] [PMID: 30289245]
[90]
Zhang Y, Sha R, Zhang L, et al. Harnessing copper-palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant cancer. Nat Commun 2018; 9(1): 4236.
[http://dx.doi.org/10.1038/s41467-018-06529-y] [PMID: 30315154]
[91]
Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 2007; 7(7): 1929-34.
[http://dx.doi.org/10.1021/nl070610y] [PMID: 17550297]
[92]
Ali MRK, Wu Y, El-Sayed MA. Gold-nanoparticle-assisted plasmonic photothermal therapy advances toward clinical application. J Phys Chem C 2019; 123: 15375-93.
[http://dx.doi.org/10.1021/acs.jpcc.9b01961]
[93]
Yue K, Nan J, Zhang X, Tang J, Zhang X. Photothermal effects of gold nanoparticles induced by light emitting diodes. Appl Therm Eng 2016; 99: 1093-100.
[http://dx.doi.org/10.1016/j.applthermaleng.2016.01.077]
[94]
Nam J, Won N, Jin H, Chung H, Kim S. pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy. J Am Chem Soc 2009; 131(38): 13639-45.
[http://dx.doi.org/10.1021/ja902062j] [PMID: 19772360]
[95]
Ali MRK, Wu Y, Tang Y, et al. Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins. Proc Natl Acad Sci USA 2017; 114(28): E5655-63.
[http://dx.doi.org/10.1073/pnas.1703151114] [PMID: 28652358]
[96]
Chen X, Zhang Q, Li J, Yang M, Zhao N, Xu FJ. Rattle-structured rough nanocapsules with in-situ-formed gold nanorod cores for complementary gene/chemo/photothermal therapy. ACS Nano 2018; 12(6): 5646-56.
[http://dx.doi.org/10.1021/acsnano.8b01440] [PMID: 29870655]
[97]
Xu J, Wang H, Hu Y, et al. Inhibition of CaMKIIalpha activity enhances antitumor effect of fullerene C60 nanocrystals by suppression of autophagic degradation. Adv Sci (Weinh) 2019; 6(8)1801233
[http://dx.doi.org/10.1002/advs.201801233] [PMID: 31016106]
[98]
Choi BJ, Jung KO, Graves EE, Pratx G. A gold nanoparticle system for the enhancement of radiotherapy and simultaneous monitoring of reactive-oxygen-species formation. Nanotechnology 2018; 29(50)504001
[http://dx.doi.org/10.1088/1361-6528/aae272] [PMID: 30229748]
[99]
Yang D, Gulzar A, Yang G, et al. Au nanoclusters sensitized black TiO2-x nanotubes for enhanced photodynamic therapy driven by near-infrared light. Small 2017; 13(48) 1703007
[http://dx.doi.org/10.1002/smll.201703007] [PMID: 29094517]
[100]
Liu C-P, Wu T-H, Liu C-Y, et al. Self-supplying O2 through the catalase-like activity of gold nanoclusters for photodynamic therapy against hypoxic cancer cells. Small 2017; 13(26) 1700278
[http://dx.doi.org/10.1002/smll.201700278] [PMID: 28509427]
[101]
Zhang D, Wu M, Zeng Y, et al. Chlorin e6 conjugated poly(dopamine) nanospheres as PDT/PTT dual-modal therapeutic agents for enhanced cancer therapy. ACS Appl Mater Interfaces 2015; 7(15): 8176-87.
[http://dx.doi.org/10.1021/acsami.5b01027] [PMID: 25837008]
[102]
Liu K, Xing R, Zou Q, Ma G, Möhwald H, Yan X. Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy. Angew Chem Int Ed Engl 2016; 55(9): 3036-9.
[http://dx.doi.org/10.1002/anie.201509810] [PMID: 26804551]
[103]
Hone DC, Walker PI, Evans-Gowing R, et al. Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: a potential delivery vehicle for photodynamic therapy. Langmuir 2002; 18: 2985-7.
[http://dx.doi.org/10.1021/la0256230]
[104]
Haimov E, Weitman H, Polani S, Schori H, Zitoun D, Shefi O. meso-tetrahydroxyphenylchlorin-conjugated gold nanoparticles as a tool to improve photodynamic therapy. ACS Appl Mater Interfaces 2018; 10(3): 2319-27.
[http://dx.doi.org/10.1021/acsami.7b16455] [PMID: 29298037]
[105]
Zeng J, Yang W, Shi D, Li X, Zhang H, Chen M. Porphyrin derivative conjugated with gold nanoparticles for dual-modality photodynamic and photothermal therapies in vitro. ACS Biomater Sci Eng 2018; 4: 963-72.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00886]
[106]
Wei X, Chen H, Tham HP, et al. Combined photodynamic and photothermal therapy using cross-linked polyphosphazene nanospheres decorated with gold nanoparticles. ACS Applied Nano Materials 2018; 1: 3663-72.
[http://dx.doi.org/10.1021/acsanm.8b00776]
[107]
Song Y, Shi Q, Zhu C, et al. Mitochondrial-targeted multifunctional mesoporous Au@Pt nanoparticles for dual-mode photodynamic and photothermal therapy of cancers. Nanoscale 2017; 9(41): 15813-24.
[http://dx.doi.org/10.1039/C7NR04881E] [PMID: 29018855]
[108]
Chowdhury A, Kunjiappan S, Panneerselvam T, Somasundaram B, Bhattacharjee C. Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. Int Nano Lett 2017; 7: 91-122.
[http://dx.doi.org/10.1007/s40089-017-0208-0]
[109]
Qin W, Huang G, Chen Z, Zhang Y. Nanomaterials in targeting cancer stem cells for cancer therapy. Front Pharmacol 2017; 8: 1-15.
[http://dx.doi.org/10.3389/fphar.2017.00001] [PMID: 28149278]
[110]
Pissuwan D, Niidome T, Cortie MB. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 2011; 149(1): 65-71.
[http://dx.doi.org/10.1016/j.jconrel.2009.12.006] [PMID: 20004222]
[111]
Kumar A, Zhang X, Liang XJ. Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol Adv 2013; 31(5): 593-606.
[http://dx.doi.org/10.1016/j.biotechadv.2012.10.002] [PMID: 23111203]
[112]
Shan Y, Luo T, Peng C, et al. Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomaterials 2012; 33(10): 3025-35.
[http://dx.doi.org/10.1016/j.biomaterials.2011.12.045] [PMID: 22248990]
[113]
Xin Y, Yin M, Zhao L, Meng F, Luo L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med 2017; 14(3): 228-41.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0052] [PMID: 28884040]
[114]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[115]
Zhou X, Chen F, Lu H, et al. Ionic microgel loaded with gold nanoparticles for the synergistic dual-drug delivery of doxorubicin and diclofenac sodium. Ind Eng Chem Res 2019; 58: 10922-30.
[http://dx.doi.org/10.1021/acs.iecr.9b01904]
[116]
Jahangirian H, Kalantari K, Izadiyan Z, Rafiee-Moghaddam R, Shameli K, Webster TJ. A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int J Nanomedicine 2019; 14: 1633-57.
[http://dx.doi.org/10.2147/IJN.S184723] [PMID: 30880970]
[117]
Xiao W, Xiong J, Zhang S, Xiong Y, Zhang H, Gao H. Influence of ligands property and particle size of gold nanoparticles on the protein adsorption and corresponding targeting ability. Int J Pharm 2018; 538(1-2): 105-11.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.011] [PMID: 29341915]
[118]
Cheng Y, Meyers JD, Broome AM, Kenney ME, Basilion JP, Burda C. Deep penetration of a PDT drug into tumors by noncovalent drug-gold nanoparticle conjugates. J Am Chem Soc 2011; 133(8): 2583-91.
[http://dx.doi.org/10.1021/ja108846h] [PMID: 21294543]
[119]
Thakur NS, Patel G, Kushwah V, Jain S, Banerjee UC. Self-assembled gold nanoparticle-lipid nanocomposites for on-demand delivery, tumor accumulation, and combined photothermal-photodynamic therapy. ACS Applied Bio Materials 2018; 2: 349-61.
[http://dx.doi.org/10.1021/acsabm.8b00618]
[120]
Zhang Q, Gong Y, Guo XJ, Zhang P, Ding CF. Multifunctional gold nanoparticle-based fluorescence resonance energy-transfer probe for target drug delivery and cell fluorescence imaging. ACS Appl Mater Interfaces 2018; 10(41): 34840-8.
[http://dx.doi.org/10.1021/acsami.8b12897] [PMID: 30264982]
[121]
Wang F, Zhang W, Shen Y, Huang Q, Zhou D, Guo S. Efficient RNA delivery by integrin-targeted glutathione responsive polyethyleneimine capped gold nanorods. Acta Biomater 2015; 23: 136-46.
[http://dx.doi.org/10.1016/j.actbio.2015.05.028] [PMID: 26026304]
[122]
Chiodo F, Enríquez-Navas PM, Angulo J, Marradi M, Penadés S. Assembling different antennas of the gp120 high mannose-type glycans on gold nanoparticles provides superior binding to the anti-HIV antibody 2G12 than the individual antennas. Carbohydr Res 2015; 405: 102-9.
[http://dx.doi.org/10.1016/j.carres.2014.07.012] [PMID: 25573666]
[123]
Meka RR, Mukherjee S, Patra CR, Chaudhuri A. Shikimoyl-ligand decorated gold nanoparticles for use in ex vivo engineered dendritic cell based DNA vaccination. Nanoscale 2019; 11(16): 7931-43.
[http://dx.doi.org/10.1039/C8NR10293G] [PMID: 30964937]
[124]
Niikura K, Matsunaga T, Suzuki T, et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano 2013; 7(5): 3926-38.
[http://dx.doi.org/10.1021/nn3057005] [PMID: 23631767]
[125]
Pranke I, Golec A, Hinzpeter A, Edelman A, Sermet-Gaudelus I. Emerging therapeutic approaches for cystic fibrosis. From gene editing to personalized medicine. Front Pharmacol 2019; 10: 121.
[http://dx.doi.org/10.3389/fphar.2019.00121] [PMID: 30873022]
[126]
Hong J, Yun CO. Telomere gene therapy: polarizing therapeutic goals for treatment of various diseases. Cells 2019; 8(5): 392.
[http://dx.doi.org/10.3390/cells8050392] [PMID: 31035374]
[127]
Hwang MT, Landon PB, Lee J, et al. DNA nano-carrier for repeatable capture and release of biomolecules. Nanoscale 2015; 7(41): 17397-403.
[http://dx.doi.org/10.1039/C5NR05124J] [PMID: 26439640]
[128]
Liu B, Huang Z, Liu J. Polyvalent spherical nucleic acids for universal display of functional DNA with ultrahigh stability. Angew Chem Int Ed Engl 2018; 57(30): 9439-42.
[http://dx.doi.org/10.1002/anie.201805532] [PMID: 29863751]
[129]
Fong L-K, Wang Z, Schatz GC, Luijten E, Mirkin CA. The role of structural enthalpy in spherical nucleic acid hybridization. J Am Chem Soc 2018; 140(20): 6226-30.
[http://dx.doi.org/10.1021/jacs.8b03459] [PMID: 29762017]
[130]
Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA. Gene regulation with polyvalent siRNA-nanoparticle conjugates. J Am Chem Soc 2009; 131(6): 2072-3.
[http://dx.doi.org/10.1021/ja808719p] [PMID: 19170493]
[131]
Prigodich AE, Alhasan AH, Mirkin CA. Selective enhancement of nucleases by polyvalent DNA-functionalized gold nanoparticles. J Am Chem Soc 2011; 133(7): 2120-3.
[http://dx.doi.org/10.1021/ja110833r] [PMID: 21268581]
[132]
Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006; 312(5776): 1027-30.
[http://dx.doi.org/10.1126/science.1125559] [PMID: 16709779]
[133]
Zheng D, Giljohann DA, Chen DL, et al. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc Natl Acad Sci USA 2012; 109(30): 11975-80.
[http://dx.doi.org/10.1073/pnas.1118425109] [PMID: 22773805]
[134]
Jin Z, Wu K, Hou J, Yu K, Shen Y, Guo SA. PTX/nitinol stent combination with temperature-responsive phase-change 1-hexadecanol for magnetocaloric drug delivery: magnetocaloric drug release and esophagus tissue penetration. Biomaterials 2018; 153: 49-58.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.040] [PMID: 29101815]
[135]
Zhang Z, Wang Y, Xu S, et al. Photothermal gold nanocages filled with temperature sensitive tetradecanol and encapsulated with glutathione responsive polycurcumin for controlled DOX delivery to maximize anti-MDR tumor effects. J Mater Chem B Mater Biol Med 2017; 5: 5464-72.
[http://dx.doi.org/10.1039/C7TB01253E]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy